
STOCHASTIC HOMOGENIZATION

BENJAMIN FEHRMAN

Abstract. We develop the theory of stochastic homogenization of divergence-form elliptic oper-
ators beginning from the periodic case. These notes are being written for a Spring 2020 lecture
course at the University of Oxford.
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1. Introduction

The goal of homogenization is to understand materials or systems with complicated microstruc-
tures. Our model example will be the flow of heat or the conductance of charge through a metal
with randomly deposited impurities. Examples of such are diverse. The simplest is a periodic
composite, which is deterministic, such as a material consisting of a conductor in the black squares
and an insulator in the white squares. However, the material may instead be random effectively
random, with impurities deposited like a random tiling of space or like random points in the plane.
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Periodic Random tile Poisson cloud Cluster

As explained in Section 1.1 below, the conductance is typically modeled using a parabolic or elliptic
equation in divergence form. That is, for some diffusion matrix A, the density of heat/energy/charge
either evolves according to the parabolic equation

∂tu = ∇ ·A∇u,

or its steady stead at equilibrium satisfies the elliptic equation

−∇ ·A∇u = 0.

We will begin our study by considering a 1-periodic diffusion matrix A(x) defined on Rd, such
as would describe the flow of heat through the checkerboard above. The heat flow through the
periodic material above is then modeled by an equation of the form

(1.1) ∂tu
ε = ∇ ·A(x/ε)∇uε or −∇ ·A(x/ε)∇vε = 0,

where ε ∈ (0, 1) is the scale of the periodic microstructure (since A(x/ε) is ε-periodic). More gener-
ally, we will consider diffusion matrices A(x, ω) that are stationary and ergodic random variables;
assumptions which state essentially that the random environment is statistically homogenous and
weakly mixing. In this case, we will study equations of the form

(1.2) ∂tu
ε = ∇ ·A(x/ε, ω)∇uε or −∇ ·A(x/ε, ω)∇vε = 0,

where ε ∈ (0, 1) is the microscale of impurities. The aim is to characterize the behavior of the
solutions uε as ε→ 0. This amounts to proving the existence of an effective environment, described
by a constant coefficient diffusion matrix A, such that, as ε→ 0, the solutions uε of (1.1) or almost
surely the solutions of (1.2) converge to the solution u of the equation

(1.3) ∂tu = ∇ ·A∇u or −∇ ·A∇u = 0.

The primary aims of stochastic homogenization are therefore to identify the effective environment
A and to quantify the convergence of uε to u.

Homogenization is a highly nonlinear form of averaging. In particular, we will see below that the
effective matrix A is not equal to the average or expectation of A. From a mathematical point of
view, the problems therefore present an interesting mix of analysis, probability, and ergodic theory
and are of intrinsic interest in their own right. However, there are additional important practical
applications of these problems. We will see below that in order to effectively model an equation
like (1.1) or (1.2) it is necessary to take a discretization of scale much smaller than ε ∈ (0, 1).
Therefore, already in three dimensions, their numerically simulation can be extremely costly. But
computing the solution of (1.3), which is essentially the heat equation, is fast and straightforward.
So, provided we can identify A, we can well-approximate the behavior of the periodic or random
environments for small values of ε ∈ (0, 1). Finally, the random setting is essential, in the sense
that we are modeling materials with small-scale impurities or defects. We therefore cannot expect
to know their positions exactly. In particular, there is on reason in general to expect that they will
be periodic. But we can postulate properties of their random distribution, and then we can prove
almost surely that every realization of the random environment, that is for almost every possible
distribution of impurities, we have convergence to the deterministic, homogenized environment.
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1.1. The heat equation and the Laplace equation. In this course, we will primarily be in-
terested in elliptic and parabolic equations in divergence form, which can be used to model the
conduction of heat or electricity. The heat equation, which is perhaps the simplest parabolic equa-
tion is defined by

∂tu = ∆u+ f on U × (0,∞) with u = g on ∂U × (0,∞) and u = u0 on U × {0},

for some domain U ⊆ Rd. The solution u as the density of heat, energy, or electric charge at time
t ∈ [0,∞) and the point x ∈ U . The function f is a source/sink that quantifies the density of
energy being put in or taken out of the system. Perhaps we are holding a constant flame to the
plate. The heat along the boundary is held fixed according to the boundary data g. So, energy
escaping to or from the boundary is either absorbed or replenished. The initial distribution of
energy is u0.

The derivation of the heat equation follows from the conservation of energy. Through every region
of the domain, the total change of energy is equal to the amount of external energy provided/taken
by f plus the total flux of energy through the boundary. Precisely, for every x ∈ U and r ∈ (0,∞)
satisfying Br(x) ⊆ U , this is to say that

∂t

(ˆ
Br(x)

u

)
=

˛
∂Br(x)

∇u · ν +

ˆ
Br(x)

f,

where ν is the unit normal. By the divergence theorem, since ∇ · (∇u) = ∆u, this implies thatˆ
Br(x)

u =

ˆ
Br(x)

∆u+

ˆ
Br(x)

f,

and, after dividing by |Br(x)| and passing to the limit r → 0, we recover the heat equation

∂tu = ∆u+ f.

The heat equation is a good model for diffusion in a homogenous material. Weighting the flux
equally in all directions is tantamount to saying the heat/energy diffuses equally from every point
in all directions.

We have seen that a parabolic equation models a system evolving in time. Divergence form
elliptic equations model systems in equilibrium. Precisely, if u is a solution of the heat equation

∂tu = ∆u+ f on U × (0,∞) with u = g on ∂U × (0,∞) and u = u0 on U × {0},
then we expect that, provided f and g are independent of time, as t→∞ the density approaches
an equilibrium state and so ∂tu→ 0. Therefore, as t→∞, we expect that u→ v for v solving the
Laplace equation

∆v + f = 0 in U with v = g on ∂U.

Indeed, the Laplace equation is derived using the same logic based on conservation of energy. Since
the system is in equilibrium, the rate of change in energy in any region must be zero, which means
that the energy provided/taken by f must be balanced by the flux of energy through that region.
That is, for each x ∈ U and r ∈ (0,∞) satisfying Br(x) ⊆ U ,˛

∂Br(x)
∇v · ν +

ˆ
Br(x)

f = 0.

By the divergence theorem, this implies thatˆ
Br(x)

∆v +

ˆ
Br(x)

f = 0,

and therefore, after dividing by |Br| and passing to the limit r → 0,

∆v + f = 0.
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As with the heat equation, the Laplace equation is a good model for homogenous systems in
equilibrium. The density diffuses equally from every point in all directions.

1.2. Diffusion processes. The heat equation and the Laplace equation are intricately related to
Brownian motion. Indeed, the law of a standard Brownian motion (Bx

t )t∈[0,∞) beginning from

x ∈ Rd is simply the heat kernel. That is, for each t ∈ [0,∞), for every Borel measurable subset
A ⊆ Rd,

P[Bx
t ∈ A] =

ˆ
A

(2πt)−
d
2 exp

(
−|y − x|

2

2t

)
dy.

Therefore, if u is a solution of the heat equation

∂tu = ∆u on Rd × (0,∞) with u = u0 on Rd × {0},
we have that

u(x, t) =

ˆ
Rd

(2πt)−
d
2u0(y) exp

(
−|y − x|

2

2t

)
dy = E[u0(Bx

t )],

which is one version of the Feynman-Kac formula. That is, the solution of the heat equation
is simply the initial condition averaged with respect to Brownian motion. This is why the heat
equation is regularizing, and the greater the diffusion the regularity you see. That is, for each
α ∈ (0,∞) let uα solve the equation

∂tuα = α∆uα on Rd × (0,∞) with uα = u0 on Rd × {0}.
It follows that uα(x, t) = u(x, αt) and therefore, by Brownian scaling,

uα(x, t) = E[u0(Bx
αt)] = E[u0(

√
αBx

t )].

So, we see a greater regularizing effect as α→∞, and a vanishing regularizing effect as α→ 0.
Note that the constant coefficient diffusion matrix need not be isotropic. That is, it need not be

rotationally invariant. Consider for λ1, λ2 ∈ (0,∞) the two-dimensional matrix

(1.4) A =

(
λ1 0

0 λ2

)
.

The solution of the equation

(1.5) ∂tu = ∇ ·A∇u on Rd × (0,∞) with u = u0 on Rd × {0},
is then related to the diffusion process, defined for independent Brownian motions (B1

t )t∈[0,∞) and

(B2
t )t∈[0,∞),

(1.6) dXt = d

(
X1
t

X2
t

)
= d

(√
2λ1B

1
t√

2λ2B
2
t

)
,

by the Feynman-Kac formula
u(x, t) = Ex[(Xt)],

where Ex denotes the expectation of the solution to (1.6) starting from x ∈ R2. Suppose that
λ1 >> λ2. It is then the case that the solutions (Xt)t∈[0,∞) diffuses more rapidly in the x1-direction
than in the x2-direction. This is to say that the solution to (1.5) observes more averaging in the
x1-direction than in the x2-direction. And, indeed, this is reflected in the natural energy estimate

1

2

ˆ
Rd
u2(x, t) dx+

ˆ t

0

ˆ
Rd
λ1(∂x1u(x, s))2 + λ2(∂x2u(x, s))2 dx ds ≤ 1

2

ˆ
Rd
u2

0(x) dx.

The extreme case follows from taking λ1 →∞ and λ2 → 0, for which we see that u becomes constant
in the x1-direction and for which we have no regularity in the x2-direction. The important principle
to keep in mind is that diffusion implies regularity because diffusion implies averaging.
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1.3. General elliptic and parabolic equations in divergence form. More generally, a para-
bolic or an elliptic equation in divergence form is described by a non-constant diffusion matrix A
that describes the diffusion of heat away from each point. In the parabolic case, the equation

∂tu = ∇ ·A∇u+ f on U × (0,∞) with u = g on ∂U × (0,∞) and u = u0 on U × {0},
is derived again using conservation of energy. However, in this case the flux is described by the
matrix A. That is, for every x ∈ U and r ∈ (0,∞) satisfying Br(x) ⊆ U , we assert that

∂t

(ˆ
Br(x)

u(y, t) dy

)
=

˛
∂Br(x)

A(y)∇u(y) · ν dS(y) +

ˆ
Br(x)

f(y) dy,

from which it follows formally follows by the divergence theorem that

(1.7) ∂tu = ∇ ·A∇u+ f.

In equilibrium we expect have that˛
∂Br(x)

A(y)∇u(y) · ν dS(y) +

ˆ
Br(x)

f(y) dy = 0,

from which we derive the equation

(1.8) −∇ ·A∇u = f.

Think again of the example (1.5) above. If λ2 = 0 then there is no diffusion of energy in the
x2-direction, which is reflected by the fact that we no longer consider the flux of ∇u but of A∇u.

If A is symmetric, then it is again the case that the solutions (1.7) and (1.8) are related to a
diffusion process. Let σ be a matrix satisfying σσt = 2a and let (Xt)t∈[0,∞) be the solution to the
stochastic differential equation

dXt = σ(Xt) dBt + (∇ ·A) dt.

Then, for the exit time τ from the domain U we that the solution of (1.7) satisfies

u(x, t) = Ex [g(Xτ )|τ ≤ t] + Ex [u0(Xt)|τ > t] + Ex
[ˆ τ∧t

0
f(Xs) ds

]
and the solution of (1.8) satisfies

u(x, t) = Ex
[
g(Xτ ) +

ˆ τ

0
f(Xs) ds

]
.

Such formulas will not play a significant role in this course, but it is important to keep in mind the
relationship between the partial differential equation and the diffusion process. Homogenization
of PDEs is formally equivalent to proving scaling limits in law for diffusion processes, as we will
describe below.

1.4. A motivating computation. Let A : Rd → Rd be a one-periodic, bounded, and strictly
positive function. We are interested in the asymptotic behavior of the solution

−∇ ·A(x/ε)∇uε = f in (0, 1) with uε = 0 on {0, 1}.
We can then integrate to see that, for some c ∈ (0,∞),

∇uε(x) = A(x/ε)−1

(
c−

ˆ x

0
f(y) dy

)
.

Then, since as ε→ 0,

A(x/ε)−1 ⇀ 〈A−1〉 =

ˆ 1

0
A−1(y) dy weakly in L2((0, 1)),
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we see that, as ε→ 0,

∇uε(x) ⇀ 〈A−1〉(c−
ˆ x

0
f(y) dy) weakly in L2((0, 1)).

Therefore, if we define u ∈ H1
0 ((0, 1)) by

∇u = 〈A−1〉(c−
ˆ x

0
f(y) dy),

it follows that u solves

−∇ · 〈A−1〉−1∇u = f in (0, 1) with u = 0 on {0, 1}.
This shows that the homogenized coefficient is not simply the average of the original coefficients,
due to the fact that if A is not constant then in general

(1.9) 〈A〉 6= 〈A−1〉−1.

Furthermore, we see that while as ε→ 0 we have

∇uε ⇀ ∇u weakly in L2((0, 1)),

but that, as ε→ 0,

(1.10) ∇uε 9 ∇u strongly in L2((0, 1)).

That is, the oscillations of the solution cancel in a weak sense but on in a strong sense.

1.5. A remark on numerics. Suppose that we are interested in numerically solving the one-
dimensional problem

(1.11) −∇ ·A(x/ε)∇uε = −∇ · f in (0, 1) with uε = 0 on {0, 1}.
We can reduce this to a problem in linear algebra after restricting to the solution space Vh of H1

0 -
functions on (0, 1) that are piecewise-linear on the partition [0, 1/h, 2/h, . . . , h−1/h, 1], where h ∈ N.
That is, when taking into account the boundary conditions, an element of Vh is uniquely represented
by a vector (x1, x2, . . . , xh) ∈ Rh satisfying the property that x1 + x2 + . . .+ xh = 0.

The Lax-Milgram theorem allows to solve (1.11) in the space Vh. In this case, the solution
uε = (uε1, u

ε
2, . . . , u

ε
h) satisfies for every v = (v1, v2, . . . , vh) that

h∑
k=1

(ˆ k
h

k−1
h

A(y/ε) dy

)
uεkvk =

h∑
k=1

(ˆ k
h

k−1
h

f(y) dy

)
vk.

At this point we see that if h = ε−1 then for every k ∈ {1, 2, . . . , h} we have that
ˆ k

h

k−1
h

A(y/ε) dy = ε〈A〉,

and more generally if h ≥ ε as ε→ 0 we have that, for each k ∈ {1, 2, . . . , h}, as ε→ 0,
ˆ k

h

k−1
h

A(y/ε) dy → 1

h
〈A〉.

This is to say that, if the discretization parameter h is not chosen sufficiently smaller than ε, then
the numerical scheme is approximating the equation

−∇ · 〈A〉∇ũ = −∇ · f in (0, 1) with ũ = 0 on {0, 1},
which fails to capture the correct behavior of the solution. That is, as we observed in (1.9), the
homogenized coefficient is not simply the average of the original coefficient.

We therefore conclude that, in order to capture the correct behavior of the solutions uε, it is
necessary to take discretization with order ε−1 elements. In higher dimension, the same argument



Stochastic homogenization 7

proves that the mesh size h of the grid must be taken of order less than ε. This leads to a
discretization with order ε−d elements, and already in dimension three this is computationally too
expensive in practice. Conversely, estimating the solution of the homogenized equation is cheap
and relies only on understanding the homogenized coefficient A. So, provided we can effectively
compute A, we can well approximate solutions of the oscillating equation (1.11) by computing the
solution of the constant coefficient, homogenized equation.

2. Periodic homogenization

A matrix A ∈ Rd×d is uniformly elliptic if, for some constants λ,Λ ∈ (0,∞),

(2.1) |Aξ| ≤ Λξ and Aξ · ξ ≥ λ |ξ|2 for every ξ ∈ Rd.

We say that a non-constant matrix A : Rd → Rd×d if there exist constants λ,Λ ∈ (0,∞) such that
A(x) satisfies (2.1) for every x ∈ Rd. For a 1-periodic, uniformly elliptic matrix A : R → Rd, we
will study the limiting behavior, as ε→ 0, of the solutions uε to the problem

(2.2) −∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U.

We restrict to zero boundary conditions and consider the elliptic problem only for simplicity. The
methods of this section apply readily to nonzero boundary conditions and the parabolic problem
as well. The well-posedness of (2.2) in H1

0 (U)is a consequence of the uniform ellipticity and the
Lax-Milgram theorem.

Definition 2.1. Let U ⊆ Rd be a bounded open set, let A : U → Rd×d be uniformly elliptic, an d
let f ∈ H−1(U). We say that a function u ∈ H1

0 (U) is a weak solution of the equation

−∇ ·A∇u = f in U with u = 0 on ∂U,

if, for every v ∈ H1
0 (U), ˆ

U
A∇u · ∇v = 〈f, v〉H−1(U),

where 〈·, ·〉H−1(U) denotes the pairing between H1
0 (U) and its dual H−1(U).

Proposition 2.2. Let U ⊆ Rd be a bounded open set and let A : U → Rd×d be uniformly elliptic.
Then for every f ∈ H−1(U) there exists a unique weak solution uf ∈ H1

0 (U) of the equation

−∇ ·A∇uf = f in U with uf = 0 on ∂U.

Furthermore,

‖uf‖H1
0 (U) ≤

1

λ
‖f‖H−1(U) .

Proof. The boundedness of U and the Poincaré inequality prove that there exists c ∈ (0,∞) such
that, for every v ∈ H1

0 (U),

‖∇v‖L2(U) ≤ ‖v‖H1(U) ≤ c ‖∇v‖L2(U ;Rd) .

Therefore, for every v, w ∈ H1(U), the bilinear form

〈v, w〉H1
0 (U) =

ˆ
U
∇v · ∇w

defines a positive definite inner product on H1
0 (U) and we take ‖u‖H1

0 (U) = 〈u, u〉
1
2 . It then follows

from the uniform ellipticity and Hölder’s inequality that, for every v, w ∈ H1
0 (U),∣∣∣∣ˆ

U
A∇v · ∇w

∣∣∣∣ ≤ ‖v‖H1
0 (U) ‖w‖H1

0 (U) ,
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and that, for every v ∈ H1
0 (U),ˆ

U
A∇v · ∇v ≥ λ

ˆ
U
|∇v|2 = λ ‖v‖2H1

0 (U) .

The Lax-Milgram theorem therefore proves that for every f ∈ H−1(U) there exists a unique
uf ∈ H1

0 (U) which satisfiesˆ
U
A∇uf · ∇v = 〈f, v〉H−1(U) for every v ∈ H1

0 (U).

It then follows after choosing v = uf that

λ ‖u‖2H1
0 (U) ≤ ‖f‖H−1(U) ‖u‖H1

0 (U) ,

and therefore that

‖u‖H1
0 (U) ≤

1

λ
‖f‖H−1(U) .

This completes the proof. �

Remark 2.3. An essential conclusion of Proposition 2.2 is that for each f ∈ H−1(U) the solutions

−∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U,

are uniformly bounded in ε ∈ (0, 1). That is,

sup
ε∈(0,1)

‖uε‖H1
0 (U) ≤

1

λ
‖f‖H−1(U) .

We therefore know a priori that the solutions remain in a relatively weakly compact subset of
H1

0 (U) and a relatively compact subset of Lp(U) for every p ∈ [1, 2∗) for the Sobolev exponent
1/2∗ = 1/2 − 1/d if d ≥ 3, with 2∗ = ∞ if d = 2, and with the solutions remaining in a relatively
compact subset of Cα(U) for every α ∈ (0, 1/2) if d = 1. This is far from proving that the solutions
converge along the full sequence ε→ 0, however.

2.1. The asymptotic expansion. We will approach the homogenization problem (2.2) by sepa-
rating the macroscopic scale (that is, scale 1) from the microscopic scale (that is, scale ε). For this
we formally postulate that the solution uε admits an asymptotic expansion of the form

(2.3) uε(x) ' u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + . . . ,

where the functions ui : U ×Td → R are periodic in the second variable. An expansion of this type
is not a priori justified, so the following computations will proceed on a formal level. We will write
x for the slow variable and y for the fast variable, so that we have, for instance,

∇u1(x, y) = ∇xu1(x, y) + ε−1∇yu1(x, y),

where the variable y stands in for x/ε.
We first exploit the divergence form structure of the equation to argue that the terms of order

two and higher will not effect the ε → 0 limit. Precisely, suppose that uε ∈ H1
0 (U) is the solution

of the equation

−∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U.

Then, for each ψ ∈ C∞c (U) we haveˆ
U
A(x/ε)∇uε(x) · ∇ψ(x) dx =

ˆ
U
A(x/ε)

(
∇xu0 + ε−1∇yu0 +∇yu1 + ε∇xu1 +O(ε)

)
· ∇ψ(x) dx

=

ˆ
U
fψ dx.
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So, as ε → 0, we see formally that the higher order terms u2, u3, . . . do not effect the equation’s
weak formulation. We therefore postulate an asymptotic expansion of the form

(2.4) uε(x) ' u0(x, y) + εu1(x, x/ε).

This divergence form structure is essential for this simplification to be valid. If we instead considered
the non-divergence form equation

− tr(A(x/ε∇2uε)) + 1/εb(x/ε) · ∇uε = f,

it would be necessary to additionally consider the higher order term u2.
Returning to (2.4), we evaluate the equation to find that

−(∇x + ε−1∇y) ·
[
A(y)(ε−1∇yu0 +∇xu0 +∇yu1 + ε∇xu1)

]
= f.

We proceed by equating powers of ε. The equation of order ε−2 is

−∇y ·A(y)∇yu0(y, x) = 0 in Td for every x ∈ U.
It follows from the weak maximum principle, or the standard energy estimate, that u0(x, y) = u0(x)
is independent of the fact variable y ∈ Td.

The equation of order ε−1 is

(2.5) −∇y ·A(y)(∇xu0(x) +∇yu1(x, y)) = 0.

Based on the intuition that the solution is determined by the underlying diffusion process, and the
fact that the underlying diffusion process sees on the fast scale, or based on PDE considerations,
we postulate here a separation of scales. That is, we make the ansatz that

(2.6) u1(x, y) = φi(y)∂iu0(x),

for periodic functions φi : Td → R. Here and throughout the notes we will use Einstein’s summation
convention over repeated indices. Returning to (2.5) and applying the ansatz (2.6), we have that

−∇y ·A(y) (ei +∇yφi(y))) ∂iu0(x) = 0.

Since the functions ∂iu0 are effectively arbitrary, and we will see that they can be fixed to be almost
anything by changing the righthand side f , we have for each i ∈ {1, . . . , d} that

(2.7) −∇y ·A(y)(ei +∇yφi) = 0.

Equation (2.7) is the so-called corrector equation or cell problem. The solutions φi are called
homogenization correctors. We will say more about these solutions in the next section.

The equation of order 1 is then

−∇x · [A(y)(ei +∇φi(y))∂iu0(x)] = f.

Or, if we return to the original scaling, we have that

−∇x · [A(x/ε)(ei +∇φi(x/ε))∂iu0(x)] = f(x).

Since, as ε→ 0,

A(x/ε)(ei +∇φi(x/ε)) ⇀
ˆ
Td
A(y)(ei +∇φi(y)) dy = 〈A(ei +∇φi)〉,

we conclude that, since u0 and f are independent of ε,

(2.8) −∇x · [〈A(ei +∇φi)〉∂iu0(x)] = f(x).

We use (2.8) to define the homogenized coefficient A. That is, for each i ∈ {1, . . . , d}, we define

(2.9) Aei = 〈A(ei +∇φi)〉 so that Aji = 〈A(ei +∇φi)〉 · ej ,
and conclude from (2.8) that u0 solves

(2.10) −∇ ·A∇u0 = f in U with u0 = 0 on ∂U.
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We can then justify the formal expansion a posteriori in the sense that after defining the φi according
to (2.7), the homogenized coefficient A according to (2.9), and u0 according to (2.10) we have

(2.11) uε(x) ' u0(x) + εφi(x/ε)∂iu0(x).

We will make this precise in the next two sections.

2.2. The homogenization corrector. We will write H1
0 (Td) for the space of mean zero H1-

functions on the torus. Thanks to the Poincaré inequality, the mean zero condition guarantees that
the inner product

〈u, v〉H1
0 (Td) =

ˆ
Td
∇u · ∇v,

defines a positive definite inner product on H1
0 (Td). We will now show that there exists a unique

φi ∈ H1
0 (Td) satisfying (2.7). We emphasize that correctors are clearly not unique, in the sense

that if φi solves (2.7) then so too does φi + c for any c ∈ R. What the following proposition proves
is that this is the only source of non-uniqueness, and that correctors are unique up to the addition
of a constant.

Proposition 2.4. For every i ∈ {1, . . . , d} there exists a unique weak solution φi ∈ H1
0 (Td) of the

equation

−∇y ·A(y)(ei +∇φi(y)) = 0 in Td.

Proof. The proof is virtually identical to Proposition 2.2, and is an immediate consequence the
uniform ellipticity of A, the Poincaré inequality, and the Lax-Milgram theorem. �

The correctors some to define the intrinsic geometry of the space in the following sense. Suppose
that u ∈ C2(Rd) is a sub-quadratic harmonic function in the sense that

−∆u = 0 in Rd and lim sup
|x|→0

|u(x)|
|x|2

= 0.

Then the first-order Liouville theorem proves that u is linear. That is, there exists c ∈ R and
ξ ∈ Rd such that u(x) = c+ ξ · x. We can view the correctors as correcting the linear functions xi
so as to make them A-harmonic in the sense that

−∇ ·A(y) · (ei +∇φi) = −∇ ·A(y)∇(xi + φi) = 0.

In this way, the functions xi+φi define the natural coordinates in the geometry defined by A. And
indeed we will see that this can be made precise in the sense that if u : Rd → R is A-harmonic and
strictly sub-quadratic in the sense that, for some α ∈ (0, 1),

−∇ ·A∇u = 0 in Rd and lim sup
|x|→0

|u(x)|
|x|1+α = 0,

then there exists c ∈ R and ξ = (ξ1, . . . , ξd) ∈ Rd such that u(x) = c+ ξ ·x+φξ(x) where φξ = ξiφi.
The role of the corrector can also been seen on the level of the diffusion

dXt = σ(Xt) dBt + (∇ ·A)(Xt) dt,

for σσt = 2A. Indeed, for φ = (φ1, . . . , φd), we see that the corrector φ modifies the solution Xt

so as to make it a martingale. That is, if we define Mt = Xt + φ(Xt), then it follows from Itô’s
formula that Mt is a martingale. And, thus,

εXt/ε2 = εMt/ε2 + εφ(Xt/ε2),

where the first term on the righthand side can be handled using martingale convergence arguments
and the second term formally vanishes in the ε→ 0 limit.
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2.3. The homogenized coefficient. Henceforth, for each i ∈ {1, . . . , d}, let φi be the solution of
the correctors equation

−∇ ·A(y)(ei +∇φi(y)) = 0 in Td.
We recall from (2.9) that the homogenized coefficient A is defined by the equation, for each ξ ∈ Rd,

Aξ =

ˆ
Td
A(y)(ξ +∇φξ(y)) dy = 〈A(ξ +∇φξ)〉,

for φξ = ξiφi. The following proposition proves that A is uniformly elliptic if A is uniformly elliptic,

and that A is symmetric if A is symmetric.

Proposition 2.5. Assume that A is periodic and satisfies (2.1) for constants λ,Λ ∈ (0, 1) and let
{φi}i∈{1,...,d} be as in Proposition 2.4. Then A ∈ Rd×d defined by

Aei = 〈A(ei +∇φi)〉,

satisfies, for every ξ ∈ Rd,∣∣Aξ∣∣ ≤ Λ |ξ| 〈
d∑
i=1

|ei +∇φi|2〉
1
2 and Aξ · ξ ≥ λ |ξ|2 .

Proof. The uniform ellipticity of A proves that, for every ξ ∈ Rd,∣∣Aξ∣∣ =

∣∣∣∣ˆ
Td
A(y)ξi(ei +∇φi(y)) dy

∣∣∣∣ ≤ Λ

ˆ
Td
|ξi| |ei +∇φi(y)| dy,

where |·| denotes the usual Euclidean metric on Rd and the absolute value on R. It then follows
from Hölder’s inequality on Rd and Jensen’s inequality that

∣∣Aξ∣∣ ≤ Λ |ξ|

(
d∑
i=1

〈|ei +∇φi|〉2
) 1

2

≤ Λ |ξ|

(
〈
d∑
i=1

|ei +∇φi|2〉

) 1
2

.

For the uniform ellipticity, observe by linearity that for every ξ ∈ Rd the corrector φξ = ξiφi satisfies
the equation

(2.12) −∇ ·A(ξ +∇φξ) = 0 in Td.

By definition of A and since φξ solves (2.12), we have for every ξ ∈ Rd that

Aξ · ξ = 〈A(ξ +∇φξ)〉 · ξ = 〈A(ξ +∇φξ) · ξ〉 = 〈A(ξ +∇φξ) · (∇φξ + ξ)〉.

Therefore, by the uniform ellipticity of A and Jensen’s inequality,

Aξ · ξ ≥ 〈λ |ξ +∇φξ|2〉 ≥ λ |〈ξ +∇φξ〉|2 = λ |ξ|2 ,

since the integral of the gradient ∇φξ vanishes. This completes the proof. �

The essential role of Proposition 2.5 is to show that the equation (2.10) defining u0 of the
asymptotic expansion is well-posed. What we have guaranteed is that if we start with a periodic,
uniformly elliptic environment then the homogenized environment remains uniformly elliptic. From
the point of view of the diffusions this is in some sense obvious. If at every point we have a lower
bound for the diffusion in all directions, then we have to retain this lower bound in the limit. And,
indeed, we see that the ellipticity constant of the homogenized matrix from below is at least as
good as for the original matrix. Of course, in practice it will always be somewhat better, unless
the periodic matrix is a constant.

In the final proposition of this section, we will prove that the homogenized matrix corresponding
to the transpose At is the transpose of the homogenized matrix. That is, if A is a uniformly elliptic
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matrix then so too is At. And so for each i ∈ {1, . . . , d} we can define the corrector φti corresponding
to the transposed problem

(2.13) −∇ ·At(ei +∇φti) = 0 in Td,

and we can define the corresponding homogenized coefficient Ã ∈ Rd×d for each i ∈ {1, . . . , d} by

(2.14) Ãei = 〈At(ei +∇φti)〉.

We will prove that for A defined in Proposition 2.5 we have Ã = A
t
.

Proposition 2.6. Assume that A is periodic and uniformly elliptic. Let A ∈ Rd×d be defined by

Proposition 2.5 and let Ã ∈ Rd×d be defined by (2.14). Then Ã = A
t
. So, in particular, if A is

symmetric then A is symmetric.

Proof. For each i ∈ {1, . . . , d} let φi be defined by Proposition 2.4 for the matrix A and let φti be
defined by Proposition 2.4 for the matrix At. Then, for each i, j ∈ {1, . . . , d}, since φi satisfies
(2.12) for ξ = ei and since φtj satisfies (2.13),

Aji = 〈A(ei +∇φi)〉 · ej
= 〈A(ei +∇φi) · (ej +∇φtj)〉
= 〈(ei +∇φi) ·At(ej +∇φtj)〉
= 〈At(ej +∇φtj)〉 · ei
= Ãij .

We therefore have that Ã = A
t
. Finally, if A is symmetric, Proposition 2.4 proves that φi = φti

for every i ∈ {1, . . . , d} and therefore that Ã = A. Thus, if A is symmetric then A = A
t

is
symmetric. �

2.4. The perturbed test function method. The perturbed test function method is a classical
technique to prove the weak convergence in H1

0 (U) of the solutions uε of

(2.15) −∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U,

to the solution v of the homogenized equation

(2.16) −∇ ·A∇v = f in U with uε = 0 on ∂U,

for A defined in Proposition 2.5. The technique is almost too clever for its own good, and is based
on a compensated compactness argument using the div-curl lemma.

We first recall the Helmholtz decomposition for vector fields defined on a smooth, bounded open
set U ⊆ Rd. For a vector field V = (Vi)i∈{1,...,d} ∈ L2(U ;Rd) we will understand derivatives of
the type ∂iVj , which formally denote the ith distributional derivative of the jth component, in the
distributional sense. That is, we say that ∂iVj = f if for every ψ ∈ C∞c (U) we have that

−
ˆ
U
Vj∂iψ =

ˆ
U
fψ.

In this way, it makes sense to talk about non-smooth vector fields being curl free or divergence free.
We say that a vector field V ∈ L2(U ;Rd) is curl free if ∂iVj = ∂jVi in the distributional sense for
every i, j ∈ {1, . . . , d} and we say that V is divergence free if the distributional divergence ∂iVi = 0.
These are the potential and solenoidal vector fields:

L2
pot(U) =

{
V ∈ L2(U ;Rd) : V = ∇v for some v ∈ H1

0 (U)
}
,

and

L2
sol(U) =

{
V ∈ L2(U ;Rd) : ∂iVi = 0

}
.
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In particular, L2
sol(U) contains the constant vector fields. The Helmholtz decomposition proves

that L2(U ;Rd) splits as a direct sum of solenoidal and potential fields. The proof of the div-curl
lemma then follows immediately.

Proposition 2.7. Let U ⊆ Rd be a smooth, bounded open set. Then

L2(U ;Rd) = L2
pot(U)⊕ L2

sol(U).

Proof. Let V ∈ L2(U ;Rd) and let ψ ∈ H1
0 (U) denote the unique weak solution of

∆ψ = ∇ · V in U with ψ = 0 on ∂U.

Then V = ∇ψ + (V − ∇ψ) for ∇ψ ∈ L2
pot(U) and (V − ∇ψ) ∈ L2

sol(U). The uniqueness follows

from the fact that if v ∈ H1
0 (U) and V ∈ L2

sol(U) thenˆ
U
∇v · V = 0,

which also proves the direct sum decomposition and completes the proof. �

Proposition 2.8. Let U ⊆ Rd be a smooth, bounded open set and assume that {pε}ε∈(0,1) ⊆
L2(U ;Rd) and {V ε}ε∈(0,1) ∈ L2

pot(U) satisfy, as ε→ 0,

pε ⇀ p0 weakly in L2(U ;Rd) and that V ε ⇀ V0 weakly in L2
pot(U).

Assume in addition that, as ε→ 0, ∇ · pε → f strongly in H−1(U). Then, as ε→ 0,

pεV ε → p0V0 in D′(U),

in the sense that, for ψ ∈ C∞c (U),

lim
ε→0

ˆ
U
pε · vεψ =

ˆ
U
p0 · v0ψ.

Proof. We may assume without loss of generality that, as ε→ 0,

(2.17) pε ⇀ 0 weakly in L2(U ;Rd), that V ε ⇀ 0 weakly in L2
pot(U),

and that ∇ · pε → 0 strongly in H−1(U). This follows from the equality, for every ψ ∈ C∞c (U),ˆ
U

(pε − p0) · (V ε − V0)ψ =

ˆ
U
pε · V εψ +

ˆ
p0 · V0ψ −

ˆ
U
pε · V0ψ −

ˆ
U
p0 · V εψ

The weak convergence guarantees that the final three terms on the righthand side converge as ε→ 0
to −

´
U p0 · V0ψ. The result therefore follows by proving that the lefthand side converges to zero,

which follows from the case that both weak limits are zero.
Assume (2.17). By assumption and by definition of L2

pot(U), for every ε ∈ (0, 1) there exists

vε ∈ H1
0 (U) such that V ε = ∇vε. Therefore, for every ψ ∈ C∞c (U), by the chain ruleˆ

U
pε · V εψ =

ˆ
U
pε · ∇vεψ =

ˆ
U
pε · ∇(f εψ)−

ˆ
U
pε · ∇ψvε.

Since the vε are converging weakly to zero in H1
0 (U) they are uniformly bounded in H1

0 (Y ). There-
fore, since ψ is smooth, we have that vεψ is uniformly bounded in H1

0 (U). Thus, since ∇ · pε → 0
strongly in H−1(U), we have that

lim
ε→0

ˆ
U
pε · ∇(f εψ) = 0.
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Finally, since the vε are bounded and converging weakly to zero along the full sequence ε→ 0, the
Sobolev embedding theorem proves that, as ε → 0, we have ε → 0 strongly in L2(U). Therefore,
since pε · ∇ψ is uniformly bounded in L2(U), Hölder’s inequality proves that

lim
ε→0

ˆ
U
pε · ∇ψvε = 0,

which completes the proof. �

We will now prove the homogenization of (2.15) weakly in H1
0 (U). The proof is based on the idea

that we want to exploit the regularity of the solution to the constant coefficient equation (2.16).
And, on the level of the equation’s weak formulation, the test functions are a proxy for the limit.
We therefore perturb the test function using the homogenization corrector, in a manner analogous
to the asymptotic expansion (2.11). However, because we are perturbing the test function and not
the solution itself, we use the adjoint correctors (2.13) as opposed to the original correctors (2.12).

Lemma 2.9. Let f ∈ L2
0(Td) be one-periodic on Rd. Then, as ε→ 0,

f(x/ε) ⇀ 〈f〉 weakly in L2
loc(Rd).

Proof. By density of smooth functions in L2
loc(Rd) it suffices to prove that, for every ψ ∈ C∞c (Rd),

lim
ε→0

ˆ
Rd
ψ(x)f(x/ε) dx = 〈f〉

ˆ
Rd
ψ.

Let ψ ∈ C∞c (Rd). Then there exists c ∈ (0,∞) depending on ‖∇ψ‖L∞(Rd) such that, for each

ε ∈ (0, 1), ∣∣∣∣∣∣
ˆ
Rd
ψ(x)f(x/ε) dx− εd

∑
x∈εZd

ψ(x)〈f〉

∣∣∣∣∣∣ ≤ cε.
Since there exists c ∈ (0,∞) depending on ‖∇ψ‖L∞(Rd) such that, for each ε ∈ (0, 1),∣∣∣∣∣∣εd

∑
x∈εZd

ψ(x)−
ˆ
Rd
ψ

∣∣∣∣∣∣ ≤ cε,
we conclude that

lim
ε→0

ˆ
Rd
ψ(x)f(x/ε) dx = 〈f〉

ˆ
Rd
ψ.

This completes the proof. �

Theorem 2.10. Let U ⊆ Rd be a smooth, bounded domain, let A : Rd → Rd×d be periodic and
uniformly elliptic, and let f ∈ L2(U). For every ε ∈ (0, 1) let uε ∈ H1

0 (U) be the unique weak
solution of

(2.18) −∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U.

Then, as ε→ 0,

uε ⇀ v weakly in H1
0 (U),

for v ∈ H1
0 (U) the unique weak solution of

−∇ ·A∇v = f in U with v = 0 on ∂U,

for A ∈ Rd×d defined in Proposition 2.5.
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Proof. By Proposition 2.2 the uε are uniformly bounded in H1
0 (U). Therefore, after passing to a

subsequence, there exists v ∈ H1
0 (U) such that, as ε→ 0,

uε ⇀ v weakly in H1
0 (U).

In particular, this implies that, as ε→ 0,

∇uε ⇀ ∇v weakly in L2
pot(U).

Let ψ ∈ C∞c (U) and for each i ∈ {1, . . . , d} let φti be the adjoint corrector defined in (2.13). For
each ε ∈ (0, 1) we define

ψε(x) = ψ(x) + εφti(x/ε)∂iψ(x).

Since ψε ∈ H1
0 (U) it is an admissible test function and we have that, for each ε ∈ (0, 1),

∇ψε = (ei +∇φti(x/ε))∂iψ + εφti(x/ε)∇∂iψ,

and, after testing with (2.22),ˆ
U
A(x/ε)∇uε · (ei +∇φti(x/ε))∂iψ +

ˆ
U
A(x/ε)∇uε · ∇(∂iψ)εφit(x/ε) =

ˆ
U
fψε.

And, after transposing A,

(2.19)

ˆ
U
∇uε ·At(x/ε)(ei +∇φti(x/ε))∂iψ +

ˆ
U
A(x/ε)∇uε · ∇(∂iψ)εφit(x/ε) =

ˆ
U
fψε.

Since the φti(x/ε) are uniformly bounded in H1
0 (U) since they are converging weakly to zero, it

follows from Hölder’s inequality that, as ε→ 0,

ψε → ψ strongly in L2(U),

and that

εφit(x/ε)→ 0 strongly in L2(U).

Therefore, by Hölder’s inequality

(2.20) lim
ε→0

ˆ
U
A(x/ε)∇uε · ∇(∂iψ)εφit(x/ε) = 0 and lim

ε→0

ˆ
U
fψε =

ˆ
U
fψ.

Finally, since the pε = At(x/ε)(ei + ∇φti(x/ε)) are divergence free, since the pε are converging
weakly as ε → 0 to 〈At(y)(ei +∇φti〉, and since the ∇uε ∈ L2

pot(U) are converging weakly along a
subsequence to ∇v, it follows from Proposition 2.6 and Proposition 2.8 that, along a subsequence,

(2.21) lim
ε→0

ˆ
U
∇uε ·At(x/ε)(ei +∇φti(x/ε))∂iψ =

ˆ
U
∇v ·At∇ψ.

And therefore, after transposing A it follows from (2.19), (2.20), and (2.21) that v ∈ H1
0 (U) satisfies,

for every ψ ∈ C∞c (U), ˆ
U
A∇v · ∇ψ =

ˆ
U
fψ.

This is to say exactly that v ∈ H1
0 (U) is a weak solution of the equation

−∇ ·A∇v = f in U with uε = 0 on ∂U.

However, since A is uniformly elliptic by Proposition 2.5 weak solutions are unique by Proposi-
tion 2.2. Therefore, the weak limit v ∈ H1

0 (U) is unique and we conclude that, along the full
sequence ε→ 0,

uε ⇀ v weakly in H1
0 (U).

This completes the proof. �
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Recall as well that divergence form elliptic and parabolic equations are defined by the flux. That
is, the solution uε ∈ H1

0 (U) of the equation solution of

−∇ ·A(x/ε)∇uε = f in U,

is characterized in the interior of the domain by the equality˛
Br(x)

A(y/ε)∇uε(y) · ν =

ˆ
Br(x)

f,

for any Br(x) ⊆ U and for ν the outward unit normal. So, when proving homogenization, we
are also interested in the convergence of the flux A(x/ε)∇uε. In the following proposition, using a
variant of the perturbed test function method, we prove that the flux converges weakly to the flux
of the homogenized equation.

Theorem 2.11. Let U ⊆ Rd be a smooth, bounded domain, let A : Rd → Rd×d be periodic and
uniformly elliptic, and let f ∈ L2(U). For every ε ∈ (0, 1) let uε ∈ H1

0 (U) be the unique weak
solution of

(2.22) −∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U.

Then, as ε→ 0,

A(x/ε)uε ⇀ A∇v weakly in L2(U ;Rd),
for v ∈ H1

0 (U) the unique weak solution of

−∇ ·A∇v = f in U with v = 0 on ∂U,

for A ∈ Rd×d defined in Proposition 2.5.

Proof. The uniform ellipticity of A and the H1
0 (U)-boundedness of the solutions {uε}ε∈(0,1) prove

that, after passing to a subsequence, there exists F0 ∈ L2(U ;Rd) such that, as ε→ 0,

(2.23) A(x/ε)∇uε ⇀ F0 weakly in L2(U ;Rd).

The convergence (2.24) proves that, after passing to a subsequence, for every ψ ∈ C∞c (U),

(2.24)

ˆ
U
F0 · ∇ψ = lim

ε→0

ˆ
U
A(x/ε)∇uε · ∇ψ =

ˆ
U
fψ.

Let ξ ∈ Rd and define

wεξ(x) = ξ · x+ εφtξ(x/ε),

for φtξ = ξiφ
t
i defined by the solutions to the transposed corrector equation (2.13). Let ψ ∈ C∞c (U)

be arbitrary. We alternately test the equation satisfied by uε by the admissible test function wεξψ
and we will test the equation satisfied by wεξ by the admissible test function uεψ. That is, using
the equation satisfied by uε, we have that

(2.25)

ˆ
U
A(x/ε)∇uε ·

(
(ξ +∇φtξ(x/ε))ψ + wεξ(x)∇ψ

)
=

ˆ
U
fwεξψ.

Alternately we have that

(2.26)

ˆ
U
At(x/ε)(ξ +∇φtξ(x/ε)) · (∇uεψ + uε∇ψ) = 0.

After transposing the matrix A and subtracting (2.26) from (2.25), we have that

(2.27)

ˆ
U
A(x/ε)∇uε · ∇ψwεξ(x)−At(x/ε)(ξ +∇φtξ(x/ε)) · ∇ψuε =

ˆ
U
fwεξψ.



Stochastic homogenization 17

Since as ε → 0 wεξ(x) → (ξ · x) and uε → v strongly in L2(U), and since after passing to a

subsequence it follows from (2.23) that, as ε→ 0,

A(x/ε)∇uε ⇀ F0 and At(x/ε)(ξ +∇φtξ(x/ε)) ⇀ A
t
ξ weakly in L2(U),

we have that, after passing to the limit ε→ 0 in (2.27),

(2.28)

ˆ
U
F0 · ∇ψ(ξ · x)−

ˆ
U
A
t
ξ · ∇ψv =

ˆ
U
fψ(x · ξ).

Since we have from (2.24) thatˆ
U
F0 · ∇ψ(ξ · x) =

ˆ
U
fψ(x · ξ)−

ˆ
U
F0 · ξψ,

and since after integrating by partsˆ
U
A
t
ξ · ∇ψv = −

ˆ
U
A∇v · ξψ,

we conclude from (2.28) that, for every ξ ∈ Rd and ψ ∈ C∞c (U),ˆ
U
F0 · ξψ =

ˆ
U
A∇v · ξψ.

Since ξ and ψ were arbitrary, we conclude that F0 = A∇v in L2(U). This proves uniqueness of the
weak limit, and therefore that the full sequence A(x/ε)∇uε converges weakly as ε → 0 to A∇v in
L2(U), which completes the proof. �

2.5. The homogenization error. In this section, we will analyze the error in the two-scale ex-
pansion

(2.29) wε = uε − v − εφεi∂iv,

for uε the solution of (2.15), for φεi = φi(x/ε) defined by the correctors φi constructed in Proposi-

tion 2.4, and for v the solution of (2.16) with A defined in Proposition 2.5. The two-scale expansion
suggests that the conclusion of Theorem 2.10 is the best that can be obtained on the level of the
solution. The solution uε simply does not converges strongly as ε→ 0 to v in H1

0 (U).
Formally we expect the solution uε will have oscillations of order ε on scale ε about the homog-

enized solution v. This means that the gradient will be of order one and, indeed, the gradient of
the two-scale expansion is

∇ (v + εφεi∂iv) = ∇v +∇φi(x/ε)∂iv + εφi(x/ε)∇(∂iv).

The final term on the righthand side converges strongly to zero as ε→ 0, but the second term on
the righthand side only converges weakly to zero as ε → 0. The weak convergence here explains
the weak convergence obtained in Theorem 2.10.

The purpose of this section will be to prove that the homogenization error defined by the two-scale
expansion (2.34) converges strongly to zero in H1(U). That is, after we subtract the oscillations
described by the correctors, we obtain strong convergence on the level of the gradient. We will do
this by studying the equation satisfied by (2.34). We see that

∇wε = ∇uε −∇v −∇φi(x/ε)∂iv − εφεi∇∂iv.

Then, using the fact that −∇ ·A(x/ε)∇uε = f ,

−∇ ·A(x/ε)∇wε = f +∇ ·A(x/ε)∇v +∇ ·A(x/ε) (∇φi(x/ε)∂iv + εφεi∇∂iv) .

Then, using the fact that −∇ ·A∇v = f ,

−∇ ·A(x/ε)∇wε = ∇ ·A(x/ε)∇v −∇ ·A∇v +∇ ·A(x/ε) (∇φi(x/ε)∂iv + εφεi∇∂iv) .
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The righthand side can be equivalently written in the form

(2.30) −∇ ·A(x/ε)∇wε = ∇ ·
((
A(x/ε) (ei +∇φi(x/ε))−Aei

)
∂iv
)

+∇ ·A(x/ε) (εφεi∇∂iv) .

The second term appearing on the righthand side of (2.35) is formally a good term, since the
solution v of the homogenized equation is expected to be quite smooth and the correction εφεi
vanishes at ε→ 0. The first term, however, does not clearly vanish as ε→ 0. It does so weakly in
the sense that, as ε→ 0,

A(x/ε) (ei +∇φi(x/ε)) ⇀ 〈A (ei +∇φi)〉 = Aei weakly in L2(U ;Rd),

but the necessary strong convergence fails.
The essential observation is that the first term on the righthand side of (2.35) is measuring the

oscillations of the flux with respect to the A-harmonic coordinates (xi + φi) about the flux Aei in
the homogenized environment. We therefore define, for each i ∈ {1, . . . , d},

(2.31) qi = A(ei +∇φi) in Td,

and qεi (x) = qi(x/ε). Since by definition 〈qi〉 = Aei, it follows from (2.35) and (2.32) that

(2.32) −∇ ·A(x/ε)∇wε = ∇ · ((qεi − 〈qi〉) ∂iv) +∇ ·A(x/ε) (εφεi∇∂iv) .

In the next section, we will construct a corrector σεi that accounts for the fluctuations of qεi about
its expectation.

2.6. The flux corrector. In this section, we will construct a flux correction that corrects the
oscillation of the flux

(2.33) qi = A(ei +∇φi),

about its expectation 〈qi〉 = Aei. The essential observation is that the flux qi is by definition
divergence free, since the corrector equation states exactly that

−∇ · qi = −∇ ·A(ei +∇φi) = 0.

The construction is motivated by differential forms and De Rham cohomology. The flux qi defines a
closed (d−1)-form as a divergence free vector field. This means that, due to the simple geometry of
Euclidean space, there exists a (d−2)-form σi satisfying the property that dσi = qi where d denotes
the exterior derivative. A (d − 2)-form an be expressed as a skew-symmetric matrix. This is, for
each i ∈ {1, . . . , d}, we expect that there exists a skew-symmetric matrix σi = (σijk) satisfying

(2.34) ∇ · σi = qi − 〈qi〉 for (∇ · σi)j = ∂kσjk.

However solutions to (2.34) are not unique. We will therefore identify a solution by fixing a choice
of gauge.

We aim to find the least energy solution to (2.34). That is, for each i ∈ {1, . . . , d}, we aim to
minimize the energy

E(σi) =
1

2

d∑
j,k=1

ˆ
Td
|∇σijk|2 subject to the constraint ∇ · σi = qi.

For this we take motivation from the theory of Lagrange multipliers, and consider the function

F (σi) =
1

2

ˆ
Td
|∇ · σi|2 .

On the set {∇ · σi = qi} a necessary but not sufficient for the energy E to be minimized by a
skew-symmetric σi is that, for any skew-symmetric v ∈ Rd×d,

lim
h→0

E(σi + hv)− E(σi)

h
= lim

h→0

F (σi + hv)− F (σi)

h
.
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Formally, this implies that the gradients of E and F are parallel, which is the condition required by
Lagrange multipliers when optimizing a function subject to constraints. Let j, k ∈ {1, 2, . . . , d} be
arbitrary. We choose a matrix v of the form vjk = ṽ and vkj = −ṽ for some ṽ ∈ H1(Td) and vrs = 0
for every other r, s ∈ {1, . . . , d}. The variational relationship then yields, for qi = (qi1, qi2, . . . , qid),ˆ

Td
∇σijk · ∇ṽ =

ˆ
Td
qij∂kṽ − qik∂j ṽ.

This is to say that, for each i, j, k ∈ {1, . . . , d},
(2.35) −∆σijk = ∂jqik − ∂kqij in Td.
We will take (2.35) as the defining equation for the components of σi. It will then follow by
definition of σijk = −σikj and we will show that after defining σi = (σijk) we have ∇·σi = qi−〈qi〉.
The following proposition proves the existence of solutions to (2.35)

Proposition 2.12. Let q ∈ L2(Td;Rd). Then there exists a unique weak solution σ ∈ H1
0 (Td) of

the equation
−∆σ = ∇ · q in Td.

Proof. The proof is an immediate consequence of the Poincaré inequality and the Lax-Milgram
theorem, as in the case of Proposition 2.4 with A the identity matrix. �

Remark 2.13. We use Proposition 2.12 to obtain a solution of (2.35) by choosing q = (q1, . . . , qd)
with qj = qik, qk = −qij and qs = 0 for every s ∈ {1, . . . , d} \ {i, j}.

Proposition 2.14. Let A : Td → Rd×d be periodic and uniformly elliptic. For each i ∈ {1, 2, . . . , d}
let qi be defined by (2.33) and for each i, j, k ∈ {1, 2, . . . , d} be defined by (2.35). Then for each
i ∈ {1, 2, . . . , d} the matrix σi = (σijk) ∈ L2(Td;Rd×d) is skew-symmetric and satisfies

(2.36) ∇ · σi = qi − 〈qi〉.

Proof. The skew-symmetry is an immediate consequence of (2.35) and the uniqueness of Proposi-
tion 2.12, which proves that for every i, j, k ∈ {1, 2, . . . , d} we have σijk = −σikj . It remains to
prove the equality (2.36). We will prove that, for each i, j ∈ {1, . . . , d}, as distributions,

∆
(

(∇ · σi)j − qij
)

= 0.

Indeed, it follows from (2.35) that

∂s∂s (∂kσijk − qij) = ∂k(∂s∂sσijk)− ∂s∂sqij
= ∂k∂kqij − ∂k∂jqik + ∂s∂sqij

= ∆qij − ∂j(∇ · qi)−∆qij

= 0,

where the final equality relies on the fact that qi is divergence free. What this implies is that, for
every ψ ∈ C∞(Td),

(2.37)

ˆ
Td

((∇ · σi)j − qij) ∆ψ = 0.

For every ε ∈ (0, 1) let ρε be a standard convolution kernel on the torus of scale ε. Then, for each
ε ∈ (0, 1), we conclude from (2.37) that

∆ (ρε ∗ ((∇ · σi)j − qij)) (x) =

ˆ
Td

((∇ · σi)j − qij) (y)∆yρ
ε(y − x) dy = 0,

from which it follows that (ρε ∗ ((∇ · σi)j − qij)) is constant for every ε ∈ (0, 1). Therefore, for
every i ∈ {1, 2, . . . , d}, we have that (∇ · σi)− qi is a constant vector and so

(∇ · σi)− qi = 〈(∇ · σi)− qi〉 = −〈qi〉,
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where the final equality follows from the fact that the integral of a gradient is zero. We therefore
have

∇ · σi = qi − 〈qi〉,
for every i ∈ {1, 2, . . . , d}, which completes the proof. �

2.7. Strong convergence of the two-scale expansion. We recall the two-scale expansion

wε = uε − v − εφεi∂iv,

for uε the solution of (2.15), for φεi = φi(x/ε) defined by the correctors φi constructed in Proposi-

tion 2.4, and for v the solution of (2.16) with A defined in Proposition 2.5. Returning to (2.32),
we have that the homogenization error wε satisfies the equation

(2.38) −∇ ·A(x/ε)∇wε = ∇ · ((qεi − 〈qi〉) ∂iv) +∇ ·A(x/ε) (εφεi∇∂iv) in U.

For every i ∈ {1, . . . , d} let σi = (σijk) be defined in Proposition 2.14 and let σεi (x) = σ(x/ε). We
will use σεi to control the oscillations of the flux on the righthand side of (2.38). Precisely, since we
have that ∇ · (εσεi ) = qεi − 〈qi〉, for every ψ ∈ C∞c (U),ˆ

U
(qεi − 〈qi〉) ∂iv · ∇ψ =

ˆ
U

(∇ · (εσεi )) ∂iv · ∇ψ.

Therefore, after integrating by parts and using the skew-symmetry of σi,ˆ
U

(qεi − 〈qi〉) ∂iv · ∇ψ = −
ˆ
U
εσεi∇(∂iv) · ∇ψ.

This is to say that, as distributions,

(2.39) ∇ · ((qεi − 〈qi〉) ∂iv) = −∇ · (εσεi∇(∂iv)) .

Hence, returning to (2.38), we have that

(2.40) −∇ ·A(x/ε)∇wε = ∇ · ((A(x/ε)εφεi − εσεi )∇(∂iv)) in U,

which explains the introduction of the flux correctors σi. It is now the case that the righthand
side of (2.40) converges strongly to zero in L2(U) as ε → 0. This is the content of the following
theorem.

Theorem 2.15. Let U ⊆ Rd be a smooth bounded domain, let A : Rd → Rd×d be periodic and
uniformly elliptic, and let f ∈ Cα(U) for some α ∈ (0, 1). For every ε ∈ (0, 1) let uε ∈ H1

0 (U) be
the unique weak solution of

−∇ ·A(x/ε)∇uε = f in U with uε = 0 on ∂U,

and let v ∈ H1
0 (U) be the unique weak solution of

−∇ ·A∇uε = f in U with uε = 0 on ∂U,

for A ∈ Rd×d defined in Proposition 2.5. Then, for the correctors φi ∈ H1
0 (Td) defined in Proposi-

tion 2.4, as ε→ 0,

uε − v − εφi(x/ε)∂iv → 0 strongly in H1(U).

Proof. We aim to use the energy identity (2.40), which requires the introduction of a cutoff function
due to the fact that the homogenization error

wε = uε − v − εφεi∂iv,

for φεi (x) = φi(x/ε) does not vanish along the boundary. For every ρ ∈ (0, 1) let Uρ ⊆ U be defined
by

Uρ = {x ∈ U : d(x, ∂U) < ρ},
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and using the smoothness of the domain for every ρ ∈ (0, 1) let ηρ : U → R satisfy ηρ = 1 on Uρ,

ηρ = 0 on U \ Uρ/2, and |∇ηρ| ≤ c/ρ for some c ∈ (0,∞) independent of ρ ∈ (0, 1). For every
ε, ρ ∈ (0, 1) let

wε,ρ = uε − v − εφεi∂i.
The uniform ellipticity of A proves that there exists c ∈ (0,∞) such that

(2.41) ‖v‖C2,α(U) ≤ c ‖f‖Cα(U) .

Therefore, it follows from the definition of ηρ, from the fact that φi ∈ H1
0 (Td), and from the fact

that u, v ∈ H1
0 (U) that wε,ρ ∈ H1

0 (U). We will analyze the equation satisfied by wε,ρ.
Let ε, ρ ∈ (0, 1). We observe that

∇wε,ρ = ∇uε −∇v −∇ (ηρεφ
ε
i∂iv) .

Therefore, using the equations satisfied by uε and v,

−∇ ·Aε∇wε,ρ = ∇ · (Aε −A)∇v +∇ · (Aε∇φεi (ηρ∂iv)) +∇ · (Aεεφεi∇ (ηρ∂iv)) .

It then follows from the definitions of qi and A that

−∇ ·Aε∇wε,ρ = ∇ ·
[
(1− ηρ)(Aε −A)∇v

]
+∇ · ((qi − 〈qi〉) (ηρ∂iv)) +∇ · (Aεεφεi∇ (ηρ∂iv)) ,

for qεi = qi(x/ε). Finally, using the flux corrections σi and the distributional equality (2.39),

(2.42) −∇ ·Aε∇wε,ρ = ∇ ·
[
(1− ηρ)(Aε −A)∇v

]
+∇ · ((Aεεφεi − εσεi )∇ (ηρ∂iv)) ,

for σεi = σi(x/ε). After testing equation (2.42) with wε,ρ,ˆ
U
Aε∇wε,ρ · ∇wε,ρ = −

ˆ
U

[
(1− ηρ)(Aε −A)∇v

]
· ∇wε,ρ

−
ˆ
U

((Aεεφεi − εσεi )∇ (ηρ∂iv)) · ∇wε,ρ,

and after applying Hölder’s inequality and Young’s inequality and using the uniform ellipticity, for
some c ∈ (0,∞) independent of ε ∈ (0, 1),ˆ

U
|∇wε,ρ|2 ≤ c

(ˆ
U

(1− η)2 |∇v|2 +

ˆ
U

(
ε2 |φεi |

2 + ε2 |σεi |
2
)
|∇(ηρ∂iv)|2

)
.

Estimate (2.41), the boundedness of U , and the definition of ηρ prove that, for some c ∈ (0,∞)
independent of ε, ρ ∈ (0, 1),

(2.43)

ˆ
U
|∇wε,ρ|2 ≤ c

(
ρ+

ε2

ρ2

ˆ
U

(
|φεi |

2 + |σεi |
2
))

.

We now return to the original homogenization error wε defined by

wε = uε − v − εφεi∂iv,
for which we have that

∇wε = ∇wε,ρ +∇ ((1− ηρ)εφεi∂iv) .

Since it follows the definition ηρ and estimate (2.41) that, for some c ∈ (0,∞) independent of
ε, ρ ∈ (0, 1),ˆ

U
|∇ ((1− ηρ)εφεi∂iv)|2 ≤ c

(
ε2

ρ2

ˆ
U
|φεi |

2 +

ˆ
U

(1− ηρ)2 |∇φεi |
2 + ε2

ˆ
U

(1− ηρ)2 |φεi |
2

)
,

the triangle inequality and (2.43) prove that, for some c ∈ (0,∞) independent of ε, ρ ∈ (0, 1),

(2.44)

ˆ
U
|∇wε|2 ≤ c

(
ρ+

ε2

ρ2

ˆ
U

(
|φεi |

2 + |σεi |
2
)

+

ˆ
U

(1− ηρ)2 |∇φεi |
2

)
.
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Since, as ε→ 0,

lim
ε→0

ˆ
U

(
|φεi |

2 + |σεi |
2
)

+

ˆ
U

(1− ηρ)2 |∇φεi |
2 = |U |

ˆ
Td
|φi|2 + |σi|2 +

ˆ
Td
|∇φi|2

ˆ
U

(1− ηρ)2,

it follows from the definition of ηρ and the boundedness of U that, for some c ∈ (0,∞) independent
of ρ ∈ (0, 1),

lim sup
ε→0

ˆ
U
|∇wε|2 ≤ cρ

(
1 +

ˆ
Td
|∇φi|2

)
.

Finally, after passing to the limit ρ→ 0, we conclude that

lim
ε→0

ˆ
U
|∇wε|2 = 0,

which completes the proof. �

3. Stochastic Homogenization

In this section, we will prove the homogenization of random environments described by a random
coefficient field A(x, ω) : Rd → Ω→ Rd×d defined on some probability space (Ω,F ,P). The random
environment is indexed by ω ∈ Ω. We will see that the random framework strictly generalizes the
periodic framework above, and our analysis will be strongly motivated by the methods from periodic
homogenization. Given a uniformly elliptic, stationary, and ergodic coefficient field A : Rd × Ω →
Rd×d we will identify a deterministic, constant coefficient field A such that the solutions

−∇ ·A(x/ε, ω)∇uε = f in U with uε = 0 on ∂U,

almost surely converge as ε→ 0 to the solution

−∇ ·A∇v = f in U with v = 0 on ∂U.

This is to say that for almost every ω ∈ Ω the random medium described by A(·/ε, ω) is well
approximated by the homogenous medium A. An essential difference in this case, however, is that
the scale ε ∈ (0, 1) for which this approximation becomes valid is itself random. And for this reason,
the quantitative theory of stochastic homogenization is more complicated than in the periodic case.

3.1. A random environment. In this section, we will construct a random environment that
models a material with randomly deposited impurities. We could equally construct a random tiling
of the plane, as shown in the second picture of the introduction. Let Ω denote the space of all
locally finite point measures on Rd. That is, Ω is the collection of all measures of the form

ω =
∑
j∈J

δxj

where J ⊆ N is a countable index set, xj ∈ Rd for every j ∈ J , δxj denotes the Dirac distribution

centered at xj , and for every bounded Borel subset B ⊆ Rd the set

ω(B) = #{j ∈ J : xj ∈ B} is finite.

Let F denote the sigma algebra generated by all maps of the form ω ∈ Ω 7→ ω(B) for some bounded
Borel subset B ⊆ Rd. We will now construct a probability measure on (Ω,F). We construct a
Poisson point process on Rd with intensity λ ∈ (0,∞) by equipping Ω with probability measure Pλ
satisfying the following three properties:

• For every Borel subset B ⊆ Rd,

(3.1) Eλ [ω(B)] = λ |B| ,

for the Lebesgue measure |B| of B.
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• For every collection of bounded, disjoint subsets B1, . . . , BN the random variables

(3.2) ω ∈ Ω 7→ ω(Bk) for k ∈ {1, . . . , N} are independent.

• For every y ∈ Rd and measurable set A ∈ F ,

(3.3) Pλ(A) = Pλ(A+ y),

where A+ y = {ω(·+ y) : ω ∈ A}.
The measure Pλ is uniquely characterized by these properties, and the resulting process is a Poission
point process with intensity λ. Property (3.1) asserts that on average there exist λ points in a subset
of measure one. Property 3.2 is a strong form of mixing which states that the behavior of the process
is disjoint sets is independent. This is a quantified version of ergodicity. Lastly, property (3.3) is
a version of stationarity that asserts that the environment is statistically homogenous. You are as
likely to see a cluster of points near that origin, as you are at some point a thousand miles away.

Henceforth let (Ω,F ,Pλ) be a Poission point process with intensity λ ∈ (0,∞). Then, for some
constants α1, α2, δ ∈ (0,∞) we define a random coefficient field

(3.4) A(x, ω) =
(
α11∪j∈JBδ(xj) + α21Rd\∪j∈JBδ(xj)

)
Id×d.

That is, in the δ-neighborhood of each point xj in the realization of the point process we see a
diffusion coefficient α1, and away from these points we see a diffusion coefficient α2. So, if α1 ' 0
and α2 ' 1 it is as though we are modeling a model with randomly deposited, non-conducting
impurities. For a bounded, nonnegative, compactly supported function W : Rd → R we could
similarly define

A(x, ω) =

1 +
∑
j∈J

W (x− xj)

 Id×d.

In this case, the matrix A is not globally bounded from above, and so our techniques would not
immediately apply. Nonetheless, the theory can be extended to degenerate environments and
perforated domains.

The essential statistical properties of A are its stationarity and ergodicity. That is, the probability
space (Ω,F ,Pλ) comes equipped with a transformation group {τx}x∈Rd defined by

τxω = ω(· − x),

which extends to a transformation group on the space of coefficient fields A defined for every
x, y ∈ Rd and ω ∈ Ω by

A(x+ y, ω) = A(y, τxω).

Property (3.3) proves that transformation group preserves the measure Pλ in the sense that, for
every y ∈ Rd and A ∈ F ,

Pλ[A] = Pλ[τyA],

Property (3.3) proves that the ensemble is stationary in the sense that, for every x1, . . . , xn, y ∈ Rd,
(3.5)

(A(x1, ·), . . . , A(xn, ·)) and (A(y + x1, ·), . . . , A(y + xn, ·)) have the same law on
(
Rd×d

)n
.

And property (3.3) proves that A ∈ F satisifes

(3.6) Pλ[(τxA)4(A)] = 0 for every x ∈ Rd if and only if Pλ[A] = 0 or Pλ[A] = 1,

where (τxA)4(A) = (τxA \A) ∪ (A \ τxA) is the symmetric difference. Indeed, Property (3.3) is a
stronger form of mixing than is generally implied by (3.6). In particular, it follows from (3.3) and
(3.4) that the matrix A satisfies a finite range of dependence. That is, whenever subsets A,B ⊆ Rd
satisfy δ(A,B) > 2δ,

(3.7) σ(A(x, ·) : x ∈ A) and σ(A(x, ·) : x ∈ B) are indepedent.
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Conditions like the finite range of dependence (3.7) are quantified forms of ergodicity and always
imply the weaker condition (3.6). For this reason, assumption (3.6) is sometimes referred to as a
qualitative form of mixing.

We will take this framework as our starting point. We will assume that the coefficient field
A : Rd × Ω → Rd×d is defined on some probability space (Ω,F ,P) equipped with a measure-
preserving transformation group {τx}x∈Rd that satisfy the following properties:

• uniform ellipticity : there exist λ,Λ ∈ (0,∞) such that almost surely, for every x, ξ ∈ Rd,

(3.8) |A(x, ω)ξ| ≤ Λ |ξ| and A(x, ω)ξ · ξ ≥ λ |ξ|2 .
• stationarity : almost surely, for every x, y ∈ Rd,

(3.9) A(x+ y, ω) = A(x, τyω).

• ergodicity : for every A ∈ F ,

(3.10) Pλ[(τxA)4(A)] = 0 for every x ∈ Rd if and only if Pλ[A] = 0 or Pλ[A] = 1.

• stochastic continuity : for every δ ∈ (0, 1),

(3.11) lim
|x|→0

P [|A(0, ω)−A(x, ω)| > δ] = 0.

The final condition is a satisfied by the environments constructed using the Poisson point process
above, as is a technical condition that will allow us to regularize functions defined on the probability
space using convolutions defined by the transformation group. These conditions are the most
general for which we can expect to prove homogenization. If the transformation group is not
ergodic, then we do not expect to a see a deterministic limit defined by A, and if the environment
is not stationary then we do not expect to see the averaging require for homogenization to occur.

3.2. The ergodic theorem. Let (Ω,F ,P) be a probability space and let {τx}x∈Rd be a measure

preserving group of transformation on Ω in the sense that, for every x, y ∈ Rd and A ∈ F ,

τx ◦ τy = τx+y and P[A] = P[τxA].

We will assume that the transformation group is ergodic in the sense that

A ∈ F satisfies P[(A)4(τxA)] = 0 for every x ∈ Rd if and only if P[A] = 0 or P[A] = 1.

The essential role of ergodicity is to almost surely replace averages in expectation by large-scale
averages in space. That is, if f ∈ L1(Ω) then almost surely

E[f ] '
 
BR

f(τxω) dx for R ∈ (0,∞) sufficiently large.

Intuitively this means that almost surely every individual environment is representative of the
family as a whole in the sense that after averaging over the whole space we recover the global
expectation. This is the content of the following ergodic theorem.

Theorem 3.1. Let (Ω,F ,P) be a probability space and let {τx}x∈Rd be an ergodic, measure pre-
serving group of transformation on Ω. Then for every f ∈ L1(Ω) there exists a subset Ω′ ⊆ Ω of
full probability such that, every bounded open subset U ⊆ Rd containing the origin,

E[f ] = lim
R→∞

 
UR

f(τxω) dx for every ω ∈ Ω′,

for UR = {Rx : x ∈ U}.
Proof. The details will be added later. See Becker [1981] provided in the lecture. �

A corollary of the ergodic theorem is the following version of Lemma 2.9. In a stationary and
ergodic environments the rescaled random variables f(τx/εω) for f ∈ L2(Ω) almost surely converge
weakly to the expectation of f .
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Corollary 3.2. Let (Ω,F ,P) be a probability space and let {τx}x∈Rd be an ergodic, measure pre-
serving group of transformation on Ω. Then, for every f ∈ L2(Ω), almost surely as ε→ 0,

f(τx/εω) ⇀ E [f ] weakly in L2
loc(Rd).

Proof. By density of linear combinations of indicator functions of bounded open subsets containing
the origin in L2

loc(Rd) it suffices to prove that for every bounded open subset A ⊆ Rd containing
the origin we have almost surely that

lim
ε→0

ˆ
A
f(τx/εω) dx = |A|E [f ] .

But, after rescaling,

lim
ε→0

ˆ
A
f(τx/εω) dx = lim

ε→0
εd
ˆ
Aε

f(τxω) dx = |A| lim
ε→0

 
Aε

f(τxω) dx,

for Aε = {ve−1x : x ∈ A}. After relabeling R = ε−1, the ergodic theorem proves almost surely that

lim
ε→0

ˆ
A
f(τx/εω) dx = |A| lim

R→∞

 
AR

f(τxω) dx = |A|E [f ] ,

for AR = {Rx : x ∈ A}. This completes the proof. �

An important consequence of Corollary 3.2 is the local L2-boundedness of random variables
f ε = f(τx/εω) defined by random variables f ∈ L2(Ω) for some probability space (Ω,F ,P) equipped
with a measure-preserving ergodic transformation group {τx}x∈Rd . Precisely because as ε → 0

we have almost surely that f ε ⇀ E[f ] weakly in L2
loc(Rd) we have almost surely that, for each

R ∈ (0,∞),
sup
ε∈(0,1)

∥∥f(τx/εω)
∥∥
L2(BR)

<∞.

That is, while the value of the supremum on the lefthand side is itself is random and need not be
uniformly bounded in ω ∈ Ω, it is almost surely finite.

3.3. The random homogenization corrector. Motivated by the coefficient field (3.4) defined
by the Poisson point process, we will henceforth consider a uniformly elliptic coefficient field a : Rd×
Ω → Rd×d defined on a probability space (Ω,F ,P) equipped with an ergodic, measure-preserving
transformation group {τx}x∈Rd such that almost surely

a(x+ y, ω) = a(y, τxω) for every x, y ∈ Rd.
Observe that the stationarity implies almost surely that a(x, ω) = A(τxω) for A(ω) = a(0, ω) ∈
L∞(Ω;Rd×d). More precisely, we assume that the environment satisfies (3.8), (3.9), (3.10), and
(3.11). These are the foundational assumptions of the theory, and are the most general for which
we would expect to see homogenization.

The goal of stochastic homogenization is to characterize almost surely the asymptotic behavior
as ε→ 0 of the solutions

−∇ · a(x/ε, ω)∇uε = f in U with uε = 0 on ∂U.

We take our motivation from periodic homogenization and postulate an asymptotic expansion of
the form

uε(x, ω) = u0(x, x/ε, ω) + εu1(x, x/ε, ω) + ε2u2(x, x/ε, ω) + . . . .

The same heuristics from the periodic case suggest that the asymptotic expansion reduces to an
expansion of the form

uε(x, ω) = v(x) + εφi(x/ε, ω)∂iv(x),

where for each i ∈ {1, . . . , d} the corrector φi almost surely satisfies

(3.12) −∇ · a(y, ω)(∇φi(y, ω) + ei) = 0 on Rd,
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and were v solves

−∇ · a∇v = f in U with v = 0 on ∂U,

for the homogenized coefficient A defined for each i ∈ {1, . . . , d} by

a = E [A(ω)(∇φi(0, ω) + ei)] = E [a(0, ω)(∇φi(0, ω) + ei)] .

This is in direct analogy with the periodic case, where the expectation in the random case replaces
the average over the torus.

Indeed, the periodic case can be placed into the random framework. The probability space is
Ω = Td = [0, 1]d and the probability measure P = dx is the Lebesgue measure. Given a one-periodic
coefficient field A : Rd → Rd×d we define the “random” coefficient field a(x, ω) = A(x + ω) where
the “randomness” here simply describes the point ω in the periodic cell at which the coefficient
field a(x, ω) is centered. That is, a(x, ω) is describes the original environment A shifted by ω ∈ Td
and the transformation group {τx}x∈Rd is simply τxω = ω + x for which we have

a(x+ y, ω) = A(x+ y + ω) = a(y, τxω).

The point in the periodic case is that recentering the environment does not fundamentally change
anything. This is very much not the case for generic random environments. Taking (3.4) for
example, recentering the environment may transfer you from a region of high diffusivity to a region
of virtually no diffusivity. In terms of the analysis, we will see that moving from the periodic case
to the stochastic case results in a fundamental loss of compactness.

Our first aim will be to construct the correctors φi solving (3.12). You would correct to say
that (3.12) is trivial solvable by choosing φi(x, ω) = −xi. In the periodic case, we avoided this
solution by insisting that φi be one periodic. In the random setting, we take our motivation from
the asymptotic expansion

uε(x, ω) = v(x) + εφi(x/ε, ω)∂iv(x).

If we expect almost surely that, as ε→ 0,

uε → v,

then we essentially require that, for each i ∈ {1, . . . , d}, after rescaling,

lim
ε→0
|εφi(x/ε)| = lim

|x|→∞

|φ(x)|
|x|

= 0.

This is sublinearity which we will measure below in an L2-sense. That is, we will construct a
solution of (3.12) that is sublinear in the sense that, almost surely for each i ∈ {1, . . . , d},

lim
ε→0

ε

( 
B1

|φi(x/ε, ω)|2 dx

) 1
2

= lim
R→∞

1

R

( 
BR

|φi(x, ω)|2 dx

) 1
2

= 0.

It is this condition that rules out the trivial solution φi(x) = −xi, and it is exactly this condition
that justifies the asymptotic expansion. Indeed, we will see that the convergence of uε to v is
controlled by the sublinearity of the corrector and analogous flux corrector.

Constructing a sublinear solution of (3.12) requires that we incorporate the probabilistic structure
of the environment. That is, due to the stationarity and ergodicity of the environment, we expect
equation (3.12) to be exhibit more cancellations and averaging than would be generically expected
for a deterministic equation of the type (3.12). To do this, we will use the transformation group
to lift the equation to the probability space and to construct a solution of (3.12) by constructing
its random gradient as a mean zero, curl-free random vector Φi. We then almost surely obtain the
solution φi by integration, where the sublinearity follows from the fact that E[Φi] = 0. That is,
from the fact that since the gradient is mean zero it exhibits cancellations that force φi to grow
sublinearly.
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To lift the equation to the probability space, we define the so-called horizontal derivatives using
the transformation group {τx}x∈Rd . For this we observe that there exists a natural class of test

functions on Ω. For each ψ ∈ C∞c (Rd) and for each f ∈ L∞(Ω) we define ψf ∈ L∞(Ω) by

ψf (ω) =

ˆ
Rd
f(τxω)ψ(x) dx,

and we will write D(Ω) for the space of all such functions. If f ∈ L∞(Ω) and ρε ∈ C∞c (Ω) for each
ε ∈ (0, 1) is a standard convolution kernel of scale ε ∈ (0, 1), it follows from (3.11) that

lim
ε→0

ˆ
Rd
f(τxω)ρε(x) dx = f in Lp(Ω) for every p ∈ [1,∞).

In this way, from the density of L∞(Ω) in Lp(Ω) for every p ∈ [1,∞), we see that D(Ω) is dense in
Lp(Ω) for every p ∈ [1,∞).

We will now define the horizontal derivatives. For every i ∈ {1, . . . , d} let D(Di) ⊆ L(Ω) be the
space

D(Di) =

{
f ∈ L2(Ω): lim

h→0

f(τheiω)− f(ω)

h
exists strongly in L2(Ω)

}
,

and define Di : D(Di)→ L2(Ω) by

(3.13) Dif = lim
h→0

f(τheiω)− f(ω)

h
.

The following proposition proves that the operators D(Di) are densely defined and closed.

Proposition 3.3. The operators {Di}i∈{1,...,d} defined in (3.13) are densely defined and closed.

Proof. Let ψf ∈ D(Ω). Then, for each i ∈ {1, . . . , d} the dominated convergence theorem proves
that

Diψf (ω) = −
ˆ
Rd
f(τxω)∂iρ

ε(x) dx ∈ L2(Ω).

The density of D(Ω) in L2(Ω) proves that the operators Di are densely defined. Let f, g ∈ D(Di)
and g ∈ L2(Ω). Then, it follows by definition of Di, the fact that the transformation group preserves
the measure, and Hölder’s inequality that

E[Difg] = E
[(

lim
h→0

f(τheiω)− f(ω)

h

)
g(ω)

]
= E

[
f(ω)

(
lim
h→0

g(τ−heiω)− g(ω)

h

)]
= −E[fDig].

We therefore conclude that the adjoint (Di)
∗ = −Di. Or, equivalently, that Di = (−Di)

∗. There-
fore, Di is closed since it is the adjoint of a densely defined operator. �

We now define the analogue of H1 on the probability space: let H1(Ω) ⊆ L2(Ω) denote the space

H1(Ω) = ∩di=1D(Di),

for which we have D(Ω) ⊆ H1(Ω) as above. Here we must emphasize an essential point. We will
not construct the solutions φi of (3.12) as elements of H1(Ω). That is, in general, there do not exist
random variables φi ∈ H1(Ω) such that almost surely we have φi(x, ω) = φi(τxω). The correctors
φi themselves do not in general exist as stationary functions. This is not totally surprising in the
sense that only the gradient of the corrector comes to define the homogenized coefficient in both
the periodic and random cases and in the sense that, from the point of view of the asymptotic
expansion, it is the gradient of the corrector that accounts for the oscillations of ∇uε in the sense
that, as ε→ 0,

∇uε ' ∇v +∇φεi∂iv.
We will therefore construct the gradient of the corrector as a stationary random variable. That is,
we will show that there exists a mean zero, curl free vector field Φi ∈ L2(Ω;Rd) such that almost
surely we have ∇φi(x, ω) = Φi(τxω).
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We will construct the random gradient in the space of potential vector fields. For every ψ ∈ H1(Ω)
we define

Dψ = (D1ψ, . . . ,Ddψ) ∈ L2(Ω;Rd).
Given a vector field V ∈ L2(Ω;Rd) we will understand distributional equalities in D′(O). That
is, we say that D · V = DiVi = 0 if E [V ·Dψ] = 0 for every ψ ∈ D(Ω). Observe that for every
ψ ∈ H1(Ω) the gradient is curl-free in the sense that, for every i, j ∈ {1, . . . , d},

(3.14) DiDjψ = DjDiψ.

Furthermore, for each i ∈ {1, . . . , d}, it follows by definition of Di and the fact that the transfor-
mation group preserves the measure that

(3.15) E [Diψ] = lim
h→0

1

h
E [ψ(τheiω)− ψ(ω)] = lim

h→0

1

h
(E [ψ(ω)]− E [ψ(ω)]) = 0.

In combination, (3.14) and (3.15) prove that the gradient is mean zero and curl free. We then
define the space of potential vector fields

L2
pot(Ω) = {Dψ : ψ ∈ H1(Ω)}L

2(Ω;Rd)

to be the strong L2(Ω;Rd) closure of the space of H1(Ω) gradients. Since the distributional
equalities and expectation are stable with respect to strong convergence, we see that for every
V = (Vi)i∈{1,...,d} ∈ L2

pot(Ω),

(3.16) DjVi = DiVj and E [V ] = 0.

Indeed, we will see below that L2(Ω;Rd) admits a Helmholtz decomposition similar to what we say
in the deterministic case, and that we could have equivalently defined L2

pot(Ω) to be the space of
mean zero, curl free fields

L2
pot(Ω) = {V = (Vi)i∈{1,...,d} ∈ L2(Ω;Rd) : DiVj = DjVi ∀ i, j ∈ {1, . . . , d} and E[V ] = 0}.

It follows by definition that L2
pot(Ω) is a Hilbert space when equipped with the inner product

〈V,W 〉L2
pot(Ω) = E [V ·W ] .

We will now construct the random gradients Φi in the space L2
pot(Ω).

Proposition 3.4. Let A ∈ L∞(Ω;Rd×d) be uniformly elliptic in the sense that there exist constants
λ,Λ ∈ (0,∞) such that almost surely, for each ξ ∈ Rd,

|A(ω)ξ| ≤ Λ |ξ| and A(ω)ξ · ξ ≥ λ |ξ|2 .

Then for each i ∈ {1, . . . , d} there exists unique Φi ∈ L2
pot(Ω) satisfying

E [A(Φi + ei) ·Ψ] = 0 for every Ψ ∈ L2
pot(Ω).

Proof. The proof is an immediate consequence of the uniform ellipticity of A, the definition of
L2

pot(Ω), and the Lax-Milgram theorem. �

We can use the transformation group to lift the potential fields Φi to the physical space. The
following proposition proves that these fields are almost surely locally L2-bounded and curl free.
This is to say that the lift of Φi to the physical space almost surely defines the gradient of a function.

Proposition 3.5. For each i ∈ {1, . . . , d} let Φi = (Φik)k∈{1,...,d} ∈ L2
pot(Ω) be defined in Proposi-

tion 3.4. Then it holds almost surely for each i ∈ {1, . . . , d} that the vector field Φi(x, ω) = Φi(τxω)
satisfies

Φi(·, ω) ∈ L2
loc(Rd;Rd) and ∂jΦik(·, ω) = ∂kΦij(·, ω) as distributions.
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Proof. Let i ∈ {1, . . . , d}. It follows from Fubini’s theorem and the stationarity that, for each
R ∈ (0,∞),

E
[ 

BR

|Φi(τxω|2 dx

]
=

 
BR

E
[
|Φi|2

]
dx = E

[
|Φi|2

]
,

it follows almost surely that Φi(τxω) ∈ L2
loc(Rd;Rd). Now let ψ ∈ C∞c (Rd) and let A ⊂ Ω be

measurable. It follows that

E
[ˆ

Rd
Φik(τxω)∂jψ(x)− Φij(τxω)∂kψ(x) dx1A(ω)

]
= E

[
Φik(ω)

ˆ
Rd
∂jψ(x)1A(τ−xω) dx− Φij(ω)

ˆ
Rd
∂kψ(x)1A(τ−xω) dx

]
= E [Φik(ω)DjψA(ω)− Φij(ω)DkψA(ω)] ,

for ψA(ω) =
´
Rd ψ(x)1A(τ−xω) dx ∈ D(Ω). Therefore, since Φi is curl-free, we conclude that

E
[ˆ

Rd
Φik(τxω)∂jψ(x)− Φik(τxω)∂jψ(x) dx1A(ω)

]
= 0.

Since A ⊆ Ω was arbitrary, it follows that there exists a subset Ω′ ⊆ Ω of full probability depending
on ψ such that, for every ω ∈ Ω′,ˆ

Rd
Φik(τxω)∂jψ(x)− Φij(τxω)∂kψ(x) dx = 0.

Finally, since the space of smooth, compactly supported functions is separable, we conclude that
there exists a subset of full probability such that for every ψ ∈ C∞c (Rd),ˆ

Rd
Φik(τxω)∂jψ(x)− Φij(τxω)∂kψ(x) dx = 0.

This completes the proof. �

In the following proposition, we construct almost surely solutions φi(·, ω) to (3.12) on the physical
space Rd. The solutions φi(·, ω) are defined by their gradient ∇φi(·, ω) = Φi(τ·ω), using the fact
that Proposition 3.5 proves that the Φi(τ·ω) are almost surely curl-free on Rd.

Proposition 3.6. Let A ∈ L∞(Ω;Rd×d) be uniformly elliptic, let a : Rd × Ω→ Rd×d be defined by
a(x, ω) = A(τxω), and for each i ∈ {1, . . . , d} let Φi ∈ L2

pot(Ω) be defined in Proposition 3.4. Then

for each i ∈ {1, . . . , d} there almost surely exists a unique φi ∈ H1
loc(Rd) satisfying the properties 

B1

φi(x, ω) dx = 0 and ∇φi(x, ω) = Φi(τxω) in L2
loc(Rd;Rd).

Furthermore, almost surely for every ψ ∈ C∞c (Rd),ˆ
Rd
a(x, ω)(∇φi(x, ω) + ei) · ∇ψ dx = 0.

Proof. For each ε ∈ (0, 1) let ρε ∈ C∞c (Rd) be a standard convolution kernel of scale ε ∈ (0, 1) and
for each i ∈ {1, . . . , d} let Φi : Rd×Ω→ Rd be defined by Φi(x, ω) = Φi(τxω). Since Proposition 3.5

proves almost surely that Φi(·, ω) ∈ L2
loc(Rd;Rd) is curl free, Φ

ε
i (·, ω) = (Φi ∗ ρε)(·, ω) is almost

surely smooth, curl free, and almost surely satisfies for every R ∈ (0,∞) that

(3.17) sup
ε∈(0,1)

∥∥Φ
ε
i

∥∥
L2(BR;Rd)

<∞.

We can therefore define for each i ∈ {1, . . . , d} and ε ∈ (0, 1),

(3.18) φ̃εi (x) =

ˆ 1

0
Φ
ε
i (sx, ω) · x ds and φεi = φ̃i −

 
B1

φ̃εi .
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It follows from the Poincaré inequality, (3.17), and (3.18) that, almost surely for each R ∈ (0,∞)
and i ∈ {1, . . . , d},

(3.19) sup
ε∈(0,1)

‖φεi‖H1(BR) <∞.

Since as ε → 0 the gradients almost surely satisfy Φ
ε
i → Φi strongly in L2

loc(Rd;Rd), and on the
subset of full probability satisfying (3.19) after passing to a random diagonal subsequence there
almost surely exists φ ∈ H1

loc(Rd) such that φεi ⇀ φi weakly in H1
loc(Rd), we conclude from the weak

convergence, the strong convergence of the gradients, and (3.18) that almost surely φi ∈ H1
loc(Rd)

satisifes  
B1

φ(x, ω) dx = 0 and ∇φi(x, ω) = Φi(τxω).

Uniqueness follows from the linearity and the fact that the only H1
loc(Rd) function ψ satisfyingffl

B1
ψ = 0 and ∇ψ = 0 is the zero function.

It remains only to prove that the φi almost surely satisfy the equation. Let ψ ∈ C∞c (Rd) and let
A ⊆ Ω be measurable. Then, for each i ∈ {1, . . . , d}, using the fact that the transformation group
preserves the measure,

E
[
1A(ω)

ˆ
Rd
a(x, ω)(∇φi(x, ω) + ei) · ∇ψ

]
= E

[
1A(ω)

ˆ
Rd
A(τxω)(Φi(τxω) + ei) · ∇ψ

]
= E

[
A(ω)(Φi(ω) + ei) ·

ˆ
Rd

1A(τ−xω)∇ψ(x) dx

]
= −E

[
A(ω)(Φi(ω) + ei) ·

ˆ
Rd

1A(τxω)∇ψ(−x) dx

]
= E

[
A(ω)(Φi(ω) + ei) ·D

(ˆ
Rd

1A(τxω)ψ(−x) dx

)]
= 0,

where the final inequality follows from the fact that −D ·A(Φi+ei) = 0 from Proposition 3.4. Since
A ⊆ Ω was arbitrary, we conclude that there exists a subset of full probability Ω′ ⊆ Ω depending
on ψ such that, for every ω ∈ Ω′ and i ∈ {1, . . . , d},ˆ

Rd
a(x, ω)(∇φi(x, ω) + ei) · ∇ψ = 0.

The separability of the space of smooth functions then proves that there exists a subset Ω′ ⊆ Ω of
full probability such that, for every ω ∈ Ω′, i ∈ {1, . . . , d}, and ψ ∈ C∞c (Rd),ˆ

Rd
a(x, ω)(∇φi(x, ω) + ei) · ∇ψ = 0.

This completes the proof. �

Observe that the correctors φi constructed in Proposition 3.6 are manifestly not stationary.

Indeed, since the correctors are constructed to satisfy the property E
[ffl
B1
φi

]
= 0 then stationarity

would imply that E
[ffl
B1(x) φi

]
= 0 for every x ∈ Rd. This will not in general be true, and the

construction of stationary correctors is in general a difficult problem. They have been shown to
exist, for instance, in dimensions d ≥ 3 assuming that the environment satisfies strong mixing
assumptions. However, in dimension d = 2 it is known that stationary correctors do not exist
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in general. In the next section, however, we will how that the corrector constructed in (3.6) is
sublinear in the L2-sense.

3.4. The sublinearity of the corrector. In this section, we will prove that the correctors con-
structed in Proposition 3.6 are sublinear in an L2-sense. The proof is a consequence of the ergodic
theorem, using the fact that the stationary gradient constructed in Proposition 3.4 has mean zero.

Proposition 3.7. For each i ∈ {1, . . . , d} let Φi ∈ L2
pot(Ω) be defined in Proposition 3.4 and let

φi(·, ω) ∈ H1
loc(Rd) be almost surely defined in Proposition 3.6. Then almost surely

lim
R→∞

1

R

( 
BR

|φi|2
) 1

2

= 0.

Proof. For each ε ∈ (0, 1) let φεi (x, ω) = εφi(x/ε, ω) and observe by rescaling that

(3.20) lim sup
R→∞

1

R

( 
BR

|φi|2
) 1

2

= lim sup
ε→0

( 
B1

|φεi |
2

) 1
2

.

We will first prove that

(3.21) lim sup
ε→0

( 
B1

∣∣∣∣φεi −  
B1

φεi

∣∣∣∣2
) 1

2

= 0.

Since almost surely

∇
(
φεi −

 
B1

φεi

)
= Φi(τx/εω),

and since almost surely the ergodic theorem proves that, as ε→ 0,

Φi(τx/εω) ⇀ E [Φi] = 0 weakly in L2(B1;Rd),

it follows from the weak convergence that

sup
ε∈(0,1)

∥∥∥∥∇(φεi −  
B1

φεi

)∥∥∥∥
L2(B1;Rd)

<∞,

and therefore from the Poincaré inequality that

sup
ε∈(0,1)

∥∥∥∥(φεi −  
B1

φεi

)∥∥∥∥
H1(B1)

<∞.

The boundedness of the functions
(
φεi −

ffl
B1
φεi

)
in H1(B1), the fact that

ffl
B1

(
φεi −

ffl
B1
φεi

)
= 0,

and the weak convergence of the gradient to zero prove that, as ε→ 0,(
φεi −

 
B1

φεi

)
⇀ 0 weakly in H1(B1).

Therefore, the Sobolev embedding theorem proves that, as ε→ 0,(
φεi −

 
B1

φεi

)
→ 0 strongly in L2(B1),

and hence that

lim sup
ε→0

( 
B1

∣∣∣∣φεi −  
B1

φεi

∣∣∣∣2
) 1

2

= 0.
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This fact is sufficient for our purposes, since the correctors are only defined up to an additive
constant. However, the statement (3.21) is in fact equivalent to the stronger statement

(3.22) lim sup
ε→0

( 
B1

|φεi |
2

) 1
2

= 0.

Indeed, it follows from (3.20) and (3.21) that for every δ ∈ (0, 1) there exists R0 ∈ (0,∞) such that,
for every R ≥ R0, ( 

BR

∣∣∣∣φ−  
BR

φ

∣∣∣∣p∗) 1
p∗
≤ Rδ.

By the triangle inequality, for every R ∈ [R0, 2R0],∣∣∣∣∣
 
BR

φ−
 
BR0

φ

∣∣∣∣∣ ≤
( 

BR0

∣∣∣∣φ−  
BR

φ

∣∣∣∣2
) 1

2

+

 
BR0

∣∣∣∣∣φ−
 
BR0

φ

∣∣∣∣∣
2
 1

2

≤
(
R

R0

) d
2

Rδ +R0δ ≤
(

2
d+2
2 + 1

)
R0δ = cR0δ.

Therefore, for every R ∈ [R0, 2R0],∣∣∣∣ 1

R

 
BR

φ

∣∣∣∣ ≤ (R0

R

) ∣∣∣∣∣ 1

R0

 
BR0

φ

∣∣∣∣∣+ c

(
R0

R

)
δ.

It then follows inductively that, for every R ∈ [2k−1R0, 2
kR0],

 
BR

φ ≤
(

2k−1R0

R

) ∣∣∣∣∣ 1

2k−1R0

 
B

2k−1R0

φ

∣∣∣∣∣+ c

(
2k−1R0

R

)
δ

≤

∣∣∣∣∣ 1

R

 
BR0

φ

∣∣∣∣∣+ c

 ∞∑
j=0

2−j

 δ =

∣∣∣∣∣ 1

R

 
BR0

φ

∣∣∣∣∣+ 2cδ.

Since δ ∈ (0, 1) was arbitrary, we have almost surely that

(3.23) lim sup
R→∞

∣∣∣∣∣ 1

R

 
BR0

φ

∣∣∣∣∣ = 0.

The triangle inequality, (3.20), (3.21), and (3.23) then prove that

lim sup
R→∞

1

R

( 
BR

|φ|2
) 1

2

≤ lim sup
R→∞

1

R

( 
BR

∣∣∣∣φ− ˆ
BR

φ

∣∣∣∣2
) 1

2

+ lim sup
R→∞

∣∣∣∣∣ 1

R

 
BR0

φ

∣∣∣∣∣ = 0,

which completes the proof. �

3.5. The homogenized coefficient. The random potential fields defined in Proposition 3.4 can
now be used to define the homogenized coefficient A ∈ Rd×d by the rule

Aei = E [A(Φi + ei)] for each i ∈ {1, . . . , d},

for A(ω) = a(0, ω). We will show that the homogenized coefficient behaves as it did in the periodic
case. It is uniformly elliptic, symmetric if A symmetric, and it satisfies the same transpose relation.
This is the content of the next two propositions.
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Proposition 3.8. Let A ∈ L∞(Ω;Rd×d) be uniformly elliptic with constants λ,Λ ∈ (0,∞): almost
surely for every ξ ∈ Rd,

|Aξ| ≤ Λ |ξ| and Aξ · ξ ≥ λ |ξ|2 .

Let a ∈ Rd×d be defined for each i ∈ {1, . . . , d} by

Aei = E [A(Φi + ei)] ,

for Φi ∈ L2
pot(Ω) defined in Proposition 3.4. Then, for every ξ ∈ Rd,

∣∣Aξ∣∣ ≤ λ( d∑
i=1

E
[
|Φi + ei|2

]) 1
2

|ξ| and Aξ · ξ ≥ λ |ξ|2 .

Proof. It follows from Hölder’s inequality, the uniform ellipticity, and the definition of A that, for
every ξ = (ξi) ∈ Rd,

∣∣Aξ∣∣ ≤ Λ |ξi|E [|Φi + ei|] ≤ λ

(
d∑
i=1

E
[
|Φi + ei|2

]) 1
2

|ξ| .

Alternately, the uniform ellipticity, the definition of A, the equation satisfied by Φi, the fact that
Φi is mean zero, and Jensen’s inequality prove that, for every ξ ∈ Rd,

Aξ · ξ = E [A(Φξ + ξ) · ξ] = E [A(Φξ + ξ) · (Φξ + ξ)] ≥ λE
[
|Φξ + ξ|2

]
≥ λ |E[Φξ + ξ]|2 = λ |ξ|2 ,

for Φξ = ξiΦi. This completes the proof. �

Proposition 3.9. Let A ∈ L∞(Ω;Rd×d) be uniformly elliptic with constants λ,Λ ∈ (0,∞): almost
surely for every ξ ∈ Rd,

|Aξ| ≤ Λ |ξ| and Aξ · ξ ≥ λ |ξ|2 .

For each i ∈ {1, . . . , d} let Φi,Φ
t
i ∈ L2

pot(Ω) be the unique solutions of

−D ·A(Φi + ei) = 0 and −D ·At(Φt
i + ei) = 0 in L2

pot(Ω).

Let A, Ã ∈ L∞(Ω) be defined for each i ∈ {1, . . . , d} by

Aei = E [A(Φi + ei)] and Ãei = E
[
At(Φt

i + ei)
]
.

Then Ã = A
t

and A is symmetric if A is symmetric.

Proof. Let A = (aij) and Ã = (ãij) for i, j ∈ {1, . . . , d}. Then, for each i, j ∈ {1, . . . , d}, the
equations satisfied by Φk and Φt

k and the definitions prove that

aij = E [A(Φi + ei)] · ej
= E

[
A(Φi + ei)(Φ

t
j + ej)

]
= E

[
(Φi + ei)A

t(Φt
j + eJ)

]
= E

[
At(Φt

j + ej)
]
· ei

= ãji.

Therefore Ã = A
t
. Finally, if A is symmetric then by uniqueness Φi = Φt

i and Ã = A and A = A
t
.

This completes the proof. �
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3.6. The perturbed test function method. Let (Ω,F ,P) be a probability space, let {τx}x∈Rd be

an ergodic measure-preserving transformation group on Ω, and let A ∈ L∞(Ω;Rd×d) be uniformly
elliptic. We recall that, for each i ∈ {1, . . . , d}, the corrector gradient fields Φi ∈ L2

pot(Ω) solve the
equation

E [A(Φi + ei) ·Ψ] = 0 for every Ψ ∈ L2
pot(Ω),

and the homogenized coefficient a ∈ Rd×d is defined for each i ∈ {1, . . . , d} by

aei = E [A(Φi + ei)] .

Let v ∈ H1
0 (U) be the unique solution of

−∇ · a∇v = f in U with v = 0 on ∂U.

We will now use the perturbed test function method to prove the stochastic homogenization of the
equation

−∇ · aε∇uε = f in U with uε = 0 on ∂U,

for aε(x, ω) = A(τx/εω). The proof is essentially the same as in the periodic case, relying on the
sublinearity of the correctors. We similarly prove the homogenization of the flux.

Theorem 3.10. Let U ⊆ Rd be a bounded domain and let f ∈ L2(U). Then, almost surely as
ε→ 0,

uε ⇀ v weakly in H1
0 (U).

Proof. For each i ∈ {1, . . . , d} let Φt
i ∈ L2

pot(Ω) solve

E
[
At(Φt

i + ei)Ψ
]

= 0 for every Ψ ∈ L2
pot(Ω),

and almost surely for each i ∈ {1, . . . , d} let φti(·, ω) ∈ H1
loc(Rd) be the unique function satisfyingffl

B1
φti = 0, satisfying ∇φti(x, ω) = Φt

i(τxω), and satsifying, for each ψ ∈ C∞c (Rd),ˆ
Rd
at(y, ω)(∇φi(x, ω) + ei) · ∇ψ = 0.

The uniform ellipticity and the Poincaré inequality prove almost surely that

sup
ε∈(0,1)

‖uε‖H1
0 (U) <∞,

and therefore, after passing to a subsequence, there exists ṽ ∈ H1
0 (U) such that, as ε→ 0,

uε ⇀ ṽ weakly in H1
0 (U).

We will prove that, for every ψ ∈ C∞c (U),ˆ
U
a∇ṽ · ∇ψ =

ˆ
U
fψ,

which by uniqueness implies that ṽ = v and therefore that the full sequence converges to this unique
limit.

Let ψ ∈ C∞c (Rd) and for each ε ∈ (0, 1) define the perturbed test function

ψε = ψ + εφti(x/ε, ω)∂iψ.

Testing the equation satisfied by uε with ψε then yieldsˆ
U
aε∇uε · ∇ψε =

ˆ
U
aε∇uε · (∇φti(x/ε, ω) + ei)∂iψ +

ˆ
U
aε∇uε · ∇(∂iv)εφti(x/ε)

=

ˆ
U
f
(
ψ + εφti(x/ε)∂iv

)
.
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Therefore, after transposing the matrix,ˆ
U
∇uε · (aε)t(∇φti(x/ε, ω) + ei)∂iψ +

ˆ
U
aε∇uε · ∇(∂iv)εφti(x/ε) =

ˆ
U
f
(
ψ + εφti(x/ε)∂iv

)
.

Since the ergodic theorem and Proposition 3.9 prove almost surely that, for each i ∈ {1, . . . , d} as
ε→ 0,

(aε)t(∇φti(x/ε, ω) + ei) ⇀ atei weakly in L2
loc(U ;Rd),

and since along a subsequence ∇uε ⇀ ∇ṽ weakly in L2(U ;Rd) the div-curl lemma can be applied
to the first term on the lefthand side to prove that

lim
ε→0

ˆ
U
∇uε · (aε)t(∇φti(x/ε, ω) + ei)∂iψ =

ˆ
U
∇ṽ · at∇ψ =

ˆ
U
a∇ṽ · ∇ψ.

The uniform ellipticity and Hölder’s inequality prove that the second term on the lefthand side
satisfies ∣∣∣∣ˆ

U
aε∇uε · ∇(∂iv)εφti(x/ε)

∣∣∣∣ ≤ ‖∇(∂iv)‖L∞(U ;Rd) ‖∇u
ε‖L2(U ;Rd)

(ˆ
U

∣∣εφti(x/ε)∣∣2) 1
2

,

and similarly, for the final term on the righthand side,∣∣∣∣ˆ
U
fεφti(x/ε)∂iv

∣∣∣∣ ≤ ‖∂iv‖L∞(U) ‖f‖L2(U)

(ˆ
U

∣∣εφti(x/ε, ω)
∣∣2) 1

2

.

Therefore, the almost sure sublinearity of the φti proved in Proposition 3.7 proves that almost surely

lim sup
ε→0

(∣∣∣∣ˆ
U
aε∇uε · ∇(∂iv)εφti(x/ε)

∣∣∣∣+

∣∣∣∣ˆ
U
fεφti(x/ε)∂iv

∣∣∣∣) = 0.

We therefore conclude that ˆ
U
a∇ṽ · ∇ψ =

ˆ
U
fψ,

which proves that

−∇ · a∇ṽ = f in U with ṽ = 0 on ∂U.

Therefore, by uniqueness, we conclude that ṽ = v. This completes the proof. �

Theorem 3.11. Let U ⊆ Rd be a bounded domain and let f ∈ L2(U). Then, almost surely as
ε→ 0,

aε∇uε ⇀ a∇v weakly in L2(U ;Rd).

Proof. For each i ∈ {1, . . . , d} let Φt
i ∈ L2

pot(Ω) solve

E
[
At(Φt

i + ei)Ψ
]

= 0 for every Ψ ∈ L2
pot(Ω),

and almost surely for each i ∈ {1, . . . , d} let φti(·, ω) ∈ H1
loc(Rd) be the unique function satisfyingffl

B1
φti = 0, satisfying ∇φti(x, ω) = Φt

i(τxω), and satsifying, for each ψ ∈ C∞c (Rd),ˆ
Rd
at(y, ω)(∇φi(x, ω) + ei) · ∇ψ = 0.

The uniform ellipticity and the Poincaré inequality prove almost surely that

sup
ε∈(0,1)

‖uε‖H1
0 (U) <∞,

and therefore due to the uniform ellipticity, after passing to a subsequence, there exists F0 ∈
L2(U ;Rd) such that, as ε→ 0,

aε∇uε ⇀ F0 weakly in L2(U ;Rd),
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for F0 solving, for every ψ ∈ C∞c (Rd), ˆ
U
F0 · ∇ψ =

ˆ
U
fψ.

We will prove that, for each ξ ∈ Rd and ψ ∈ C∞c (Rd),ˆ
U

(F0 · ξ)ψ =

ˆ
U

(a∇v · ξ)ψ,

from which it follows that F0 = a∇v in L2(U ;Rd). Let ξ ∈ Rd and ψ ∈ C∞c (Rd). We introduce a
perturbed version of the linear function wξ(x) = ξ · x for each ε ∈ (0, 1) defined by

wεξ(x) = ξ · x+ εφtξ(x/ε, ω),

for φtξ = ξiφ
t
i. After testing the equation satisfied by uε with the test function φwεξ ,ˆ

U
aε∇uε · (∇φtξ + ξ)ψ + aε∇uε · ∇ψwεξ =

ˆ
U
fwεξψ.

Similarly, testing the equation satisfied by φtξ with uεψ,ˆ
U

(aε)t(∇φtξ + ξ) · ∇ψuε + (aε)t(∇φtξ + ξ) · ∇uεψ = 0.

After transposing the matrix and subtracting these two equations,ˆ
U
aε∇uε · ∇ψwεξ − (aε)t(∇φtξ + ξ) · ∇ψuε =

ˆ
U
fwεξψ.

Since the Sobolev embedding theorem and Theorem 3.10 prove that, almost surely as ε→ 0,

uε → v strongly in L2(U),

since the sublinearity of Proposition 3.7 proves that, almost surely as ε→ 0,

wεξ → (ξ · x) strongly in L2(U),

and since the ergodic theorem and Proposition 3.9 prove almost surely that, as ε→ 0,

(aε)t(∇φtξ + ξ) ⇀ atei weakly in L2
loc(U ;Rd),

after passing to the limit ε→ 0 along a subsequence we have almost surely from the weak conver-
gence of aε∇uε that ˆ

U
F0 · ∇ψ(ξ · x)− atξ · ∇ψv =

ˆ
U
f(ξ · x)ψ.

Therefore, after integrating by parts and using the equation satisfied by F0,ˆ
U

(F0 · ξ)ψ =

ˆ
U

(a∇v · ξ)ψ.

We therefore conclude that F0 = a∇v, which completes the proof. �

3.7. The random flux-corrector. Returning to (2.35), the equation satisfied by the homoge-
nization error

w = uε − v − ε∂iφεi∂iv,
remains the same in the random case. We have that

(3.24) −∇ ·A(x/ε, ω)∇wε = ∇ ·
((
A(x/ε, ω) (ei +∇φi(x/ε, ω))−Aei

)
∂iv
)

+∇ ·A(x/ε) (εφεi∇∂iv) ,

for ∇φi(x/ε, ω) = Φi(τx/εω) and for A(x/ε, ω) = A(τx/εω). In this case, for each i ∈ {1, . . . , d}, the

flux qεi is the translation of the stationary quantity Qi ∈ L2(Ω;Rd) deifned by

(3.25) Qi = A(Φi + ei)− E [A(Φi + ei)] = A(Φi + ei)−Aei,
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for which we have

qεi =
(
A(x/ε, ω) (ei +∇φi(x/ε, ω))−Aei

)
= Qi(τx/εω).

The fact that the fluxes qεi are defined by the stationary quantities Qi allows us to lift the equation
defining the flux-corrections σi to the probability space in exactly the way we lifted the equation
defining the homogenization corrector to the probability space. The following two propositions
almost surely define σi = (σijk) ∈ H1

loc(Rd;Rd×d) by the gradients of its components. The final
proposition proves that the flux correction is sublinear.

Proposition 3.12. Let A ∈ L∞(Ω;Rd×d) be uniformly elliptic, for each i ∈ {1, . . . , d} let Φi ∈
L2
pot(Ω) be the unique solution of −D · A(Φi + ei) = 0 in L2

pot(Ω), and let Qi = (Qik) ∈ L2(Ω;Rd)
be defined by (3.25). Then for every i, j, k ∈ {1, . . . , d} there exists a unique Σijk ∈ L2

pot(Ω) that
satisfies

(3.26) E [Σijk ·Ψ] = E [QijΨk −QikΨj ] for every Ψ ∈ L2
pot(Ω).

Proof. The proof is a consequence of the Lax-Milgram theorem applied to the Hilbert space L2
pot(Ω).

Indeed equation (3.26) is the lift of the equation −∆φijk = ∂jqik − ∂kqij to the space L2
pot(Ω) of

stationary gradient fields. �

Proposition 3.13. For every i, j, k ∈ {1, . . . , d} let Σijk ∈ L2
pot(Ω) be defined in Proposition 3.12

and almost surely let σijk ∈ H1
loc(Rd) be the unique function satisfying

ffl
B1
σijk(x, ω) dx = 0 and

∇σijk(x, ω) = Σijk(τxω). Then for each i ∈ {1, . . . , d} the matrix σi = (σijk) ∈ H1
loc(Rd;Rd×d) is

almost surely skew-symmetric and satisfies

∇ · σi = qi in L2
loc(Rd;Rd),

for qi(x, ω) = Qi(τxω).

Proof. Proposition 3.12 and a repetition of the proof of Proposition 3.6 prove that for each i, j, k ∈
{1, . . . , d} the function σijk ∈ H1

loc(Rd) that is almost surely defined uniquely by the propertiesffl
B1
σijk = 0 and ∇σijk(x, ω) = Σijk(τxω) almost surely satisfies, for every ψ ∈ C∞c (Rd),ˆ

Rd
∇σijk · ∇ψ =

ˆ
Rd
∂jψqik − ∂kψqij .

It then follows from uniqueness of the Σijk that Σijk = −Σikj for every i, j, k ∈ {1, . . . , d} and
therefore from the almost sure uniqueness of the σijk that σijk = −σikj for every i, j, k ∈ {1, . . . , d}.
Almost surely define σi = (σijk) ∈ H1

loc(Rd;Rd×d). The σi are then skew-symmetric by definition.
Fix i, j ∈ {1, . . . , d}. As in the periodic case, we will show that in the sense of distributions

(3.27) ∆
[
(∇ · σi)j − qij

]
= 0.

Indeed, the computation is identical using the equation satisfied by the σijk,

∂s∂s [∂kσijk − qij ] = ∂k [∂kqij − ∂jqik − ∂s∂sqij ] = −∂j(∇ · qi) = 0,

where the final equality follows from the fact that qi is divergence-free. For every ε ∈ (0, 1) let
ρε ∈ C∞c (Rd) be a standard convolution kernel of scale ε ∈ (0, 1). It follows from (3.27) that, for
every ε ∈ (0, 1) and i, j ∈ {1, . . . , d},

(3.28) ∆
[(

(∇ · σi)j − qij
)
∗ ρε

]
= 0 in Rd.

Let η : Rd → [0, 1] be a smooth function satisfying η = 1 on B1 and η = 0 on Rd \ B2 and
for each R ∈ (0,∞) let ηR(x) = η(x/R). After testing (3.28) with the admissible test function((

(∇ · σi)j − qij
)
∗ ρε

)
η2
R, it follows from Hölder’s inequality, Young’s inequality, and the definition
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of ηR that, for each R ∈ (0,∞) and ε ∈ (0, 1), for some c ∈ (0,∞) independent of R ∈ (0,∞) and
ε ∈ (0, 1),  

BR

∣∣∣∇(((∇ · σi)j − qij
)
∗ ρε

)∣∣∣2 ≤ c

R

 
B2R

∣∣∣((∇ · σi)j − qij
)
∗ ρε

∣∣∣2 .
This is a version of the Caccioppoli inequality. Observe that both quantities are stationary in the
sense that

((∇ · σi)j − qij) (x, ω) = ((Σijk)k −Qij) (τxω),

that ((
(∇ · σi)j − qij

)
∗ ρε

)
(x, ω) =

ˆ
Rd

((Σijk)k −Qij) (τx+yω)ρε(y) dy,

and that (
∇
((

(∇ · σi)j − qij
)
∗ ρε

))
(x, ω) = −

ˆ
Rd

((Σijk)k −Qij) (τx+yω)∇ρε(y) dy.

Therefore, it follows almost surely from the ergodic theorem and Σijk, Qi ∈ L2(Ω;Rd) that

lim
R→∞

 
BR

∣∣∣∇(((∇ · σi)j − qij
)
∗ ρε

)∣∣∣2 = −E

[∣∣∣∣ˆ
Rd

((Σijk)k −Qij) (τyω)∇ρε(y) dy

∣∣∣∣2
]
<∞,

that

lim
R→∞

 
B2R

∣∣∣((∇ · σi)j − qij
)
∗ ρε

∣∣∣2 = E

[∣∣∣∣ˆ
Rd

((Σijk)k −Qij) (τyω)ρε(y) dy

∣∣∣∣2
]
<∞,

and therefore that

lim
R→∞

1

R

 
B2R

∣∣∣((∇ · σi)j − qij
)
∗ ρε

∣∣∣2 = 0.

Therefore, for each ε ∈ (0, 1), on a subset of full probability,

∇
(

(∇ · σi)j − qij
)
∗ ρε = 0 on Rd

and (
(∇ · σi)j − qij

)
∗ ρε is constant.

It then follows from stationarity, the ergodic theorem, Fubini’s theorem, and the fact that for each
i, j, k ∈ {1, . . . , d} we ahve E [Σijk] = E [Qi] = 0,

lim
R→∞

 
BR

(
(∇ · σi)j − qij

)
∗ ρε = E

[ˆ
Rd

((Σijk)k −Qij) (τyω)ρε(y) dy

]
= 0.

Hence, for every ε ∈ (0, 1), on a subset of full probability,(
(∇ · σi)j − qij

)
∗ ρε = 0 on Rd,

from which it follows almost surely that, for each i, j ∈ {1, . . . , d},
(∇ · σi)j − qij = 0 on Rd,

which completes the proof. �

Proposition 3.14. For every i ∈ {1, . . . , d} let σi ∈ L∞(Ω;Rd×d) be almost surely defined by
Proposition 3.13. Then, almost surely for each i ∈ {1, . . . , d},

lim
R→∞

1

R

( 
BR

|σi|2
) 1

2

= 0.

Proof. The proof is identical to Proposition 3.7 and relies only on the stationarity and L2-integrability
of the stationary gradients Σijk defining the gradients of the σi. �
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3.8. Strong convergence of the two-scale expansion. In this section, for a probability space
(Ω,F ,P) equipped with an ergodic measure-preserving transformation group {τx}x∈Rd , for a uni-

formly elliptic A ∈ L∞(Ω;Rd×d), we will prove almost surely that the two-scale expansion associated
to the equation

−∇ · aε∇uε = f in U with uε = 0 on ∂U,

converges strongly to zero in H1(U). Precisely, for each i ∈ {1, . . . , d} almost surely φi ∈ H1
loc(Rd)

be the corrector constructed in Proposition 3.6 and let σ ∈ H1
loc(Rd;Rd×d) be the skew-symmetric

flux corrector constructed in Proposition 3.13. The uniformly elliptic homogenized coefficient field
a ∈ Rd×d is defined in Proposition 3.8 and v ∈ H1

0 (U) is the unique solution of

−∇ · a∇v = f in U with v = 0 on ∂U.

The two-scale expansion is

wε = uε − v − εφ(x/ε, ω)∂iv.

In the following theorem, using the homogenization flux correctors, we prove almost surely that wε

converges strongly to zero in H1(U) as ε→ 0.

Theorem 3.15. For some α ∈ (0, 1) let U ⊆ Rd be a bounded C2,α-domain and let f ∈ Cα(U).
Then, almost surely as ε→ 0,

uε − v − εφi(x/ε, ω)∂iv → 0 strongly in H1(U).

Proof. For every ρ ∈ (0, 1) let ηρ : Rd → [0, 1] be a smooth cutoff function satisfying ηρ(x) = 1 if
d(x, ∂U) ≥ ρ, satisfying ηρ(x) = 0 if d(x, ∂U) < ρ/2, and satisfying |∇ηρ| ≤ c/ρ for some c ∈ (0,∞)
independent of ρ ∈ (0, 1). For each ε, ρ ∈ (0, 1) we define

wε,ρ = uε − v − εφi(x/ε, ω)ηρ∂iv,

The reason for introducing the cutoff ηρ is to guarantee that wε,ρ vanishes along the boundary. A
repetition of the computation in the computation from the periodic case then proves that

−∇aε∇wε,ρ = ∇ · [(1− ηρ)(aε − a)∇(∂iv)] +∇ · [(εφεi − εσεi )∇ (ηρ∂iv)] .

Since the regularity of the domain proves that, for some c ∈ (0,∞)

(3.29) ‖v‖C2,α(U) ≤ c ‖f‖Cα(U) ,

it follows from the uniform ellipticity, the definition of ηρ, Hölder’s inequality, and Young’s inequal-
ity that, for some c ∈ (0,∞) depending on U but independent of ε and ρ,ˆ

U
|∇wε,ρ|2 ≤ c

(ˆ
U

(1− ηρ)2 |∇(∂iv)|2 +

ˆ
U

(
|εφεi |

2 + |εσεi |
2
)
|∇(ηρ∂iv)|2

)
≤ c ‖f‖Cα(U)

(
ρ+

1

ρ

ˆ
U

(
|εφεi |

2 + |εσεi |
2
))

.

It then follows almost surely from the sublinearity of Propositions 3.7 and 3.14 that, for each
ρ ∈ (0, 1), for c ∈ (0,∞) independent of ρ,

(3.30) lim sup
ε→0

ˆ
U
|∇wε,ρ|2 ≤ cρ ‖f‖Cα(U) .

We then write, for each ε, ρ ∈ (0, 1),

(3.31) ∇wε = ∇wε,ρ +∇ (εφεi (1− ηρ)∂iv) = ∇wε,ρ +∇φεi (1− ηρ)∂iv + εφεi∇[(1− ηρ)∂iv].

Since Proposition 3.7, the definition of ηρ, and (3.29) prove almost surely that, as ε→ 0,

εφεi∇[(1− ηρ)∂iv]→ 0 strongly in L2(U ;Rd),
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the ergodic theorem, Hölder’s inequality, Young’s inequality, (3.30), and (3.31) prove that, for some
c ∈ (0,∞) depending on U but independent of ρ,

lim sup
ε→0

ˆ
U
|∇wε|2 ≤ cρ ‖f‖Cα(U)

(
1 +

d∑
i=1

E
[
|Φi|2

])
.

Then, since ρ ∈ (0, 1) was arbitrary, we conclude that

(3.32) lim sup
ε→0

ˆ
U
|∇wε|2 = 0.

Since Theorem 3.10 and the Sobolev embedding theorem prove almost surely that, as ε→ 0,

uε → v strongly in L2(U),

and since Proposition 3.7 proves almost surely that, aas ε→ 0,

εφεi → 0 strongly in L2(U),

we conclude almost surely that, as ε→ 0,

(3.33) wε → 0 strongly in L2(U).

In combination, (3.32) and (3.33) complete the proof. �
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