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ABSTRACT. We consider the sequence of finite branched cyclic covers of a homology sphere
with branching locus a codimension-two homology sphere and show that the first homology
with coefficients in Z/p” of this sequence of manifolds is periodic. We also establish that
the Z /p™-homology of the finite (unbranched) cyclic covers of any integral homology circle is
periodic in every dimension.

§0 INTRODUCTION

In [D] Dellomo proves a lemma about the mod-p” homology of the branched cyclic
covers of S3 associated to a knot which says that for all multiples mn of some integer n the
mn-fold branched cyclic covers have first homology with coefficients in Z /p” isomorphic to
@f;l Z[p", where dy is the degree of the Alexander polynomial of the knot with coefficients
reduced modulo p. Although it is not mentioned in that paper, it follows from his proof of
the lemma that the sequence of first homology groups with coefficients in Z /p” is in fact
periodic (as Abelian groups), that is, letting M) denote the k-fold branched cyclic cover,
H1(Myyn; Z/p") = Hi(My;Z[p") for every k (n is as above). Hillman gave a simplified
proof of this lemma [H], which added the feature that for every m, Hy(Mmn;Z/p") and
Hy(M,;Z/p") are isomorphic as modules over the ring of integral Laurent polynomials,
Z[t,t~1], however, overall periodicity does not seem to be immediate from this proof. In §1
of this paper we offer a yet simpler proof of the more general result that the 1-dimensional
mod-p” homology of the branched cyclic covers of any homology sphere with branching
locus 2 codimension-two homology sphere is periodic as a sequence of Z[t,t~!]-modules
and, moreover, that the isomorphisms are given canonically. Neither the proofs of [D] or
[H] apply to non-classical knots. Interestingly, this result implies that the t-actions on any
pair H:(My;Z/p") and Hi(My; Z/p") in the same periodicity class (thus k — &’ is divisible
by the period n) induced by a generator of the group of covering translations of M}, and
M. respectively, must be identical. We have recently learned that subsequent to our proof
of this result (Theorem 1 below), this same theorem was obtained independently by Dan
Silver and Susan Williams using techniques developed in their paper [SW].

In §2 we change our object of study to any finite complex having the integral homology
of S and show that the mod-p” homology groups of the finite (unbranched) cyclic covers
of such a homology circle are periodic in every dimension. In §3 we return to the branched
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cyclic covers of homology spheres in the case r = 1 to take a more explicit look afforded
by having field coefficients.

Note that since the homology functor is “linear” in the coefficient argument in the sense
that H.(Xk; G1 @ G2) = H.(Xk; G1) ® Ho(Xy; Ga), all the results mentioned above and
in this paper apply to homology with coefficients in any finite Abelian group. Throughout
this paper we will work with a fixed prime power p”, r > 1. _

We would like to thank Pat Gilmer for his help and for suggesting this problem, and also
Chuck Livingston, Rick Litherland, and Steve Weintraub whose ideas have contributed to
this paper. We should particularly like to acknowledge Professor Weintraub’s contribution
which has significantly simplified our original proof.

§1 BRANCHED CycrLic COVERS OF HOMOLOGY SPHERES

Let S be an (m+ 2)-dimensional homology sphere (m > 1) and K be a codimension-two
homology sphere in S. Denote the exterior of K in § by X (thus X is the closure in S
of the complement of a tubular neighborhood of K). It is easy to see using Alexander
duality that X is a homology circle, one consequence of which is that the abelianization
map provides a surjection m;(X) —» H;(X) = Z, and thence onto the cyclic group Z/k
of any order. Thus, X is endowed with an infinite cyclic covering space X, as well as
finite cyclic covers X, for all positive k. Note that every X arises as a quotient space of
Xoo. Let A denote the integral Laurent polynomial ring Z[t,¢~1]. The homology groups of
all the cyclic covers, H.(X}%), 1 < k < oo, become modules over A by giving ¢ the action
induced by a fixed generator of the group of covering translations of X.

Now, the k-fold branched cyclic covers of S branched along K can be constructed
from the k-fold cyclic cover X of X as follows. A tubular neighborhood of K in S is
v(K) = K x D? and we have 8(X) = 8(v(K)) = K x S*. Also, 8(X;) = K x S! and we
may take the covering map X; — X restricted to the boundary to be given by (21, 23) —
(21,25) : K x ST - K x S' (complex multiplication in the second coordinate). Then the
k-fold branched covering M} of S is obtained by attaching the boundary of N = K x D?
to the boundary of X} and extending the covering map to Xx Ug 1 N = X Ugy g1 ¥(K)
by mapping N — v(K) via (21,22) = (21,25 /|2%|) : K x D? - K x D?. Note that if
is a meridian of 9(X), then attaching N to X} results in 4 bounding a disk, thus killing
the homology class [u] € H;(My). Therefore, the inclusions ¢ : S < x x S € K x §! =
0(Xi) C Xy and j : Xy < My, induce a natural exact sequence of A-modules

(1) 0 = Hy(SY) 2 Hy (X)) 2 Hy(Mi) = 0

(the A-module structure on H;(S*), induced by the infinite cyclic cover R — S?, is trivial).

Theorem 1. There exists an integer n such that for every k, Hy(Mjin;Z/p") and
H,(My;Z/p") are naturally isomorphic as A-modules.

Proof. We first relate the homology of the branched cyclic covers to that of the infinite
cyclic cover via the following short exact sequence of chain complexes adapted from Milnor
[M] (see also [G]):

(2) 0 = Cu(Xoo;Z/p") b Co(Xoo; Z/p") = Cu(Xi; Z/p") = 0.
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Combining the resulting long exact sequence in homology with the sequence (1) we get the
diagram of A-modules

0

l

Hy(8Y%2/p)

I+

L Ta -
= H1(Xoo;Z/P") —— Hi(XooiZ[p") —=— Hy(Xi:Z[p") —2— Ho(Xoo:Z/p") =

ljv 2

Hy(Mi;Z/p") Z/p"

l

0
where, by looking at the maps on the chain level, we can see that the composition 8,1, is
an isomorphism, whence the composition j.7. is an epimorphism with kernel the image of
t* — 1. Thus, we have a natural isomorphism

Hl (Xms Z/pr)
(t* — 1) Hi(Xoo; Z/p7)
and we proceed to establish the result by showing that the A-module homomorphism of
H1(Xoo;Z/p") given by multiplication by t* — 1 is a periodic function of k.
To this end, consider the long exact homology sequence

(4) = Hi(Xeo;Z/p) = H1(Xoo; Z/D") = Hi(Xo0; Z/p™Y) = Ho(Xoeo; Z/p) =

induced by the short exact sequence of coefficient groups 0 — Z/p — Z/p* = Z/p*~! — 0.
Now, H;(Xw;Z/p) is finite since we know from Milnor [M] that the homology of the
infinite cyclic cover of a homology circle with coefficients in a field is finitely generated
as a vector space, and so it follows by induction that H;(X.;Z/p*) is finite for all i.
Hence, also the group of automorphisms Aut(H;(X;Z/p")) is finite, so, in particular, the
automorphism given by multiplication by ¢ has finite order for all ¢; let n be the order of
t € Aut(H;(Xo;Z/p")). Then t* =1 implying that for any k, t**™ — 1 = t* — 1 as maps
of H1(Xoo;Z/p"). The result then follows from the isomorphism (3). O

Remark. 1t follows that the (fundamental) period of H;(Mjy;Z/p") is precisely n (the
order of ¢ in Aut(H1(Xe;Z/p"))) and this is also the first k¥ such that Hy(My;Z/p") =
H1(Xw;Z/p"). Moreover, at every multiple mn of the order of ¢, Hy(Mmn;Z/p") =
Hi(Xoo;Z/p"). Now, if K is a knotted S! in $% we have H;(X.,) is Z-torsion free [C]
so that Hi(Xee;Z/p") = EB:LI Z/p" where by Lemma 1 (see the end of this section) d
is the dimension of H;(Xw;Z/p) over Z/p. But also H1(Xw;Z/p) 2 H1(Xoo)/PH1(Xoo)
(see §3) so d is in fact dp, the degree of the Alexander polynomial of K with coefficients
reduced modulo p. Combining all this, we have in the classical case that Hy(Mmn;Z/p") =
@i, Z/p" for every m; this is the lemma of Dellomo mentioned in the introduction.

Consider now the order of ¢ as a function of r (for a fixed prime p). Let ¢; denote ¢ as
an automorphism of H;(Xw;Z/p*) and n; denote the corresponding order. Then we have
the following regularity exhibited.

(3) TuTa : = Hy (M Z/p"),




4 WAYNE H. STEVENS

Theorem 2. With the above notation, either n; = n;_; or n; = pn,_; (i > 2).

Proof. Assume by induction on 7 that n;_; = p*n; for some 0 < s; < i — 1. Of course.
this hypothesis does hold for i = 2. By the naturality of the Bockstein sequence (4), we
have a commutative diagram

~Hi(Xooi2/p) —= Hi(Xooi Z/p") —2— Hi(XooiZ/p'™)—

y | |

—Hy (X3 Z/p) =2 Hi(Xeoi Z/p) —2 Hi(Xooi Z/p~Y)—

Let a € Hi(Xoo;Z/p*) be arbitrary. We want to see that t7™'a = a. %.(t]*"'a) =
7 1 e(a) = 194 (a) = 9¥.(a) so i1 "*a and a differ by something from Hi(X;Z/p), say
t;""'a = a + ¢.(a’). Using this and the fact that t]* " ¢.(a') = @.(t7''a’) = pu(a’) We
have

tfﬂi-la — tEP—l]ﬂi-—Lt:"i-la o tEP—l)ﬂi—l(a + qﬁ,..(a"))

= tF" V™1 (0 4 24, ("))

= a+pd.(a’)
= a.

Therefore n;|pn;_;. But we also have Hy(Xoo; Z/p' 1) & Hy(Xoo; Z /p))®Z /p*~! (Lemma 1
below) with t;_; = ¢; ® id, so certainly n;_;|n;. O

Lemma 1. For any space Y, Hy(Y;Z/p") @ Z/p™™' = H,(Y;Z/p""Y).

Proof. This follows from the universal-coefficient theorem since one has for any Abelian
group A, AQZ/p"QZ/[p"' = A®Z/p™~" and Tor(A,Z/p") ® Z/p"~* = Tor(A,Z/p""L).
The second fact is obvious for finitely generated A, and follows for arbitrary A since direct
limits commute with the torsion and tensor products. O

If we now make the observation that H;(Xe;Z/p) = GL(d,Z/p) for some d, we can
produce a list of possible periods for H;(X;Z/p") by consulting, for example, [N] which
gives formulas for the orders of all elements of GL(d,Z/p). (Note that GL(d, Z /p) has order

Hf__.l p*~1(p* — 1).) We will make a hands-on investigation of the periods of Hi(Mj;Z/p)
in §3 of this paper.
§2 FINITE CycLic COVERS OF HOMOLOGY CIRCLES
Now let X be any finite complex having the homology of a circle, H.(X) = H.(S?).

Theorem 3. The mod-p” homology of the finite cyclic covers of X is periodic, i.e., for
every q > 0 there exists an ng such that Hy(Xxyn;Z[p") = He(Xi; Z/p") for every k > 1.



PERIODICITY FOR THE Z/p"-HOMOLOGY OF CYCLIC COVERS 5

Proof. The zeroth homology satisfies this trivially. Fix an arbitrary dimension ¢ > 1 and
a cover of order k. From the long exact sequence in homology

— Hy(Xooi Z/7") == Hy(Xoo; Z/p") — Ho(XiZ/p") —

k— 5
— Hyo1(Xooi Z/P7) = Hy-1(Xooi Z/p") —
induced by (2) we extract the short exact sequence
(5) 0 — coker,(t* — 1) — Hy(Xi; Z/p") — kery_1(t* — 1) = 0,

where (co)ker,(¢* — 1) is the (co)kernel of multiplication by t* — 1 on Hi(Xo;Z/p"),
t=gq,q9— 1.

As X is a homology circle, we again have that the automorphism ¢ has finite order
in Aut(H;(Xo;Z/p")) for every i; let n be the least common multiple of the orders of
t € Aut(Hg-1(Xo0;Z/p")) and t € Aut(Hg(Xoo;Z/p")). Then both coker,(t*+™ — 1) =
coker, (t* — 1) and ker,_;(t**" — 1) = kerg_;(t* — 1) so from (5) we can conclude that
order(Hq(Xy+n; Z/p")) = order(Hy(Xi;Z/p")) and, in the case r = 1, Hy(Xiyn; Z/p)
Hqy(Xi; Z[p).

Proceeding by induction on r, assume Hy(Xy4n;Z/p™"1) 2 Hy(X3;Z/p™"'). Lemma 1
and the induction hypothesis give Hy(Xi4n; Z/p") @ Z/p™™! = Hy(Xi;Z/p") @ Z/p"~ L,
and since we already have that the orders of H, g Kepn; & /p") and Hy(Xg;Z/p") are the
same, Lemma 2 (below) applies to give H, (Xk+n,Z/p'") (Xk,Z/p‘") a

Lemma 2. Let A and B be two finite Abelian p-groups of the same order such that every
element of A and B has order at most p”. If AQ Z/p"~*= BQ®Z/p™!, then A= B.

Proof. Write A = @_,(Z/p*)™ and B = @._,(Z/p*)™. Then

=1
AQLZ/p™ 12 (Z/p)™ &--- @ (Z/p"~2)™ 2 @ (Z/p"Ly™—1+™ and
BRL/p ' = (Z/p)™ & & (Z/p"~H)™-2 @ (Z/p~Lyme—rtmr

so under the hypothesis that A @ Z/p™"! % B ® Z/p"~! we must have m; = m; for
1<i<r-—2and M1 +m, = m,_; +m;. Additionally, since [T,_, (p*)™ = order(A) —

order(B) = [T 1(p‘i) , we have (r —1)m,_; +rm, = (r—1)m!_; +rm’, forcing m,_; =

=

m._, and m, =m/ Therefore AZB O
One easily obtains:
Corollary. The mod-p” homology of the sequence of branched cyclic covers of a homology
sphere branched along a codimension-two homology sphere is periodic in every dimension.
83 A NOTE ON PERIODS IN THE CASEr = 1

Now return to the situation where K is a codimension-two homology sphere in a homol-
ogy sphere S. Then Theorem 1 applies and we have the first homology with coefficients in
Z[p" of the sequence of branched cyclic covers of S branched along K is periodic. Presently
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we want to investigate what the period of H;(My;Z/p) is. Using the isomorphism (3) we
study the modules H;(Mj;Z/p) by examining the effect of multiplication by t* — 1 on
H1(Xe;Z/p) in a manner similar to Sumner’s analysis of H;(Mj;C) [S]. This produces
an explicit formula for the period in this case.

The short exact sequence of coeficient groups 0 = Z = Z — Z/p — 0 gives the long
exact sequence in homology,

— H1(Xoo) B H1(Xoo) = Hi(Xo0; Z/p) = Ho(Xoo) B Ho(Xe) =,

and since multiplication by p on Hy(X.) = Z is injective, we have H;(X;Z/p) =

Xeo)/PH1(X o). Thus, we may consider H;(X;Z/p) as a module over A, = A/pA,
and since A, = Z/p[t,t~!] is a principal ideal doma.in, H(Xw;Z/p) decomposes into a
direct sum of cyclic Ap-modules, H;(Xo;Z/p) = @t_l Ap/(Ai) with (A1) S (X2) C--- C
(A1). We have, moreover, from [M] that in this situation all the );’s are nonzero. Then
since the representatives Aj,...,A; are defined only up to multiplication by units in A,,
we take each A; to be the unique monic polynomial (thus having no negative powers of t)
with nonzero constant term in the ideal (A;), and we call this preferred generator the i-th
-invariant factor of the Aj,-module Hy(Xo;Z/p). Then

Hy(Mi; Z/p) = Hy(Xoo; Z/p)/(t* = 1) Hy (Xeo; Z/p) = @Ap/ Ai t* —

=1

Over an algebraic closure, Z_/p, the first invariant factor A, splits as, say, \; = H;’;l(t -
;)% . For each j = 1,...,m let x; be the order of a; (thus we may think of o; as being a
primitive u;-th root of unity in Z/p), and let A be the least common multiple of u1, ..., tm-
Then, writing k = up” with p { u we have (in A,) t* — 1 = (t* — 1)?" and so

(A, t*P" —1) =( H (t — aj)min(es ")),

{7225 [}

Thus when v is such that p” > e; for every 1 < j < m, then (\,t"?" —1) = (\;) and
sumlarly for the other ); (due to the divisibility conditions), and we have Hi(Mpupv;Z/p) =
.., Ap/(X;). Taking v minimal we then have the first occurrence of H, (Mi;Z/p) =
H(Xo;Z/p) and therefore Ap” is the period of H1(Mjk;Z/p). Furthermore, by Theorem 2,
the period of Hy(My;Z/p") is hp”** for some 5, 0 < s < r.

Example. Let K be the knotted S! in S% enumerated 6, in the Alexander-Briggs table.
K has Hy(X) = A/(2t* — 5t + 2) with Alexander polynomial A(t) = 2t> — 5t + 2 (see
[G]). Notice that on reducing coefficients modulo 3 the polynomial 2t — 5t 4+ 2 = (¢ + 1)2
which has a single root of multiplicity two which is the primitive second root of unity.
Thus Hi(Xw;Z/3) = A3/(t +1)? and we have

A3/(t+1) ifke(2), k¢&(6)
Hi\(Mi;Z/3) = Az/(t+1)* if ke (6)

0 otherwise
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which clearly has the period 6 = 2 - 31.
Now let K’ be the knot 94¢. K’ has the same Alexander polynomial as K although
Hi(X) =A/(1—2t) D A/(2—1). Then Hi (XL ;Z/3) = A3/(t + 1)@ Az/(t +1) so

As/(t+1)@A3/(t+1) ifke(2)
0 otherwise

Hy (ML Z/3) = {

which has period 2. (Notice for this knot the annihilator of Hy (X’ ;Z/3)is (¢t +1) C A3
which is not the reduction modulo 3 of the annihilator (2t2 — 5t +2) C A of Hy(X",).)

Modulo 2 the infinite cyclic covers of both knots have trivial homology. Modulo any
other prime p # 2,3, H1(Xwo; Z/p) = Ap/ (2t =5t +2) 2 A, /(1—2t) ® A, /(2 —1t) since the
polynomials 1 — 2¢ and 2 — ¢ reduce to nonassociate polynomials in A,. Thus, if p # 2,3,
we have '

Ap/(1—=2t)®Ap/(2—1t) if k € (order,(2))

B\ Msidp) = i\ %]p) = { 0 otherwise
where order,(2) is the order of 2 modulo p.
For the knot K’ we have further that for any odd integer d,

Hi(M;Z/d) = Ag/(1-2t,2° — 1) @ Aa/(2 - t,2F - 1),

hence the period of Hy(Mj;Z/d)is the first occurrence of k such that 2 =1 mod d. Thus,
if p is any prime with 2°~! # 1 mod p?, then since the period of H; (M}; Z/p) divides p—1,
the period of H;(Mj;Z/p*) must be p times the period of H;(M];Z/p), while if 2?-1 =1
mod p?, i.e., p is a so-called Wieferich prime, then the period of Hy(M;Z/p?) must be
the same as the period of H;(Mj;Z/p), thereby illustrating both of the possibilities in
Theorem 2. Note that 1093 and 3511 are known to be the only Wieferich primes less than
3 x 10° [IR]. We remark that order;gg3(2) = 364 and orderss;; (2) = 1755.
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