
BANDWIDTH OF TREES OF HEIGHT AT MOST TWO

LSU VIGRE COMBINATORICS CREW

Abstract. For a graph G, let γ : V (G) → {1, 2, ..., |V (G)|} be
a one-to-one function. The bandwidth of γ, is the maximum of
|γ(u)−γ(v)| for uv ∈ E(G). The bandwidth of G, b(G), is the mini-
mum bandwidth over all embeddings γ, b(G) = minγ{max{|γ(u)−
γ(v)| : uv ∈ E(G)}}. In this paper, we show that the bandwidth
computation problem for trees of height at most two can be solved
in polynomial time. This naturally complements the result com-
puting the bandwidth for caterpillars.

1. Introduction

The graph terminology used here will follow Diestel [2]. Let G be
a graph. The order of the graph, |V (G)|, is the number of vertices
contained in the graph. For x ∈ V (G), let d(x) denote the degree of x
in G and let ∆(G) be the maximum degree of all vertices in G. Let

γ : V (G)→ {1, 2, . . . , |V (G)|}

be a one-to-one function. The bandwidth of γ, b(γ) is the maximum
of |γ(u) − γ(v)| for uv ∈ E(G). The bandwidth of G, b(G), is the
minimum bandwidth over all embeddings γ.

b(G) = min
γ
{max{|γ(u)− γ(v)| : uv ∈ E(G)}}

The diameter of a graph G, diam(G), is the greatest distance be-
tween any two vertices contained in V (G) [2]. The density of a con-

nected graph G, is
⌈
|V (G)|−1
diam(G)

⌉
. Local density, ρ(G), is the maximum

density of a connected subgraph of G, so

ρ(G) =

⌈
max
G′

|V (G′)| − 1

diam(G′)

⌉
where G′ is taken over all connected subgraphs of G. Note that for
any embedding γ with bandwidth b(G), |γ(u) − γ(v)| ≤ b(G) for two

1991 Mathematics Subject Classification. 05C05, 05C78.
Mark Bilinski, Kwang Ju Choi, Deborah Chun †, Dr. Guoli Ding, Stan Dziobiak,

Rodrigo Farnham, Perry Iverson, Shirley Leu, Lisa Warshauer.
1

2 LSU VIGRE COMBINATORICS CREW

adjacent vertices u and v. Extending this to where u and v are instead
the ends of a path implies the well known result that ρ(G) ≤ b(G) [7].

For some classes of graphs, the bandwidth is known to be the local
density, which can be computed in polynomial time for these classes.
These classes include caterpillars of hair-length at most two [1] and
complete k-ary trees [7]. For some other classes of graphs, the band-
width computation problem has been shown to be NP-complete. These
classes include trees of maximum degree three [4], caterpillars with hair
length at most three [6], and split graphs [5].

In this paper, we consider the bandwidth computation problem for
trees of height at most two. A tree of height at most two is a tree with
root vertex r where the distance from any vertex to r is at most two.
In a sense, trees of height two and caterpillars are two extreme types
of trees. Caterpillars are obtained from paths by adding leaves while
trees of height two are obtained from stars by adding leaves. While the
bandwidth equals local density for caterpillars, this is not the case for
trees of height two (See Figure 1). Thus a new method is needed to
compute the bandwidth of trees of height two.

u
uu u

u uu u u u

uu u

�
�
�
�

C
C
C
C

�
�
�
�

C
C
C
C

�
�
�
�

C
C
C
C

�
�

�
�

@
@
@
@

A
A
A
A

�
�
�
�

Figure 1. The above graph T , is a tree of height 2
where b(T) 6= ρ(T). Note b(T) = 4 and ρ(T) = 3.

An important step in our algorithm is to show that our bandwidth
problem for trees of height at most two is equivalent to a version of the
classic optimization problem partition. partition takes an input of
n positive integers and asks if they can be partitioned into two sets
which have the same sum. Though partition is NP-complete [3], it is
the size of its input that allows us to use the algorithm. Computation-
ally, the input size for the bandwidth problem is the size of the tree.
We show that this bandwidth computation problem can be solved in
polynomial time if and only if a version of partition can be solved in

BANDWIDTH OF TREES OF HEIGHT AT MOST TWO 3

polynomial time based on the size of the tree. While partition is NP-
complete based on an input size which is less than the size of the tree,
we give an algorithm which runs in pseudo-polynomial time based on
this smaller input size, which actually runs in polynomial time based on
the size of the tree. Using this algorithm, the bandwidth computation
problem for a tree of height at most two can be solved in polynomial
time.

2. Our bandwidth problem is a partition problem

The following technical lemma shows that the bandwidth problem
for trees of height at most two is equivalent to a partition problem.

Lemma 2.1. Let T be a tree of height at most two, with root r and C
the set of children of r. Let k ∈ N. Then b(T) ≤ k if and only if :

(1) ∆(T) ≤ 2k
(2) |V (T)| ≤ 4k + 1
(3) C has a partition (C1, C2) such that:

(3a) |C1| ≤ k, and |C2| ≤ k
(3b) |C1|+ |C2|+ |G1| ≤ 3k, and |C1|+ |C2|+ |G2| ≤ 3k, where

Gi is the set of children of Ci for i = 1, 2.

Proof. Suppose b(T) ≤ k. Let γ be a labeling of V (T) with labels
{1, 2, . . . , |V (T)|} with b(γ) = b(T). Let C1 be the set of children
of r with label less than γ(r), and let C2 be the set of children of r
with label more than γ(r). Clearly |C1| ≤ k and |C2| ≤ k because
|γ(c)− γ(r)| ≤ k for any child c of r, thus proving (3a). Now there can
be at most 2k − |C1| vertices of G1 with label less than γ(r), because
|γ(r)−γ(g)| ≤ 2k for any g ∈ G1. Further, there can be at most k−|C2|
vertices of G1 with label more than γ(r), because |γ(c) − γ(g)| ≤ k
for any c ∈ C1 and g ∈ G1. Thus |G1| ≤ 2k − |C1| + k − |C2|, so
|C1|+ |C2|+ |G1| ≤ 3k. Similarly, |C1|+ |C2|+ |G2| ≤ 3k, thus proving

(3b) and hence (3). Now since
⌈
|V (T)|−1

4

⌉
≤ ρ(T) ≤ b(T) ≤ k, we have

|V (T)| ≤ 4k + 1, thus proving (2). Finally, because
⌈

∆(T)
2

⌉
≤ ρ(T) ≤

b(T) ≤ k, we have ∆(T) ≤ 2k, thus proving (1).
We now prove the converse. Let T be a tree of height at most

two satisfying (1) and (2), and suppose a partition of the children of
the root, (C1, C2) satisfying (3) exists. Then we will demonstrate a
labeling γ : V (G) → {1, 2, . . . , 4k + 1} which shows b(T) ≤ k. Let
C1 = {x11, x12, . . . x1n1} with d(x11) ≥ d(x12) ≥ · · · ≥ d(x1n1), and
let C2 = {x21, x22, . . . x2n2} with d(x21) ≥ d(x22) ≥ · · · ≥ d(x2n2), and

4 LSU VIGRE COMBINATORICS CREW

further assume |C1| + |G1| ≥ |C2| + |G2|. The following algorithm
produces a labeling demonstrating b(T) ≤ k:

Algorithm:
Input: T , a tree of height at most two, satisfying conditions (1)-(3)
Output: γ(v) a labelling of the vertices of T into {1, ..., 4k + 1}

Label with the smallest unassigned value beginning with 1:

(1) At most k grandchildren, starting with children of x11 through
children of x1n1 .

(2) x11 through x1i, where x1i is the last vertex whose child has a
label.

(3) The remaining children of x1i.
(4) Up to label 2k: half of the children of x1j (rounded up), x1j,

then the remaining children of x1j for j from i+ 1 to n1.
(5) r.
(6) Resuming (4), without the 2k label upper bound, for the rest

of x1j and its children.

Label with the largest unassigned value beginning with γ(r) + 2k:

(7) At most k grandchildren, starting with children of x21 through
children of x2n2 .

Label with the largest unassigned value beginning with γ(r) + k:

(8) x21 through x2l, where x2l is the last vertex whose child has a
label.

(9) The remaining children of x2l.
(10) Half of the children of x2j (rounded up), x2j, then the remaining

children of x2j, for j from l + 1 to n2.

Now it remains to show this algorithm produces a labeling of V (T)
demonstrating a bandwidth of at most k.

Each of x11, x12, . . . , x1i−1 has a label more than the labels of all its
children. Since there are at most k such grandchildren of the root, and
the x1j are sorted by degree, we have that |γ(x1j)− γ(y)| ≤ k for any
j < i, and any y a child of x1j.

Next we prove that for any child y of x1i, that |γ(x1i) − γ(y)| ≤ k.
Because of steps (1)-(3), x1i may have both children with labels greater
than γ(x1i) and children with labels less than γ(x1i). As above, any
child y of x1i with label γ(y) < γ(x1i) has |γ(x1i)− γ(y)| ≤ k. Assume
for contradiction that there are more than k − 1 children of x1i with
label more than γ(x1i). Then the degree of any x1j with j < i would
be at least k + 1, and hence x1j would have at least k children. Since
each such child y of x1j has label γ(y) < γ(x1j), and since there are at

BANDWIDTH OF TREES OF HEIGHT AT MOST TWO 5

most k such children of x1j by (1), i = 1. But then x11 would have k
children with label less than γ(x11) and k children with label greater
than γ(x11), which together with the fact that x11 is a child of r implies
that d(x11) ≥ 2k + 1. However, this is not possible since ∆(T) ≤ 2k.
Thus there are at most k−1 children of x1i with label more than γ(x1i)
and hence |γ(x1i)− γ(y)| ≤ k for any child y of x1i.

Any x1j with j > i is centered among its children, and thus the
only possible problem is at some vertex, call it x1j′ , with j′ > i, which
has children with labels both more and less than γ(r). But x1j′ must
have at most k − 1 children with labels less than γ(r) and at most
k − 1 children with labels more than γ(r). If not, then x1j′ has at
least 2k − 1 children so d(x1j′) = 2k by condition (1). Further by
ordering the degrees, we would have d(x1j) = 2k for all j < j′, and
importantly there exists such x1j as j′ > i and hence j′ > 1. Then
|C1| + |C2| + |G1| ≥ 4k, a contradiction. So x1j′ has at most k − 1
children with label less than γ(r) and at most k−1 children with label
more than γ(r), giving |γ(x1j) − γ(y)| ≤ k for any j > i and any y, a
child of x1j.

Since |T | ≤ 4k + 1, the x2j and their children all receive a label.
Further, note the symmetry between steps (1)-(4) and (7)-(10) in the
algorithm. The x2j are labeled in a similar way on the other side of
the root, but to make matters easier, no x2j has children with labels
less than γ(r). Thus a similar argument to those above shows that
|γ(x2j)− γ(y)| ≤ k for any child y of x2j. Further |γ(x)− γ(y)| ≤ k for
any x a child of r and for any y a child of x.

If |G1| ≥ k, and |C1| + |G1| ≥ 2k, then γ(r) = 2k + 1, and k + 1 ≤
γ(x1j) ≤ 3k + 1 for any j. If |G1| ≥ k, and |C1| + |G1| < 2k, then
k + 1 ≤ γ(x1j) ≤ γ(r) ≤ 2k + 1 for any j. Finally if |G1| < k, then
γ(r) − k ≤ γ(x1j) ≤ γ(r) for any j. In any case, |γ(r) − γ(x1j)| ≤ k
for any j. Now since γ(x2j) is between γ(r) + 1 and γ(r) + k, we have
|γ(r)− γ(x)| ≤ k for any x a child of r. �

Note that the algorithm runs in time O(|T |), given a partition sat-
isfying conditions (1)-(3) and given that the children of the root are
sorted by degree. If the children are not sorted by degree, we must of
course sort them, and the algorithm runs in time O(|T | log |T |).

3. Pseudo-Polynomial Partition Algorithm

In this section, we develop an algorithm to solve the partition prob-
lem in pseudo-polynomial time. This algorithm will then be used to
solve the bandwidth computation problem for trees of height at most

6 LSU VIGRE COMBINATORICS CREW

two in polynomial time because the input size for the bandwidth prob-
lem is the size of tree, which is slightly larger than the input size for
the partition problem.

First we formally define the partition problem.

partition.
Input: a1, a2, . . . , an positive integers.
Output: Truth value of the following statement “There a subset

I ⊆ {1, 2, . . . , n} such that
∑

i∈I ai =
∑

i/∈I ai”

Note that the input size is O(n+
∑n

i=1blog2 aic).
Next we define a problem similar to partition and discuss the so-

lution of this problem – as this is the problem which ultimately we will
be using to solve our bandwidth problem.

fixed size subset sum.
Input: a1, a2, . . . , an,m,N non-negative integers.
Output: Truth value of the following statement “There a subset

I ⊆ {1, 2, . . . , n} such that |I| = m and
∑

i∈I ai = N”

Note that the input size is O(n+ log2m+ log2N +
∑n

i=1blog2 aic).

Lemma 3.1. The problem fixed size subset sum is NP-complete.

Proof. We reduce partition to this problem. Let a1, a2, . . . , an be an
arbitrary instance of partition (a list of n positive integers). We let
N := 1

2

∑n
i=1 ai. For m = 1, 2, . . . , bn

2
c, run the fixed size subset

sum algorithm with input a1, a2, . . . , an,m,N . Note that each of the
bn

2
c instances of fixed size subset sum is constructed in polynomial

(in fact, constant) time. It is clear that the algorithm will return a
positive answer for at least one value of m if and only if the instance
of partition has a positive answer.

�

No known algorithm solves the NP-complete fixed size subset
sum in polynomial time based on the size of the input (which has
size n + log2m + log2N +

∑n
i=1blog2 aic). Below we give a dynamic

programming algorithm that solves the problem in pseudo-polynomial
time, but before we begin, we first give a definition to make clear
what is meant in this algorithm. Let I be a family of sets I ⊆
{1, .., n}. I is said to be the lexicographically minimum set if for any
J ∈ I,min{I4J} ∈ I, where 4 is the symmetric difference. For
example, if I = {{1, 3, 4}, {2, 4}, {1, 2, 4}}, {1, 2, 4} would be the lex-
icographically minimum set. As the algorithm will deal with finite
families of finite sets, its clear that the lexicographically minimum set
is well defined.

BANDWIDTH OF TREES OF HEIGHT AT MOST TWO 7

Lemma 3.2. The problem fixed size subset sum can be solved in
polynomial time based on the input size: n+m+N +

∑n
i=1blog2 aic.

Proof. For any I ⊆ {1, 2, . . . , n} let a(I) :=
∑

i∈I ai. For any two
non-negative integers p, q, let

f(p, q) =


∗ if no I satisfies |I| = p and a(I) = q

{ai : i ∈ I} otherwise, where I is the lexicographically minimum set

that satisfies |I| = p and a(I) = q

Note that f(m,N) either demonstrates the partition for a positive
outcome of fixed size subset sum or indicates that no such partition
exists. Below we present an algorithm which iteratively populates the
two-dimensional table of values for f(p, q) and ultimately outputs the
desired f(m,N).
Algorithm:
Input: a1, a2, . . . , an,m,N of non-negative integers.
Output: f(m,N)
if pq = 0, then

f(p, q) :=



∗ if p = 0

∗ if q = 0 < p and there are fewer than

p indices i with ai = 0

{ai1 , ai2 , . . . , aip} if q = 0 < p and ai1 , ai2 , . . . , aip are

the first p terms with ai = 0

for p = 1, 2, . . . ,m
{

for q = 1, 2, . . . , N
{

for i = 1, 2, . . . , n
{

if f(p − 1, q − ai) = ∗ or f(p − 1, q − ai) = {ai1 , ai2 , . . . , aip−1}
with ip−1 ≥ i, then i := i+ 1;

if f(p − 1, q − ai) = {ai1 , ai2 , . . . , aip−1} with ip−1 < i, then
f(p, q) := {ai1 , ai2 , . . . , aip−1 , ai} and break;

f(p, q) := ∗;
}
q := q + 1;
}
p := p+ 1;

8 LSU VIGRE COMBINATORICS CREW

}
return f(m,N);

It is easy to see that the algorithm iteratively creates a two-dimensional
table of values f , where the entry f(p, q) holds the value ∗ (for ‘False’)
if there is no I satisfying |I| = p and a(I) = q, and {ai : i ∈ I} if I is
the lexicographically minimum set that satisfies |I| = p and a(I) = q.
Note that initializing the first row and first column of the table f (corre-
sponding to p = 0 or q = 0) takes O(n) time, and once inside the three
‘for’ loops, the ‘if’ statements and setting f(p, q) take a combined O(1)
time. Clearly, the three ‘for’ loops combine for a total of n2N iterations,
hence the running time of the above algorithm is O(n2N). Alterna-
tively, the running time is O(x3), where x := n+m+N+

∑n
i=1blog2 aic

is the size of the input.
�

4. our bandwidth problem in polynomial time

The characterization from Lemma 2.1 combined with the fixed size
subset sum algorithm gives the following result for computing the
bandwidth of trees of height at most two.

Theorem 4.1. If T is a tree of height at most two, then the bandwidth
b(T) can be computed in polynomial time.

Proof. Let r be the root of T , and let C = {x1, x2, . . . , xn} be the set
of children of r. For i = 1, 2, . . . , n, let ai be the number of children of
xi, and let a :=

∑n
i=1 ai.

We will give an algorithm that computes the bandwidth b(T). It is

motivated by the following facts. Note that max{d |T |−1
4
e, d∆(T)

2
e} ≤

ρ(T) ≤ b(T) ≤ |T | − 1. Hence, by Lemma 2.1, there is a k such that

max{d |T |−1
4
e, d∆(T)

2
e} ≤ k ≤ |T |−1 satisfying conditions (1) - (4) of the

lemma. The algorithm will find the smallest such k (thus finding b(T))
by invoking the fixed size subset sum algorithm with a specific
input.

First, let k := b(T). Then, k is the smallest integer with max

{d |T |−1
4
e, d∆(T)

2
e} ≤ k ≤ |T | − 1 for which the conditions (1) - (4) of

Lemma 2.1 are satisfied. This means that:

(1) ∆(T) ≤ 2k;
(2) |T | ≤ 4k + 1; and C has a partition (C1, C2) such that:
(3) |C1| ≤ k, and |C2| ≤ k;
(4) |C1| + |C2| + |G1| ≤ 3k, and |C1| + |C2| + |G2| ≤ 3k, where Gi is
the set of children of Ci for i = 1, 2.

BANDWIDTH OF TREES OF HEIGHT AT MOST TWO 9

(1) ∆(T) ≤ 2k
(2) |V (T)| ≤ 4k + 1
(3) C has a partition (C1, C2) such that:

(3a) |C1| ≤ k, and |C2| ≤ k
(3b) |C1|+ |C2|+ |G1| ≤ 3k, and |C1|+ |C2|+ |G2| ≤ 3k, where

Gi is the set of children of Ci for i = 1, 2.

Letm := |C1|, andN := |G1|, so that |C2| = n−m, and |G2| = a−N .
Hence, from condition (3a), we get n − k ≤ m ≤ k, and from (3b),
we get a − 3k + n ≤ N ≤ 3k − n. Up to a reindexing of the xi’s
(and the corresponding ai’s) we have that C1 = {x1, . . . , xm}. Then,
since G1 is the set of children of C1, we have that

∑m
i=1 ai = N , so

that for these prescribed values of k, m, and N , fixed size subset
sum(a1, . . . , an,m,N) returns ‘True’. In short, because of these struc-
tural properties of the tree, fixed size subset sum returns ‘True’ for
this particular combination of k,m,N .

Thus we create an algorithm to test different combinations of k,m,N ,
as we know fixed size subset sum will return ‘True’ at least for that
precise combination. Further, we need not test all combinations of
these three positive integers – instead we need only test them between
the already mentioned finite bounds. Note that it will remain to show
that this one precise combination resulting from the structure of T will
be the only combination resulting in a ‘True’ output from from fixed
size subset sum within this algorithm.

Algorithm:
Input: T , a tree of height at most two
Output: k = b(T)

for k from max{d |T |−1
4
e, d∆(T)

2
e} to |T | − 1

{
for m from n− k to k
{

for N from a− 3k + n to 3k − n
{

if fixed size subset sum(a1, . . . , an,m,N), then return k;
N := N + 1;
}
m := m+ 1;
}
k := k + 1;

}
return k;

10 LSU VIGRE COMBINATORICS CREW

Conversely, assume that for some k with max{d |T |−1
4
e, d∆(T)

2
e} ≤ k ≤

|T |−1, the fixed size subset sum algorithm returns ‘True’ with input
a1, . . . , an,m,N such that n−k ≤ m ≤ k and a−3k+n ≤ N ≤ 3k−n.
This means that, up to a reindexing of the ai’s (and the correspond-
ing xi’s),

∑m
i=1 ai = N . Let C1 := {x1, . . . , xm}, C2 := C − C1, and

for i = 1, 2 let Gi be the set of children of Ci. Hence, |C1| = m,
|C2| = n − m, |G1| = N , |G2| = a − N . Then, from the inequali-
ties n − k ≤ m ≤ k, we get that |C1| ≤ k, and |C2| ≤ k. Similarly,
from a − 3k + n ≤ N ≤ 3k − n, we get that |G1| + |C| ≤ 3k, and
|G2| + |C| ≤ 3k. Also, by assumption, |T | ≤ 4k + 1 and ∆(T) ≤ 2k,
hence the conditions (1) - (3) of Lemma 2.1 are satisfied.

Thus, we have shown that starting from the value of

k = max{d |T |−1
4
e, d∆(T)

2
e} and up to the value of k = |T | − 1 (if nec-

essary), our algorithm successively checks whether b(T) ≤ k. At the
same time, we are guaranteed that fixed size subset sum will re-
turn a ‘True’ statement for some combination of k,m,N . Hence this
algorithm will return the smallest k such that b(T) ≤ k, which is the
bandwidth b(T).

By Lemma 3.2, the fixed size subset sum algorithm runs in time
cubic in n+m+N +

∑n
i=1blog2 aic. Since n = |C| < |T |, m ≤ k < |T |,

|N | < 3k < 3|T |, and
∑n

i=1blog2 aic <
∑n

i=1 ai < |T |, it follows that
n+m+N+

∑n
i=1blog2 aic < 6|T |. Hence, each invocation of the fixed

size subset sum algorithm runs in time cubic in 6|T |, hence O(|T |3).
Since each of the three ‘for’ loops of our algorithm iterates at most
O(|T |) times, our algorithm runs in time O(|T |3|T |3) = O(|T |6), which
is polynomial in the size of the input of our algorithm.

�

It may be possible to extend this result to trees of any bounded
height. Having that result would be very interesting, and may have fur-
ther implications for determining which classes of trees have polynomial-
time algorithms for computing the bandwidth.

Acknowledgements

The VIGRE program, or Vertical Integration of Research and Edu-
cation, is part of the NSF Enhancing the Mathematical Sciences Work-
force in the 21st Century (EMSW21) and provided funding to make the
LSU VIGRE Combinatorics Crew possible. The LSU VIGRE Combi-
natorics Crew would also like to thank Professor Guoli Ding for sug-
gesting the problem and for his significant help in all aspects of this
paper.

BANDWIDTH OF TREES OF HEIGHT AT MOST TWO 11

References

[1] Assmann, S.F.; Peck, G.W.; Syslo, M.M.; and Zak, J.; The bandwidth of
caterpillars with hairs of length 1 and 2. SIAM J. Algeb. Disc. Meth. 2 (1981),
387–393.

[2] Diestel, R. Graph Theory, 2nd Edition, Springer-Verlag, New York, 2000.
[3] Garey, M. R.; Graham, R.L.; Johnson, D. S.; Knuth, D.E.; Complexity results

for bandwidth minimization. SIAM J. Appl. Math. 34 (1978), no. 3, 477–495.
[4] Garey, M. R.; Johnson, D. S.. Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.
[5] Kloks, Ton; Kratsch, Dieter, Le borgne, Yvan; Mller, Haiko; Bandwidth of

split and circular permutation graphs. Graph-theoretic concepts in computer
science 243–254, Lecture notes in Comput. Sci., 1928, Springer 2000.

[6] Monien, B., The bandwidth minimization problem for caterpillars with hair
length 3 is NP-complete. SIAM J. on Algebraic and Discrete Methods 7 (1986),
no. 4, 505–512.

[7] Smithline, L.; Bandwidth of the complete k-ary tree. Discrete Math 142 (1995),
203–212.

