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I. Interacting particle systems

• Statistical physics

— zero range process
— Ising and Potts models

• Belief/infection propagation

— voter model
— contact process

• Traffic models

— exclusion processes

• Neural networks as interacting particle systems

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Four snapshots of a two-dimensional voter model with periodic
boundary conditions. Initially, the types of sites are i.i.d. Time evolved in
these pictures is 0, 1, 32, and 500.

dimensions 3 and more. In Figure 1.2, we see the four snapshots of the time
evolution of a three-dimensional voter model. The model is simulated on a
cube with periodic boundary conditions, and the types of the middle layer
are shown in the pictures. In this case, we see that even after a long time,
there are still many di↵erent types near the origin.2

2On a finite lattice, such as we use in our simulations, one would eventually see one
type take over, but the time one has to wait for this is very long compared to dimensions
1 and 2. On the infinite lattice, the probability that the origin has a di↵erent type from
its right neighbor tends to a positive limit as time tends to infinity.
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The voter model [Swart; 2020]
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I. Interacting particle systems

The zero range process:

• let g : N0 → N0 be nondecreasing
— g(0) = 0 and g(k) > 0 if k 6= 0

• independent random clocks T (k) with distribution

T (k) ∼ g(k) exp(−g(k)t) on [0,∞).

T(4) T(3) T(1) T(2) T(4) T(2) T(2) T(2)

T(4) T(2) T(3) T(1) T(3) T(2) T(3) T(2)
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I. Interacting particle systems

A zero range process: on TdN = (Zd/NZd) with generator

(LNf)(η) =
∑
x∈Td

N

∑
z∈Td

N

pN (z)g(η(x))
(
f(ηx,x+z)− f(η)

)
,

The transition kernel: pN (z) =
∑
y∈Zd p(z + yN ) for a compactly supported p

with zero mean
∑
z∈Td zp(z) = 0.

Parabolic rescalings: for N = 4, 8, 15,
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I. Interacting particle systems

The zero range process ηNt on (Zd/NZd) and the scaled empirical density

µNt =
1

Nd

∑
x∈(Zd/NZd)

δ x
N
· ηNN2t(x).

Hydrodynamic limit [Ferrari, Presutti, Vares; 1988]

For every continuous f : Td × [0, T ]→ R and δ ∈ (0, 1),

lim
N→∞

P
[
|〈f, µN 〉 − 〈f, ρ〉| > δ

]
= 0,

where ρ : Td × [0, T ]→ R is the unique solution of the equation

∂tρ =
1

2
∆Φ(ρ),

for the mean local jump rate Φ [Kipnis, Landim; 1999].

• 〈f, µN 〉 =
´
fµN and 〈f, ρ〉 =

´
fρ

• if T (k) ∼ e−t then ∂tρ = 1
2
∆
(

ρ
1+ρ

)
• if T (k) ∼ ke−kt then ∂tρ = 1

2
∆ρ
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I. Interacting particle systems

The symmetric simple exclusion process:

• independent exponentially distributed clocks T (1) with rate 1
— T (1) ∼ exp(−t) on [0,∞)

• the generator on TdN ,

LNf(η) =
∑
x∈Td

N

∑
z∈Td

N

pN (z)η(x)(1− η(x+ z))(f(ηx,z)− f(η)),

• the transition kernel pN (z) =
∑
y∈Zd p(z +Ny) for a compactly supported p

satisfying
∑
z∈Zd zp(z) = 0.

T(1) T(1) T(1) T(1) T(1) T(1)

T(1) T(1) T(1) T(1) T(1) T(1)

The zero range process
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I. Interacting particle systems

The symmetric simple exclusion process ηNt on (Zd/NZd) and the scaled density

µNt =
1

Nd

∑
x∈(Zd/NZd)

δ x
N
· ηNN2t(x).

Hydrodynamic limit [Kipnis, Olla, Varadhan; 1989]

For every continuous f : Td × [0, T ]→ R and δ ∈ (0, 1),

lim
N→∞

P
[
|〈f, µN 〉 − 〈f, ρ〉| > δ

]
= 0,

where ρ : Td × [0, T ]→ R is the unique solution of the equation

∂tρ =
1

2
∆ρ.

For initial data 0 ≤ ρ0 ≤ 1, the hydrodynamic limit of the symmetric simple
exclusion process and zero range process with jump rates g(k) = k are the same.
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I. Interacting particle systems

Mean-field limit of independent brownian motions: for Bit on Td,

mN
t =

1

N

N∑
i=1

δBit ⇀ ρ dx for ∂tρ =
1

2
∆ρ.

Under the parabolic rescaling εBiε−2t ∼ B
i
t.

Forced brownian motions: let dXi
t = dBit + b(Xi

t) dt and Xε,i
t = εXi

ε−1t,

mN,ε
t =

1

N

N∑
i=1

δ
X
ε,t
i

⇀ ρε dx for ∂tρ
ε =

ε

2
∆ρε −∇ · (ρεb),

for the flux j(ρε) = ε
2
∇ρε − ρεb. The drift diverges in the parabolic scaling.

The hyperbolic scaling limit: as ε→ 0, the law of the Xε,i
t satisfies

ρε → ρ for ∂tρ+∇ · (ρb) = 0,

for the flux j(ρ) = −ρb.

A notion of mobility: the mobility of the system is m(ρ) = ρ.
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I. Interacting particle systems

The zero range process with nonzero mean: let ηNt be the zero range process
on TdN with transition kernel p satisfying

∑
z∈Zd zp(z) = γ.

The hyperbolic rescaling: let µNt be the hyperbolically rescaled

µNt =
1

Nd

∑
x∈(Zd/NZd)

δ x
N
· ηNNt(x).

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f : Td × [0, T ]→ R and δ ∈ (0, 1),

lim
N→∞

P
[
|〈f, µN 〉 − 〈f, ρ〉| > δ

]
= 0,

where ρ : Td × [0, T ]→ R is the unique solution of the equation

∂tρ = ∇ · (Φ(ρ)γ),

for the mean local jump rate Φ [Kipnis, Landim; 1999].

Mobility: the mobility of the zero range process is m(ρ) = Φ(ρ)
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I. Interacting particle systems

The exclusion process with nonzero mean: let ηNt be the exclusion process on
TdN with transition kernel p satisfying

∑
z∈Zd zp(z) = γ.

The hyperbolic rescaling: let µNt be the hyperbolically rescaled

µNt =
1

Nd

∑
x∈(Zd/NZd)

δ x
N
· ηNNt(x).

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f : Td × [0, T ]→ R and δ ∈ (0, 1),

lim
N→∞

P
[
|〈f, µN 〉 − 〈f, ρ〉| > δ

]
= 0,

where ρ : Td × [0, T ]→ R is the unique solution of the equation

∂tρ = ∇ · (ρ(1− ρ)γ)

Mobility: the mobility of the exclusion process is m(ρ) = ρ(1− ρ)
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I. Interacting particle systems

The hydrodynamic limit: the parabolically rescaled, mean zero particle process
µNt on TdN , as N →∞,

µNt ⇀ ρ dx for ∂tρ = ∆σ(ρ) = ∇ · J(ρ),

for J(ρ) = ∇σ(ρ).

Macroscopic fluctuation theory: the probability of observing a space-time
fluctuation (ρ, j) satisfying

∂tρ = ∇ · j
satisfies the large deviations bound [Bertini et al.; 2014]

P[µN ' ρ] ' exp
(
−NI(ρ, j)) for I(ρ, j) =

ˆ T

0

ˆ
Td

(j − J(ρ)) ·m(ρ)−1(j − J(ρ)).

The skeleton equation: if (j − J(ρ)) =
√
m(ρ)g then I(ρ, j) =

´ T
0

´
Td |g|

2 and

∂tρ = ∇ ·
(
J(ρ) + (j − J(ρ))

)
= ∆σ(ρ)−∇ · (

√
m(ρ)g).

The zero range process: σ(ρ) = Φ(ρ) and m(ρ) = Φ(ρ) and

∂tρ = ∆Φ(ρ)−∇ · (Φ
1
2 (ρ)g).

The exclusion process: σ(ρ) = ρ and m(ρ) = ρ(1− ρ) and

∂tρ = ∆ρ−∇ · (
√
ρ(1− ρ)g).
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II. Stochastic PDE with conservative noise

Space-time white noise: a Gaussian noise ξ on Td defined by

dξ =
∑
k∈Zd

(√
2 sin(k · x) dBkt +

√
2 cos(k · x) dW k

t

)
,

for independent Brownian motions (Bk,W k)k∈Zd . Distributionally, we have that

〈ξ(x, t)ξ(y, s)〉 = δ0(x− y)δ0(t− s).

Schilder’s theorem: for a Brownian motion B and A ⊆ C([0, T ]),

P[
√
εB ∈ A] ' exp

(
− ε−1 inf

x∈A
I(x)

)
for I(x) =

1

2

ˆ T

0

|ẋ(s)|2 ds.

The contraction principle: for the solutions

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε)ξ),

we have formally that, for A ⊆ L1
tL

1
x,

P[ρε ∈ A] ' exp
(
− ε−1 inf

ρ∈A
I(ρ)

)
,

for the rate function

I(ρ) =
1

2
inf
{ ˆ T

0

ˆ
Td
|g|2 : ∂tρ = ∆Φ(ρ)−∇ ·

(
Φ

1
2 (ρ)g

)}
.
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II. Stochastic PDE with conservative noise

The mean behavior: the hydrodynamic limit

∂tρ = ∆σ(ρ) = ∇ · ∇σ(ρ),

for the flux J(ρ) = ∇σ(ρ).

Fluctuating hydrodynamics: the isotropic non-equilibrium fluctuations ρ
described by the continuity equation

∂t = ∇ · j(ρ) with j(ρ) = J(ρ) + α,

for the mobility m and a Gaussian noise α satisfying [Spohn; 1991]

〈αi(x, t)αj(y, s)〉 = m(ρ)δijδ0(x− y)δ0(y − s).

The formal SPDE: the noise α =
√
m(ρ)ξ for ξ a space-time white noise,

∂tρ = ∆σ(ρ)−∇ · (
√
m(ρ)ξ).

The zero range process: σ(ρ) = Φ(ρ) and m(ρ) = Φ(ρ) and

∂tρ = ∆Φ(ρ)−∇ · (Φ
1
2 (ρ)ξ).

The exclusion process: σ(ρ) = ρ and m(ρ) = ρ(1− ρ) and

∂tρ = ∆ρ−∇ · (
√
ρ(1− ρ)ξ).
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II. Stochastic PDE with conservative noiseDi↵usion with Hydrodynamics: FHD

Giant Fluctuations in Di↵usive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough di↵usive interface due to the e↵ect of thermal fluctuations.
These giant fluctuations have been studied experimentally and with
hard-disk molecular dynamics.

A. Donev (CIMS) FHD 8/2019 34 / 70

• a miscible mixture developing a rough diffusive interface due to the effect of
thermal fluctuations [Donev; 2018]
• Fluctuating hydrodynamics, for example, [Spohn; 1991]

— in the zero range case, the formal SPDE

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε)ξ).

— fluctuation-dissipation relation, for the free energy Ψ′Φ(ξ) = log(Φ(ξ)),

Φ′(ρ) = Φ(ρ)Ψ′′Φ(ρ).

— coarse-graining and correlated noise
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II. Stochastic PDE with conservative noise

The empirical density: let mn denote the measure

mn(x, t) =
1

n

n∑
k=1

δ(x−Bkt )

for independent Brownian motions Bk on Td.

The derivation: for every f ∈ C∞(Td),

∂t

(ˆ
Td
f(x)mn

)
= ∂t

(
1

n

n∑
k=1

f(Bkt )

)

=
1

2

ˆ
Td

∆f mn + “Gaussian noise”

=
1

2

ˆ
Td

∆f mn +
1√
n

ˆ
Td
∇f ·

√
mn ξ,

for ξ an Rd-valued space-time white noise.

The Dean–Kawasaki equation:

∂tmn =
1

2
∆mn −

1√
n
∇ · (
√
mnξ).
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II. Stochastic PDE with conservative noise

The Dean–Kawasaki equation: we have,

∂tρ
ε =

1

2
∆ρε −

√
ε∇ · (

√
ρεξ).

The Zero Range Process: the formal SPDE describing non-equilibrium behavior,

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε)ξ).

• Supercritical in the language of regularity structures [Hairer; 2014]

— no solution theory

• Ill-posedness vs. triviality

— for example, [Konarovskyi, Lehmann, von Renesse; 2019]

• Degenerate diffusions

— porous media and fast diffusions, Φ(ξ) = ξm for every m ∈ (0,∞)

• Irregular noise coefficients
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III. Stochastic kinetic solutions

The Dean–Kawasaki equation: for independent Brownian motions,

∂tρ =
1

2
∆ρ−

√
ε∇ · (√ρξ).

• White noise is too singular (particles systems, course graining, and
function-valued large deviations):

• Spatially correlated noise:

ξδ = ξ ∗ κδ for a convolution kernel κδ of scale δ ∈ (0, 1).

The Dean–Kawasaki equation with correlated noise: the Stratonovich
equation,

∂tρ =
1

2
∆ρ−

√
ε∇ · (√ρ ◦ ξδ).

Fluctuations and large deviations formally the same for Itô vs. Stratonovich.
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III. Stochastic kinetic solutions

The Stratonovich-to-Itô correction: we consider the Stratonovich SPDE

∂tρ = ∆Φ(ρ)−∇ · (σ(ρ) ◦ f(x) dBt),

for the d-dimensional noise dξ = f dBt. The Stratonovich integral

ˆ t

0

ˆ
Td
σ(ρs) ◦ f dBs =

ˆ
Td
f
∑
|P|→0

σ(ρti+1) + σ(ρti)

2
(Bti+1 −Bti)

=

ˆ
Td
f
(1

2

∑
|P|→0

(σ(ρti+1)− σ(ρti))(Bti+1 −Bti) +
∑
|P|→0

σ(ρti)(Bti+1 −Bti)

=
1

2

ˆ t

0

ˆ
Td
fσ′(ρ) d〈∂tρ,B〉s +

ˆ t

0

ˆ
Td
fσ(ρ) dBs

=
1

2

ˆ t

0

ˆ
Td
fσ′(ρ)∇(σ(ρ)f) ds+

ˆ t

0

ˆ
Td
fσ(ρ) dBs.

The Itô-form of the SPDE: we have that

∂tρ = ∆Φ(ρ)−∇ · (σ(ρ)f(x) dBt) +
1

2
∇ · (σ′(ρ)f∇(σ(ρ)f)).
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III. Stochastic kinetic solutions

A general SPDE with conservative noise: for consider the Stratonovich SPDE

∂tρ = ∆Φ(ρ)−
√
ε∇ · (σ(ρ) ◦ dξδ),

for probabilistically stationary noise ξδ = (ξ ∗ κδ) and scalar σ.

The Itô-formulation for the spatially constant quadratic variation 〈ξδ〉,

∂tρ = ∆Φ(ρ)−
√
ε∇ · (σ(ρ) dξδ) +

ε〈ξδ〉
2
∇ · (σ′(ρ)∇σ(ρ)).

Logarithmic divergence of the correction: if σ(ρ) =
√
ρ then

ε〈ξδ〉
2
∇ · (σ′(ρ)∇σ(ρ)) =

ε〈ξδ〉
8
∇ ·
(1

ρ
∇ρ
)

=
ε〈ξδ〉

8
∆ log(ρ),

and we have, in the Dean–Kawasaki case,

∂tρ = ∆ρ−
√
ε∇ · (√ρ dξδ) +

ε〈ξδ〉
8

∆ log(ρ).

B. Fehrman (University of Oxford) University of Konstanz 28 February 2023 19 / 35



III. Stochastic kinetic solutions

A general SPDE with conservative noise: for the Itô-equation

∂tρ = ∆Φ(ρ) + η∆ρ−
√
ε∇ · (σ(ρ) dξδ) +

ε〈ξδ〉
2
∇ · (σ′(ρ)∇σ(ρ)),

we have using Itô’s formula, for smooth S and ψ,

∂t

ˆ
ψS(ρ) =

ˆ
ψS′(ρ) dρ+

1

2

ˆ
ψS′′(ρ) d〈ρ〉 =

−
ˆ

Φ′(ρ)S′(ρ)∇ρ · ∇ψ −
√
ε

ˆ
ψS′(ρ)∇ · (σ(ρ) dξδ)− ε〈ξδ〉

2

ˆ
(σ′(ρ))2∇ρ · S′(ρ)∇ψ

−
ˆ
ψS′′(ρ)Φ′(ρ)|∇ρ|2 − η

ˆ
ψS′′(ρ)|∇ρ|2 − ε〈ξδ〉

2

ˆ
ψS′′(ρ)|∇σ(ρ)|2

+
ε〈ξδ〉

2

ˆ
ψS′′(ρ)|∇σ(ρ)|2 +

ε〈∇ξδ〉
2

ˆ
ψS′′(ρ)σ(ρ)2.

Stochastic coercivity: identical techniques treat the Itô equation

∂ρ = ∆ρ−
√
ε∇ · (√ρ dξδ),

provided that (σ′)2 . Φ′. In the Dean–Kawasaki case, this means controlling |∇√ρ|2
by |∇ρ|2 [F., Gess, Gvalani; 2022].
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III. Stochastic kinetic solutions

A general SPDE with conservative noise: for the Itô-equation

∂tρ = ∆Φ(ρ)−
√
ε∇ · (σ(ρ) dξδ) +

ε〈ξδ〉
2
∇ · (σ′(ρ)∇σ(ρ)).

The kinetic formulation: for the kinetic function χ = 1{0<ξ<ρ(x,t)}− 1{ρ(x,t)<ξ<0},
and for a nonnegative measure q, we have for every φ ∈ C∞c (Td × (0,∞)),ˆ

R

ˆ
Td
φχt =

ˆ
R

ˆ
Td
φχ0 −

ˆ t

0

ˆ
Td

Φ′(ρ)∇ρ(x, ρ) · (∇φ)(x, ρ)

−
√
ε

ˆ t

0

ˆ
Td
φ(x, ρ)∇ · (σ(ρ) dξδ)− ε〈ξδ〉

2

ˆ t

0

ˆ
Td

(σ′(ρ))2∇ρ · (∇φ)(x, ρ)

−
ˆ t

0

ˆ
Td

(∂ξφ)(x, ρ)Φ′(ρ)|∇ρ|2 −
ˆ t

0

ˆ
R

ˆ
Td
∂ξφdq

+
ε〈∇ξδ〉

2

ˆ t

0

ˆ
Td

(∂ξφ)(x, ρ)σ(ρ)2.

Or, distributionally, for δρ = δ(ξ − ρ) and for the measure p = δρΦ
′(ξ)|∇ρ|2,

∂tχ = Φ′(ξ)∆xχ−
√
εσ′(ξ) dξδ · ∇χ+

√
εσ(ξ)∂ξχ∇ · dξδ +

ε〈ξδ〉
2
∇ · ((σ′(ξ))2∇χ)

+ ∂ξp+ ∂ξq − ∂ξ
(
δρ
ε〈∇ξδ〉

2
σ(ξ)2

)
.
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III. Stochastic kinetic solutions

Stochastic kinetic solutions [F. Gess; 2021]

Let (Ω,F ,P) be a probability space, let (Ft)t∈[0,∞) be a filtration on (Ω,F), let the
noise ξδ be Ft-adapted, and let ρ0 ∈ L1 be nonnegative and F0-measurable. A
stochastic kinetic solution is a continuous L1(Td)-valued, Ft-predictable process ρ
that satisfies the following five properties.

(i) Preservation of mass: for every t ∈ [0, T ], E[‖ρ(·, t)‖L1(Td)] = E[‖ρ0‖L1(Td)].

(ii) Integrability of the flux: we have σ(ρ) ∈ L2(Ω× Td × [0, T ]).

(iii) Local regularity: for every K ∈ N, (ρ ∧K) ∨ (1/K) ∈ L2(Ω× [0, T ];H1(Td)).
(iv) Vanishing at infinity: lim infM→∞ E[(p+ q)(Td × [M,M + 1]× [0, T ])] = 0.

(v) The equation: for a nonnegative measure q, for every φ ∈ C∞c (Td × (0,∞)),
ˆ
R

ˆ
Td
φχt =

ˆ
R

ˆ
Td
φχ0 −

ˆ t
0

ˆ
Td

Φ′(ρ)∇ρ · (∇φ)(x, ρ)

−
√
ε

ˆ t
0

ˆ
Td
φ(x, ρ)∇ · (σ(ρ) dξδ)−

ε〈ξδ〉
2

ˆ t
0

ˆ
Td

(σ′(ρ))2∇ρ · (∇φ)(x, ρ)

−
ˆ t

0

ˆ
Td

(∂ξφ)(x, ρ)Φ′(ρ)|∇ρ|2 −
ˆ t

0

ˆ
R

ˆ
Td
∂ξφdq +

ε〈∇ξδ〉
2

ˆ t
0

ˆ
Td

(∂ξφ)(x, ρ)σ(ρ)2.
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III. Stochastic kinetic solutions

Extensions: we consider general equations of the type

∂tρ = ∆Φ(ρ)−∇ ·
(
σ(ρ) ◦ ξδ + ν(ρ)

)
+ λ(ρ) + φ(ρ)ξδ,

including non-equilibrium fluctuations of asymmetric systems, mean-field games,
stochastic geometric PDEs, and branching interacting diffusions.

• The generalized Dean-Kawasaki equation with correlated noise

∂tρ = ∆Φ(ρ)−∇ ·
(

Φ(ρ) + Φ
1
2 (ρ) ◦ ξδ

)
.

• Nonlinear Dawson-Watanabe equation

∂tρ = ∆Φ(ρ) +
√
ρξδ.

• Fluctuating mean-curvature equation

∂tρ = ∇ ·
(
∇ρ

1 + ρ2

)
+∇ ·

(
(1 + ρ2)

1
4 ◦ ξδ

)
.

• Fast diffusion and porous media: Φ(ξ) = ξm for any m ∈ (0,∞).

• φ is globally 1/2-Hölder continuous, λ is globally Lipschitz continuous.
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III. Stochastic kinetic solutions

The Dean–Kawasaki equation: we consider the Dean–Kawasaki equation

∂tρ = ∆Φ(ρ)−
√
ε∇ · (Φ

1
2 (ρ) ◦ dξδ).

for which we have, almost surely for every φ ∈ C∞c (Td × (0,∞)),ˆ
R

ˆ
Td
φχt =

ˆ
R

ˆ
Td
φχ0 −

ˆ t
0

ˆ
Td

Φ′(ρ)∇ρ · (∇φ)(x, ρ)

−
√
ε

ˆ t
0

ˆ
Td
φ(x, ρ)∇ · (Φ

1
2 (ρ) dξδ)−

ε〈ξδ〉
2

ˆ t
0

ˆ
Td

(Φ
1
2 )′(ρ)2∇ρ · (∇φ)(x, ρ)

−
ˆ t

0

ˆ
Td

(∂ξφ)(x, ρ)Φ′(ρ)|∇ρ|2 −
ˆ t

0

ˆ
R

ˆ
Td
∂ξφdq +

ε〈∇ξδ〉
2

ˆ t
0

ˆ
Td

(∂ξφ)(x, ρ)Φ(ρ).

Entropy estimate: let ΨΦ(ξ) =
´ ξ

0
log(Φ(ξ′)) dx′ and φ(ξ) = log(Φ(ξ)),

ˆ
Td

ΨΦ(ρt) =

ˆ
Td

ΨΦ(ρ0)−
√
ε

ˆ t
0

ˆ
Td

log(Φ(ρ))∇ · (Φ
1
2 (ρ) dξδ)

−
ˆ t

0

ˆ
Td

Φ′(ρ)2

Φ(ρ)
|∇ρ|2 −

ˆ t
0

ˆ
R

ˆ
Td

Φ′(ξ)

Φ(ξ)
dq +

ε〈∇ξδ〉
2

ˆ t
0

ˆ
Td

Φ′(ρ).

and, using the definition of p,ˆ t

0

ˆ
Td

Φ′(ρ)2

Φ(ρ)
|∇ρ|2 =

ˆ t

0

ˆ
R

ˆ
Td

Φ′(ξ)

Φ(ξ)
dp.

B. Fehrman (University of Oxford) University of Konstanz 28 February 2023 24 / 35



III. Stochastic kinetic solutions

The entropy estimate: we consider the Dean–Kawasaki equation

∂tρ = ∆Φ(ρ)−
√
ε∇ · (Φ

1
2 (ρ) ◦ dξδ),

and for ΨΦ =
´ ξ

0
log(Φ(ξ′)) dx′ and φ(ξ) = log(Φ(ξ)),

E sup
t∈[0,T ]

ˆ
Td

ΨΦ(ρt) + E
ˆ t

0

ˆ
R

ˆ
Td

Φ′(ξ)

Φ(ξ)
( dp+ dq) ≤

E
ˆ
Td

ΨΦ(ρ0) + E sup
t∈[0,T ]

|
√
ε

ˆ t
0

ˆ
Td

log(Φ(ρ))∇ · (Φ
1
2 (ρ) dξδ)|+

ε〈∇ξδ〉
2

E
ˆ T

0

ˆ
Td

Φ′(ρ).

Using ∇ log(Φ(ρ)) = Φ′(ρ)
Φ(ρ)
∇ρ and the Burkholder–Davis–Gundy inequality,

E sup
t∈[0,T ]

|
√
ε

ˆ t
0

ˆ
Td

log(Φ(ρ))∇ · (Φ
1
2 (ρ) dξδ)| ≤ c

√
ε〈ξδ〉

1
2 E

( ˆ T
0

ˆ
R

ˆ
Td

Φ′(ξ)

Φ(ξ)
dp

) 1
2
,

and using Hölder’s and Young’s inequality, assuming Φ(ξ)
Φ′(ξ) ≤ cξ so that Φ′(ξ)

Φ(ξ)
≥ 1

cξ
,

E
(

sup
t∈[0,T ]

ˆ
Td

ΨΦ(ρt) +

ˆ t
0

ˆ ∞
0

ˆ
Td

1

ξ
( dp+ dq)

)
≤ cE

( ˆ
Td

ΨΦ(ρ0) + ε〈ξδ〉+
ε〈∇ξδ〉

2

ˆ T
0

ˆ
Td

Φ′(ρ)
)
.
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III. Stochastic kinetic solutions

The equation: ∂tρ = ∆Φ(ρ)−
√
ε∇ ·

(
Φ

1
2 (ρ) ◦ ξF

)
.

The kinetic measure vanishes at zero [F. Gess; 2021]

Let ρ0 ∈ L1(Ω;L1(Td)) be nonnegative and F0-measurable, and let ρ be a stochastic
kinetic solution with initial data ρ0 with kinetic measure q. Then,

lim inf
β→0

(
β−1E

[
(p+ q)(Td × [β/2, β]× [0, T ]

])
= 0.

• Essentially equivalent to the preservation of the L1-norm.

Existence and uniqueness [F. Gess; 2021]

Let ρ0 ∈ L1(Ω;L1(Td)) be nonnegative and F0-measurable. Then, there exists a
unique stochastic kinetic solution with initial data ρ0. Furthermore, two solutions ρ1

and ρ2 almost surely satisfy, for every t ∈ [0, T ],∥∥ρ1(·, )− ρ2(·, t)
∥∥
L1(Td)

≤
∥∥ρ1

0 − ρ2
0

∥∥
L1(Td)

.

• Stochastic dynamics, random dynamical systems, and invariant measures [F.,
Gess, Gvalani; 2022].
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III. Stochastic kinetic solutions

The kinetic equation: for test functions φ ∈ C∞c (Td × (0,∞)),

∂tχ = Φ′(ξ)∆xχ−
√
εδρ∇ · (Φ

1
2 (ρ) dξδ) +

ε〈ξδ〉
2
∇ · ((σ′(ξ))2∇χ)

+ ∂ξp+ ∂ξq − ∂ξ
(
δρ
ε〈∇ξδ〉

2
Φ(ξ)2

)
.

Let ζM be a cutoff of [ 1
M
,M ] supported on [ 1

2M
,M + 1] so that

|ζ′M | ≤ cM1( 1
2M

, 1
M

) + c1(M,M+1).

The uniqueness proof : the proof is based on differentiating the identity

∂t

ˆ
Td
|ρ1
t − ρ2

t | = ∂t

ˆ
R

ˆ
Td
|χ1 − χ2|2 = ∂t

ˆ
R

ˆ
Td
χ1sgn(ξ) + χ2sgn(ξ)− 2χ1χ2,

for which we introduce the cutoff and differentiate

∂t

ˆ
R

ˆ
Td

(
χ1sgn(ξ) + χ2sgn(ξ)− 2χ1χ2)ζM =

ˆ
R

ˆ
Td

(
deterministic terms

)
ζM

+

ˆ
R

ˆ
Td

(2χ2 − 1)δρ1∇ · (Φ
1
2 (ρ1) dξδ)ζM + (2χ1 − 1)δρ2∇ · (Φ

1
2 dξδ)ζM

−
2∑
i=1

ˆ
R

ˆ
Td
ζ′M (ξ)( dpi + dqi) +

2∑
i=1

ε〈∇ξδ〉
2

ˆ
Td
ζ′M (ρi)Φ(ρi)2.
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III. Stochastic kinetic solutions

The stochastic term: for the termˆ
R

ˆ
Td

(2χ2 − 1)δρ1∇ · (Φ
1
2 (ρ1) dξδ)ζM + (2χ1 − 1)δρ2∇ · (Φ

1
2 dξδ)ζM

we have that, without the cutoff ζM ,
ˆ
R
(2χ2 − 1)δρ1 =

ˆ
R

sgn(ρ2 − ξ)δρ1 = sgn(ρ1 − ρ2).

Therefore, ignoring the cutoff ζM (a bad idea),
ˆ
R

ˆ
Td

(2χ2 − 1)δρ1∇ · (Φ
1
2 (ρ1) dξδ)ζM + (2χ1 − 1)δρ2∇ · (Φ

1
2 dξδ)

=

ˆ
Td

sgn(ρ1 − ρ2)∇ · ((Φ
1
2 (ρ1)− Φ

1
2 (ρ2)) dξδ)

= −2

ˆ
Td
δ0(ρ1 − ρ2)(∇ρ1 −∇ρ2) · (Φ

1
2 (ρ1)− Φ

1
2 (ρ2)) dξδ = 0?

• Φ
1
2 is not Lipschitz continuous and ρi is not regular

• exploit the cutoff ζM , local regularity of ρi, and local Lipschitz continuity of Φ
1
2
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III. Stochastic kinetic solutions

The uniqueness proof : we have that

∂t

ˆ
R

ˆ
Td

(
χ1sgn(ξ) + χ2sgn(ξ)− 2χ1χ2)ζM =

ˆ
R

ˆ
Td

(
deterministic terms

)
ζM

+

ˆ
R

ˆ
Td

(2χ2 − 1)δρ1∇ · (Φ
1
2 (ρ1) dξδ)ζM + (2χ1 − 1)δρ2∇ · (Φ

1
2 dξδ)ζM

−
2∑
i=1

ˆ
R

ˆ
Td
ζ′M (ξ)( dpi + dqi) +

2∑
i=1

ε〈∇ξδ〉
2

ˆ
Td
ζ′M (ρi)Φ(ρi)2.

The cutoff terms: for the cutoff terms, we have that

|
ˆ
R

ˆ
Td
ζ′M (ξ)( dp1 + dq1)|+ |ε〈∇ξ

δ〉
2

ˆ
Td
ζ′M (ρ1)Φ(ρ1)2|

≤ c(p1 + q1)(Td × (M,M + 1)× {t}) + c

ˆ
Td

1{M<ρ1<M+1}Φ(ρ1)

+ cM(p1 + q1)
(
Td ×

( 1

2M
,

1

M

)
× {t}

)
+ cM

ˆ
Td

1{ 1
2M

<ρ1< 1
M
}Φ(ρ1).

Vanishes as M →∞ due to singular moments and decay of the measures.
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IV. The large deviations principle

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let δ(ε) be any sequence satisfying, as ε→ 0,

εδ(ε)−(d+2) → 0 and δ(ε)→ 0,

and for every ε ∈ (0, 1) let ρε be the solution

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε) ◦ ξδ(ε)).

The large deviations principle: the solutions ρε satisfy a large deviations
principle with rate function

I(ρ) =
1

2
inf
{
‖g‖2L2 : ∂tρ = ∆Φ(ρ)−∇ · (Φ

1
2 (ρ)g)

}
.

The linear fluctuating hydrodynamics: the linear fluctuating hydrodynamics

∂tρ̃
ε = ∆Φ(ρ̃ε)−

√
ε∇ · (Φ

1
2 (ρ)ξδ(ε)),

for the hydrodynamics limit ∂tρ = ∆Φ(ρ) satisfy an LDP with rate function

Ĩ(ρ) =
1

2
inf
{
‖g‖2L2 : ∂tρ = ∆Φ(ρ)−∇ · (Φ

1
2 (ρ)g)

}
.
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IV. The large deviations principle

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let δ(ε) be any sequence satisfying, as ε→ 0,

εδ(ε)−(d+2) → 0 and δ(ε)→ 0,

and for every ε ∈ (0, 1) let ρε be the solution

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε) ◦ ξδ(ε)).

The large deviations principle: the solutions ρε satisfy a large deviations
principle with rate function

I(ρ) =
1

2
inf
{
‖g‖2L2 : ∂tρ = ∆Φ(ρ)−∇ · (Φ

1
2 (ρ)g)

}
.

The controlled SPDE: for weakly convergent controls gε ⇀ g the solutions

∂tρ
ε = ∆Φ(ρε)−

√
ε∇ · (Φ

1
2 (ρε))−∇ · (Φ

1
2 (ρε)gε),

converge in the scaling limit ε〈∇ξδ〉 ' εδ(ε)−(d+2) → 0 to the solution

∂tρ = ∆Φ(ρ)−∇ · (Φ
1
2 (ρ)g).

Weak approach to large deviations [Budhiraja, Dupuis, Maroulas; 2008].
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IV. The large deviations principle

The rate function: for ρ ∈ L1([0, T ];L1(Td)),

I(ρ) =
1

2
inf
{
‖g‖2L2 : ∂tρ = ∆Φ(ρ)−∇ · (Φ

1
2 (ρ)g)

}
.

The Hilbert space: H1
Φ(ρ) is the strong closure w.r.t. the inner product

〈∇ψ,∇φ〉 =

ˆ T

0

ˆ
Td

Φ(ρ)∇ψ · ∇φ for φ, ψ ∈ C∞ .

Unique minimizer: if I(ρ) <∞ then the minimizer g = Φ
1
2 (ρ)∇H for H ∈ H1

Φ(ρ),

I(ρ) =
1

2

ˆ T

0

ˆ
Td

Φ(ρ)|∇H|2 =
1

2
‖H‖2H1

Φ(ρ)
=

1

2
‖∂tρ−∆Φ(ρ)‖2

H−1
Φ (ρ)

,

where the equation defines ∂tρ−∆Φ(ρ) = −∇ · (Φ
1
2 (ρ)g) ∈ H−1

Φ(ρ).

The “ill-posed” equation: we have the formally “supercritical” equation

∂tρ = ∆Φ(ρ)−∇ · (Φ(ρ)∇H).
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IV. The large deviations principle

The space of smooth fluctuations S: we define the space

S = {ρ : ∂tρ = ∆Φ(ρ)−∇ · (Φ(ρ)∇H) for ρ0 ∈ C∞(Td) and H ∈ C3,1(Td × [0, T ])}.
Recovery sequence: suppose that I(ρ) <∞ and, for the minimizer g,

∂tρ = ∆Φ(ρ)−∇ · (Φ
1
2 (ρ)g).

Let ρn solve, for cutoff functions σn on (0,∞),

∂tρn = ∆Φ(ρn)−∇ · (σn(ρn)Φ
1
2 (ρn)g).

Then, there exists Hn with
´

Φ(ρn)|∇Hn|2 ≤
´
σn(ρn)2|g|2 such that

−∇ · (Φ(ρn)∇Hn) = ∂tρn −∆Φ(ρn).

[Kipnis, Olla, Varadhan; 1989], [Benois, Kipnis, Landim; 1995]

The zero range process satisfies a large deviations upper bound with rate function I
and a large deviations lower bound with rate function I|S(ρ), the l.s.c. envelope of I
restricted to S.

[F., Gess; 2022]

These rate functions coincide and are equal to I.
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