Lecture 11: Proof of the NSZ

11.1 Theorem (NSZ): Let \(k \) be an algebraically closed field. (\(k = \bar{k} \)) Let \(J \subseteq k[x_1, \ldots, x_n] \) be an ideal. If \(J \neq k[x_1, \ldots, x_n] \), then \(V(J) \neq \emptyset \).

Rather than prove this directly, we shall instead prove an equivalent theorem.

11.2 Theorem: Let \(K \) be a field and \(K \subseteq L \) an extension field. such that \(L \) is a \(K \)-algebra of finite type. Then, \(L \) is an algebraic extension of fields.

\(L \) is obtained from \(K \) by adjoining finitely many algebraic elements. i.e., \(L = K[\xi_1, \ldots, \xi_n] \), with each \(\xi_i \) algebraic over \(K \).

11.3 Proposition: Theorem 11.1 is equivalent to Theorem 11.2.

Proof: (\(\Leftarrow \)) Let \(J \subseteq M \subseteq k[x_1, \ldots, x_n] \), \(M \) a maximal ideal. Let \(L = k[x_1, \ldots, x_n]/M = k[\xi_1, \ldots, \xi_n] \). \(M \) is maximal, so \(L \) is a field and it is finitely generated as an algebra over \(k \). So, \(L/K \) is algebraic. But, \(k = \bar{k} \), thus \(k = L \), as \(k \) has no strictly larger algebraic extensions. This means that \(\xi_i \in k \), \(1 \leq i \leq n \). So, there exists \(x_i \in \xi_i \) (mod \(M \)). So \((\xi_1, \ldots, \xi_n) \in k^n \) is a zero of \(M \), and thus of \(J \). \((x_i - \xi_i) \in M \) implies \(< x_1 - \xi_1, \ldots, x_n - \xi_n > \subseteq M \). But, that ideal is maximal, so it equals all of \(M \). So, \((\xi_1, \ldots, \xi_n) \in V(J) \), hence \(V(J) \neq \emptyset \).

(\(\Rightarrow \)) Let \(L = k[x_1, \ldots, x_n]/M \), \(M \) a maximal ideal. \(M \subseteq k[x_1, \ldots, x_n] \subseteq \bar{k}[x_1, \ldots, x_n] \). Theorem 11.1 implies that there exists \((\xi_1, \ldots, \xi_n) \in \bar{k}^n \) which is a zero for \(M \). Using this zero, we can construct a ring homomorphism \(\phi : k[x_1, \ldots, x_n] \rightarrow \bar{k} \)

\[
\begin{align*}
x_i &\mapsto \xi_i
\end{align*}
\]

with \(\ker(\phi) = M \); \(M \subseteq \ker(\phi) \), since everything in \(M \) goes to zero. But, \(M \) is maximal, so it must be all of \(\ker(\phi) \). Since every element of \(\bar{k} \) is algebraic of \(k \), every element of \(L \subseteq \bar{k} \) is algebraic over \(k \).
Now that we have established the equivalency of the two theorems, we will work on proving Theorem 11.2.

11.4 Lemma: Let $S = k(z_1, \ldots, z_t)$ be a rational function field in $t > 0$ variables. Then S is not finitely generated (over k) as a k-algebra. (Proof later)

Proof of 11.2 (assuming 11.4): We can write $L = k[x_1, \ldots, x_n]/M$, M maximal ideal. Will use proof by contradiction; Assume L is not algebraic over k. So L is a mixed algebraic and transcendental extension of k and can be written as a purely algebraic extension B of a purely transcendental extension S of k. So, we have $A = k \subseteq S \subseteq B = L$, with B/S algebraic and S/k transcendental.

11.5 Lemma: Let $A \subseteq S \subseteq B$ be rings, with A Noetherian. Let $B = A[\xi_1, \ldots, \xi_n]$ be finitely generated as an A-algebra. Assume B is finite as an S-module. Then, S is finitely generated as an A-algebra.

In the proof of 11.2, we have B as a finitely generated S-module, and B is finitely generated as a k-algebra. But, by Lemma 11.4, S is not finitely generated as a k-algebra. \rightarrow So, L is algebraic over k. QED

All that remains is to prove Lemma 11.5.

Proof of Lemma 11.5: We can write $B = S\xi_1 + \ldots + S\xi_n$. Also, we can assume the set \{${\xi_1, \ldots, \xi_n}$\} to contain A_1, \ldots, A_n. We get products

$$w_iw_j = \sum_{k=1}^{m} a_{ij}^k w_k, \quad a_{ij}^k \in S$$

Look at $S' = A[a_{ij}^k] \subseteq B$; Claim $B = S'\xi_1 + \ldots + S'\xi_n$. $B = A[\xi_1, \ldots, \xi_n] \ni \xi_1^{a_1}, \ldots, \xi_n^{a_n} \in S'\xi_1 + \ldots + S'\xi_n$, as every $\xi_i^{a_i}$ can be rewritten in terms of w_i's and a_{ij}^k's. By the Hilbert Basis Theorem, $S' = A[a_{ij}^k]$ is a Noetherian ring. B is a finitely generated S'-module, so B is Noetherian. $S' \subseteq S \subseteq B$ implies S is finitely generated as an S'-module. Thus, it is finitely generated as an A-algebra.

$k(z) \neq k[A_1, \ldots, A_n]$ for any finite set of polynomial generators A_i. There exists infinitely-many irreducible polynomials $p_1(z), \ldots, p_k(z), \ldots$ by a proof similar to Euclid’s infinitely-many primes proof.