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I. Interacting particle systems

Statistical physics

— zero range process
— Ising and Potts models

e Belief/infection propagation

— voter model
— contact process

e Traffic models

— exclusion processes

Neural networks as interacting particle systems

The voter model [Swart; 2020]
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I. Interacting particle systems

The zero range process:
e let g: No — Ng be nondecreasing
— g(0)=0and g(k) >0if k #0
e independent random clocks T'(k) with distribution

T(k) ~ g(k)exp(—g(k)t) on [0,00).
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I. Interacting particle systems

A zero range process: on T} = (Z¢/NZ?) with generator

Lnfm) =D > pn(2)gm@) (FO™H) = f(n),

d d
z€Tq z€TY

The transition kernel: pn(2) =3, p(z +yn) for a compactly supported p
with zero mean ) 14 2p(2) = 0.

Parabolic rescalings: for N = 4,8, 15,
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I. Interacting particle systems

The zero range process 7;° on (Z?/NZ?) and the scaled empirical density

=g X 8

z€ (24 /NZ4)

N
N2y (2).

Zls

Hydrodynamic limit [Ferrari, Presutti, Vares; 1988]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
Jim P(|(£.6%) = (£.7)] > 8] =0,
— 00
where 7: T¢ x [0, 7] — R is the unique solution of the equation

1

for the mean local jump rate ® [Kipnis, Landim; 1999].

o (fu™)=[fu" and (f,p) = [ fp
o if T'(k) ~ e " then ,p = %A(Hp)

o if (k) ~ ke ** then 0;p = 1Ap
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I. Interacting particle systems

The symmetric simple exclusion process:
e independent exponentially distributed clocks T'(1) with rate 1
— T(1) ~ exp(—t) on [0,c0)
e the generator on T‘Ji\,,

Lufm =3 3 pu(n@)d - n(+2)(F0™) - fn),

z€TY; €T,

e the transition kernel pn(z) = Zuezd p(z + Ny) for a compactly supported p
satisfying >, ;4 2p(2) = 0.
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I. Interacting particle systems

The symmetric simple exclusion process 77 on (Z%/NZ?) and the scaled density

W= S0

z€ (24 /NZT)

: 77%%(1')-

2z

Hydrodynamic limit [Kipnis, Olla, Varadhan; 1989]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
dim P[[(7,1™) = (£,7)] > 8] =0,
— 00
where 5: T¢ x [0, 7] — R is the unique solution of the equation

1

For initial data 0 < pp < 1, the hydrodynamic limit of the symmetric simple
exclusion process and zero range process with jump rates g(k) = k are the same.
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I. Interacting particle systems

Mean-field limit of independent brownian motions: for B! on T¢,

N

1 _ _ 1, ._

my = N g 53'@ — pdx for Oip = §Ap.
=1

Under the parabolic rescaling sBi,Qt ~ Bi.

Forced brownian motions: let dX; = dBj} + b(X{)dt and X" = eX®

el

N

N
1
mME = ¥ def‘t —~7°dx for 8;p° = %Aﬁg — V- (p°b),
i=1

for the flux j(p°) = §Vp° — p°b. The drift diverges in the parabolic scaling.
The hyperbolic scaling limit: as € — 0, the law of the Xf’i satisfies
p° —p for dp+ V- (pb) =0,

for the flux j(p) = —pb.

A notion of mobility: the mobility of the system is m(p) = p.
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I. Interacting particle systems

The zero range process with nonzero mean: let 5’ be the zero range process
on TY with transition kernel p satisfying D eza 2p(2) = 7.

The hyperbolic rescaling: let i be the hyperbolically rescaled

1
Mév = Nd Z 5% -m@’t(w)«
z€(zZ4/NZ1)

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
Jim P [1(£,5™) = (£,2)] > 6] =0,
— 00
where 7: T¢ x [0, 7] — R is the unique solution of the equation

5 =V - (@),

for the mean local jump rate ® [Kipnis, Landim; 1999].

Mobility: the mobility of the zero range process is m(p) = ®(p)
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I. Interacting particle systems

The exclusion process with nonzero mean: let 7}’ be the exclusion process on
T% with transition kernel p satisfying > aeza 2p(2) = 7.
The hyperbolic rescaling: let ) be the hyperbolically rescaled

1
#iv = Nd Z 5% 'Uzltfrt(x)-

z€(Z4 /NZ2)

Hydrodynamic limit [Rezakhanlou; 1991]

For every continuous f: T x [0,7] — R and 6 € (0, 1),
Jim P [[(,1™) = (£,7)] > 6] =0,
—00
where p: T% x [0, 7] — R is the unique solution of the equation

dp=V-(p(1-p)7)

Mobility: the mobility of the exclusion process is m(p) = (1 — p)
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I. Interacting particle systems

The hydrodynamic limit: the parabolically rescaled, mean zero particle process

w on T4, as N — oo,

py — pda for 8ip = Ac(p) =V - J(p),
for J(p) = Vo(p).
Macroscopic fluctuation theory: the probability of observing a space-time
fluctuation (p, 7) satisfying
Op=V-j
satisfies the large deviations bound [Bertini et al.; 2014]

BN ~ pl = exp (= N1(p,5)) for I(p,j) = / [, =700 m() G = TG0

The skeleton equation: if (j — = +/m(p)g then I(p,j) jOT Jralgl* and
atp=V'(J(p)+(j*J( ) = Aa(p - (Vm(p)g)-

The zero range process: o(p) = ®(p) and m(p ) <I>(p) and
Oup = A®(p) = V- (22 (p)g).
The exclusion process: o(p) = p and m(p) = p(1 —p

)
Owp=A2p—V-(/p(l—p)g).
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II. Stochastic PDE with conservative noise

Space-time white noise: a Gaussian noise £ on T¢ defined by

d¢ = > (V2sin(k - z)dB; + v2cos(k - z) dWy),

kezd
for independent Brownian motions (B*, W*) rezd- Distributionally, we have that
(€(x, 1)€(y, 5)) = do(z — y)do(t — 5).
Schilder’s theorem: for a Brownian motion B and A C C([0,7]),

PlveB € A] ~exp (— et ;22[(9&)) for I(z) = %/OT |&(s)[* ds.
The contraction principle: for the solutions
Oip° = AB(p°) — VEV - (@2 (5°)¢),
we have formally that, for A C Li L1,
Pp° € Al ~exp(—e " pigg I(p)),

for the rate function

)= gint{ [ [ 19+ 00 = 20(5) - ¥ - (¢ (919)}.
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II. Stochastic PDE with conservative noise

The mean behavior: the hydrodynamic limit
9ip = Ao (p) =V -Vo(p),
for the flux J(p) = Vo(p).
Fluctuating hydrodynamics: the isotropic non-equilibrium fluctuations p
described by the continuity equation
0 =V -j(p) with j(p) =J(p) + v,
for the mobility m and a Gaussian noise « satisfying [Spohn; 1991]
(ai(z, t)ay(y, s)) = m(p)dijéo(z — y)do(y — s).
The formal SPDE: the noise a = y/m(p)& for £ a space-time white noise,
8tp AU \/ "S
The zero range process: o(p) = <I>(p) and m(p) = <I>(p) and
1
Oup = A®(p) = V- (22 (p)§).
The exclusion process: o(p) = p and m(p) = p(1 — p) and
dp=A2p—=V-(Vp(1-p)).
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II. Stochastic PDE with conservative noise

e a miscible mixture developing a rough diffusive interface due to the effect of
thermal fluctuations [Donev; 2018]
e Fluctuating hydrodynamics, for example, [Spohn; 1991]
— in the zero range case, the formal SPDE

£ £ 1 £
9p” = AQ(p°) — VEV - (27 (p°)¢).
— fluctuation-dissipation relation, for the free energy U5 (€) = log(®(€)),
@' (p) = 2(p) ¥ (p)-

— coarse-graining and correlated noise
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II. Stochastic PDE with conservative noise

The empirical density: let m,, denote the measure
1 n
mp(z,t) = - Z(S(x — BY)
k=1
for independent Brownian motions B* on T¢.

The derivation: for every f € C>(T%),

o[, som.) =o <711 k:ﬂBf))

= 3 Af m, 4+ “Gaussian noise”
Td

1 1
! Afmn+ﬁAde-mg,

2’]1‘(1

for £ an R%-valued space-time white noise.

The Dean—Kawasaki equation:
1

SV (g,
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II. Stochastic PDE with conservative noise

The Dean—Kawasaki equation: we have,
£ 1 £
0ip” = SAP" = VEV - (VpE).
The Zero Range Process: the formal SPDE describing non-equilibrium behavior,
£ £ 1 £
9ep” = AP(p°) — VeV - (22 (p°)¢).

Supercritical in the language of regularity structures [Hairer; 2014]

— no solution theory
e Ill-posedness vs. triviality
— for example, [Konarovskyi, Lehmann, von Renesse; 2019]

Degenerate diffusions
— porous media and fast diffusions, ®(£) = €™ for every m € (0, 00)

Irregular noise coefficients
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III. Stochastic kinetic solutions

The Dean—Kawasaki equation: for independent Brownian motions,

Oup = 3 0p — VEV - (V7E).

e White noise is too singular (particles systems, course graining, and
function-valued large deviations):

e Spatially correlated noise:
€ = ¢xk® for a convolution kernel £’ of scale § € (0,1).

The Dean—Kawasaki equation with correlated noise: the Stratonovich
equation,

dup = 3 8p—VEV - (o &).

Fluctuations and large deviations formally the same for It6 vs. Stratonovich.
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III. Stochastic kinetic solutions

The Stratonovich-to-Itoé correction: we consider the Stratonovich SPDE
dup = A®(p) — V- (0(p) o f(x) dB),

for the d-dimensional noise d¢ = f dB;. The Stratonovich integral

//w (ps) o f dB, —/Wf T M(BW_B%)

|P|—0

[ 15 X @) = ol (B = B+ 3 o) (B = B

|P|—0 |P|—0

:1/t 10" (p) d(Dup, B)s + /Ot | fo(pdB

/ [ 1Y+ | t [ top)an

The Ito-form of the SPDE: we have that

dup = D(p) = V- (0(p) (@) AB.) + 1V - (o' (0)fV((p) ).
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III. Stochastic kinetic solutions

A general SPDE with conservative noise: for consider the Stratonovich SPDE

Oip = AD(p) — VEV - (a(p) 0 dE°),

for probabilistically stationary noise &° = (€ * /-c‘s) and scalar o.

The Ito-formulation for the spatially constant quadratic variation (§5>,

s
€
0up = AB(p) ~ VEV - (o()d6’) + 5LV (o' (9) V(o))
Logarithmic divergence of the correction: if o(p) = /p then

) ) 5
B9 @ ove) = v Cvp) = L g,

and we have, in the Dean-Kawasaki case,

Oip=Ap— VeV - (pde®) + @Alog(ﬂ)

B. Fehrman (Univ r of Oxford) University of Konstanz 28 February 2023

19 / 35



III. Stochastic kinetic solutions
A general SPDE with conservative noise: for the Ité-equation

)
0 = A (p) + 0o — VAV - (o) ag’) + “ELT - (0! () (0)),

we have using [t6’s formula, for smooth S and 1,

O / ¥S(p) = / ¥S'(p) dp+% / ¥S" (p) d(p) =

8
- [ ¥ 080 Vo - V2 [680)7 - (0(0ae) - 25 [6(0)2vp- 5 (07
Fy .
/ o8O IV [us el ==L [us" (oo

‘ e(Ved)
v8 (Vo) + S [0 ot
Stochastic coercivity: identical techniques treat the It6 equation

9p=Ap— VeV - (y/pde),

provided that (0')? < ®'. In the Dean-Kawasaki case, this means controlling |V,/p|>
by |Vp|? [F., Gess, Gvalani; 2022].

B. Fehrman (Ur ty of Oxford) University of Konstanz 28 February 2023 20 / 35



III. Stochastic kinetic solutions

A general SPDE with conservative noise: for the Ito-equation

S5
O = A®(p) — VAV - (o(p) de”) + "LV (o' (9) Vo).

The kinetic formulation: for the kinetic function x = 1o<e<p(z,t)} — 1{p(a,t)<e<0}>
and for a nonnegative measure ¢, we have for every ¢ € C(T% x (0, 00)),

[ [oxe=[ [ o[ [ @0%otz.0- Vo)0)
e[ quﬁ(x,p)v-(a( [ (@
PN e
A /wagas)(x,p)o(p)?

Or, distributionally, for §, = §(¢ — p) and for the measure p = 6,9’ (£)|Vpl|?,

(Vo)(z,p)

8
D = /(€)M — Vo' (€)4E° -V + VEr(©)9xV - d€’ + “E T (o' (€)' vx)

8
+ 0+ 0a — 0 (5, " o(6)?).
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III. Stochastic kinetic solutions

Stochastic kinetic solutions [F. Gess; 2021]

Let (92, F,IP) be a probability space, let (Ft):c[0,0c) be a filtration on (€2, F), let the
noise £° be Fy-adapted, and let po € L' be nonnegative and Fo-measurable. A
stochastic kinetic solution is a continuous L* (Td)-valued, Fi-predictable process p
that satisfies the following five properties.

(i) Preservation of mass: for every ¢ € [0,T], E[[|p(,t)l| 11 (pa)] = Elllpoll 11 (ra)]-
ii) Integrability of the fluz: we have o(p) € Lz(ﬂ x T% x [0, T7]).

iti) Local regularity: for every K € N, (p A K) V (k) € L*(Q x [0, T]; H*(T%)).
iv) Vanishing at infinity: lim infas_ o E[(p 4 ¢)(T* x [M, M + 1] x [0,T])] = 0.

v) The equation: for a nonnegative measure g, for every ¢ € C°(T¢ x (0, c0)),

/Md¢" ‘/wd’x *// - (Ve)(@, p)

—f// é(z, p)V - (o(p) dg®) — // (a'(p))*Vp - (Vo)(z,p)

/ 2 VE(S 2
- [ [ oo orver - [ /R [ ocoaa+ 2T [ [ o). proto”
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III. Stochastic kinetic solutions

Extensions: we consider general equations of the type

O = A(p) = V- (0(p) 0 +v(p)) + Ap) + S(0)E",

including non-equilibrium fluctuations of asymmetric systems, mean-field games,
stochastic geometric PDEs, and branching interacting diffusions.

e The generalized Dean-Kawasaki equation with correlated noise
1
0np = Ad(p) = V- (B(p) + DE(p) 0 &)
e Nonlinear Dawson-Watanabe equation

0ep = A (p) + /p€’.

Fluctuating mean-curvature equation

=

_ Vp 2
dp=V- (1+p2)+v((1+p)

of‘s).

Fast diffusion and porous media: ®(§) = £™ for any m € (0,00).

¢ is globally 1/2-Holder continuous, A is globally Lipschitz continuous.
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III. Stochastic kinetic solutions

The Dean—Kawasaki equation: we consider the Dean—Kawasaki equation

dip = Ad(p) — VEV - (B2 (p) 0 dE°).

for which we have, almost surely for every ¢ € C2°(T¢ x (0, 00)),

[ faoxe=[ [ o0 t L, ¥ @9 (V6)(w.0)

Ve[ [ v @rae) - “E [1 [ @1y 2ep- (9o
3y
- [ [ @eorene orver - /// ocoda+ 2T [ [ @cora (o).
Entropy estimate: let Vg (§) = fo log(®(¢)) dz’ and ¢)(£) = log(®(¢)),

Valo) = [ Waloo)—vE [ [ log(@(p)V - (@ (p)de®)
L. L. / /
R N R e R

and, using the definition of p,

[ st =)

z Jra ®(£)
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III. Stochastic kinetic solutions
The entropy estimate: we consider the Dean-Kawasaki equation
1
0ip = A®(p) —VEV - (92 (p) 0 dE°),

and for Ug = [ log(®(¢'))dz’ and ¢(g) = log(®(¢)),

EtﬁfépT/ Ve ptHE/// @(s

JE/T Vg (po) +E sup \f// log(®(p))V - (2 (p) d€?)| + vs“ / /m

te[0,T]

Using Vlog(®(p)) = q’ (p ) y Vp and the Burkholder-Davis-Gundy inequality,

e s 1VE [ [ ooy - @hmaczeviierie( [ [ [ 40)

2
< ¢ so that <1>((5§) > ?15’

and using Holder’s and Young’s inequality, assuming (1),((5)

E<tesng]/m‘le¢(pt +// /Jl‘ € derdq
SCE(/T Vg (po) + (€ v§5 / /Td
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III. Stochastic kinetic solutions

The equation: dyp = A®(p) — /eV - (CID% (p) o §F) .

The kinetic measure vanishes at zero [F. Gess; 2021]

Let po € L*(Q; L*(T?)) be nonnegative and Fo-measurable, and let p be a stochastic
kinetic solution with initial data po with kinetic measure q. Then,

lim it (67 [0+ )T x [32,8] x [0,T]] ) =0.

o Essentially equivalent to the preservation of the L'-norm.

Existence and uniqueness [F. Gess; 2021]

Let po € L*(Q; L*(T?)) be nonnegative and Fo-measurable. Then, there exists a
unique stochastic kinetic solution with initial data po. Furthermore, two solutions p'
and p? almost surely satisfy, for every ¢ € [0, T,

||p1('7) - pQ('vt)HLl(Td) < ”p(ll - ngLl(Td) g

e Stochastic dynamics, random dynamical systems, and invariant measures [F.,
Gess, Gvalani; 2022].
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III. Stochastic kinetic solutions
The kinetic equation: for test functions ¢ € C2°(T? x (0, 00)),

1 )
dix = ¥ (6) Aux — VES,Y - (@3 () de®) + S5 (o' ()2 W)

2
v 8
+ Oep+ Deq — O (3, =(ver) (6)?).
Let (y be a cutoff of [+, M] supported on [557, M + 1] so that

¢ | < M1 1y + el m)-

The uniqueness proof: the proof is based on differentiating the identity

o / o — gl = b, / / X — X = 8. / / Xsen(€) + x?sgn(€) — 2%,
Td R JTd R JTd

for which we introduce the cutoff and differentiate

O /R /]l‘d (xlsgn(f) + XQSgn(f) - 2X1X2)<M = /B /iid (deterministic terms) Cvr

+ / / (232 — 1)6,1V - (@5 (o) dE*)ar + (21" — 1)6,2V - (@ de®)Car
R JTd

- ) . 2 5 _ N
_Z/R/er Ciw(f)(dpi + (iql)—kZ@/ﬂ‘d CK{([)Z)@(/JZ)Z.
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III. Stochastic kinetic solutions

The stochastic term: for the term
2 1.1 5 1 106
[ [ xt = 106,9 - @) 61 + (21 = 15,27 - (@2 e
RJT
we have that, without the cutoff (s,
/(2><2 —1)é,1 = / sgn(p” — €)1 = sgn(p’ — p°).
R R
Therefore, ignoring the cutoff (as (a bad idea),
[ @ = 06,9 @} () ae' )+ (24" — 052 - (@ a)
Td
1 2 1 l
= [ st = V- (@2 (0") - 83 ) a6?)
T

‘Q/Td So(p" — p*)(Vp' = Vp?) - (@2 (p") — @ (p*)) dE’ = 07

=

1 .
e &2 is not Lipschitz continuous and p° is not regular

e exploit the cutoff Cas, local regularity of p?, and local Lipschitz continuity of P2
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III. Stochastic kinetic solutions

The uniqueness proof: we have that
Gt// (Xlsgn(f) +x25gn(£) — 2X1X2)<M = / / (deterministic terms)@w
RJTd JRJTd
[ [ = 08,7 @) ) + (2 - 13,27 - (@ de
JR JTd
2 2 5
i i eV i i\
=3[ a@an+ aiy+ 3 S [ e,
i=1 YR /T4 i=1 T4
The cutoff terms: for the cutoff terms, we have that
e(vel
[ [ G@an + agh+ 125 [ Guohe®
RJTd Td
<e(p' +¢") (T x (M, M +1) x {t}) + C/d Liarcpr<areny ®(0")
T
J 11
oM@ +a) (T x (537 37) % (8) “M/Td 1ty <oi< 4y 200,

Vanishes as M — oo due to singular moments and decay of the measures.
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IV. The large deviations principle

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let 6(¢) be any sequence satisfying, as ¢ — 0,
£6(e)"“™® - 0 and §(c) — 0,
and for every € € (0, 1) let p° be the solution
Bup° = AB(p°) — VEV - (23 (p°) 0 £°9)).

The large deviations principle: the solutions p® satisfy a large deviations
principle with rate function

1p) = 5 int { gl - 81 = AR(p) ~ V- (2 ()g) }.

The linear fluctuating hydrodynamics: the linear fluctuating hydrodynamics

1 5
0ip° = AD(5°) — VeV - (22 (p)&°),
for the hydrodynamics limit 0;p = A®(p) satisfy an LDP with rate function

T(p) = 5 int {9l - 0p = AR(p) ~ V- (@ ()g) }.
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IV. The large deviations principle

The Large Deviations Principle [F., Gess; 2022]

The scaling limit: let d(¢) be any sequence satisfying, as ¢ — 0,
e6(e)"“™ - 0 and §(c) — 0,
and for every € € (0, 1) let p° be the solution
Bep° = AB(p°) — VEV - (22 (p7) 0 £7)),

The large deviations principle: the solutions p® satisfy a large deviations
principle with rate function

1p) = 5 int { gl - 0= AR(p) ~ V- (2 ()g) }.

The controlled SPDE: for weakly convergent controls g° — g the solutions
£ £ l £ l £ £
Oip” = A®(p") — VeV - (22 (p7)) = V- (22 (p7)g7),
converge in the scaling limit e(VE®) ~ £8(e)~(“*2) — 0 to the solution
1
Oip = AD(p) = V- (22 (p)g).
Weak approach to large deviations [Budhiraja, Dupuis, Maroulas; 2008].
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IV. The large deviations principle

The rate function: for p € L' ([0, T]; L*(T%)),
1, 1
1(p) = 5 inf {llgll3: : Gup = AD(p) = V- (@2 (p)g) } .

The Hilbert space: Hé(p) is the strong closure w.r.t. the inner product

(Vh, V) = // p)V -V for ¢, € C™

Unique minimizer: if /(p) < oo then the minimizer g = <IJ%(p)VH for H € Hé(p),

2 1 2
=1 [ [ orvHE = Jint, = Liow - 500,

where the equation defines 0:p — A®(p) = -V - (<I>1 2(p)g) € H;(p)

The “ill-posed” equation: we have the formally “supercritical” equation

Op = A®(p) =V - (2(p)VH).
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IV. The large deviations principle

The space of smooth fluctuations S: we define the space
S={p: dp=Ad(p) — V- (®(p)VH) for po € C°(T%) and H € C*'(T* x [0,T])}.
Recovery sequence: suppose that I(p) < oo and, for the minimizer g,
1
Oep = A®(p) = V- (22(p)g)-
Let pr solve, for cutoff functions o, on (0, 00),
1

Oipn = AP(pn) =V - (on(pn) P2 (pn)g).

Then, there exists H, with [ ®(p,)|VH,|*> < [ on(pn)?|g]® such that
=V - (2(pn)VHn) = Otpn — AP (pn).

[Kipnis, Olla, Varadhan; 1989], [Benois, Kipnis, Landim; 1995

The zero range process satisfies a large deviations upper bound with rate function I
and a large deviations lower bound with rate function I;s(p), the l.s.c. envelope of I
restricted to S.

These rate functions coincide and are equal to I.
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