Lecture 8: Examples

Today we look at some more examples of affine algebraic varieties.

8.1 Dimension

Definition 1 Let X be an irreducible algebraic set in \mathbb{A}^n (that is, an affine algebraic variety). We define the dimension of X to be the Krull dimension of the coordinate ring $k[X]$ of X.

Recall that the Krull dimension of a ring R is the supremum over all integers n such that there exists a strictly increasing chain $J_0 \subset J_1 \subset \ldots \subset J_n$ of prime ideals in R.

Some reminders and remarks: recall that the coordinate ring of an affine algebraic set X is defined to be $k[X] = \frac{k[x_1, \ldots, x_n]}{I(X)}$ (1) where $I(X)$ is the radical ideal of all polynomials in $k[x_1, \ldots, x_n]$ vanishing identically on X, and k is assumed (at least for now) to be algebraically closed. We have seen that X is irreducible if and only if $I(X)$ is a prime ideal, which is true if and only if the quotient ring $k[X]$ is an integral domain. The quotient field $k(X)$ of $k[X]$, which is an extension field of k, is often called the function field of X.

This notion of dimension coincides with the topological dimension of X when X is considered with the Zariski topology. This is not difficult to see. Recall that the topological dimension of a topological space X is defined to be the supremum over all integers n such that there exists a strictly decreasing chain of irreducible closed subsets Y_i of X:

$$Y_0 \supset \ldots \supset Y_n \quad (2)$$

This corresponds to a strictly increasing chain of prime ideals in $k[x_1, \ldots, x_n]$:

$$I(Y_0) \subset \ldots \subset I(Y_n) \quad (3)$$

Later we will develop another equivalent notion: the dimension of X is equal to the transcendence degree of the function field $k(X)$ over k. This is often easier to directly compute than the topological dimension of X or the Krull dimension of $k[X]$.

Recall the inclusion-reversing nature of the correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $k[x_1, \ldots, x_n]$: If $Y \subset X \subset \mathbb{A}^n$, then $I(X) \supseteq I(Y) \subsetneq k[x_1, \ldots, x_n]$. Thus we can form the quotient $\frac{k[Y]}{I(Y)}$, which we call \overline{Y} for short. \overline{Y} is a subring of the coordinate ring $\frac{k[x_1, \ldots, x_n]}{I(X)}$ of X. When discussing the ideal corresponding to an algebraic subset Y of an algebraic set X, we may refer either to the ideal $I(Y) \subset k[x_1, \ldots, x_n]$ or the ideal $\overline{Y} \subset k[X]$. The latter viewpoint reflects the intrinsic nature of X, apart from its embedding in \mathbb{A}^n.

1
This is a manifestation of a basic result in ring theory: Let R be a ring and $J \subseteq R$ an ideal. Then there is a one-to-one correspondence between ideals I in R containing J and ideals \overline{I} in the quotient ring R/J.

There are familiar names for low-dimensional algebraic sets: points are 0-dimensional, curves are 1-dimensional, surfaces are 2-dimensional, and 3-folds are 3-dimensional.

8.2 Examples: plane curves

In the last lecture, we briefly examined the plane curve $C = V(f) \subseteq \mathbb{A}^2$, where f is the polynomial $y^2 - x^3 = 0$. This curve is often called the ”cusp.” The coordinate ring of C is given by

$$k[C] = \frac{k[x, y]}{< f >} = \frac{k[x, y]}{< y^2 - x^3 >}$$

where $< f >$ is the principal ideal generated by f. That this is in fact the coordinate ring requires justification; by definition $k[C]$ is the quotient of $k[x, y]$ by the radical ideal $I(C)$. Thus, while it is obvious that $< y^2 - x^3 > \subseteq I(C)$, the reverse inclusion must be established. We know by the Nullstellensatz that $\sqrt{< f >} = I(C)$, so we want to show that $< f >$ is radical. It suffices to show that f is irreducible; then $< f >$ is prime and hence radical. This can be accomplished by examining possible factorizations of $f = y^2 - x^3$: suppose $f = gh$ for some polynomials g, h in $k[x, y]$. Since f is quadratic in y, then either one of g, h (say h) is quadratic in y and g is a polynomial in x alone, or else both g and h are linear in y. In the first case:

$$y^2 - x^3 = g(x)(y^2 h_1(x) + h_2(x))$$

which implies

$$g(x)h_1(x) = 1$$
$$g(x)h_2(x) = -x^3$$

The first equation is enough; it implies that g is a unit. In the second case:

$$y^2 - x^3 = (yg_1(x) + g_2(x))(y h_1(x) + h_2(x))$$

we see that $g_1 h_1 = 1$, so without loss of generality,

$$y^2 - x^3 = (y + g_2(x))(y + h_2(x))$$

This yields $g_2 + h_2 = 0$, so $-x^3 = g_2 h_2$ is minus a square, an obvious contradiction. Thus $k[C] = \frac{k[x, y]}{< f >}$ as claimed.

We noted in a previous lecture that there is a bijective morphism $\phi : \mathbb{A}^1 \to C \subseteq \mathbb{A}^2$ which is not an isomorphism. Perhaps the simplest way to see this is to note that the corresponding k-algebra homomorphism $\phi^* : k[C] \to k[\mathbb{A}^1] = k[t]$ is not an isomorphism. We have $\phi^*(\overline{x}) = t^2$ and $\phi^*(\overline{y}) = t^3$, where \overline{x} and \overline{y} are the equivalence
classes of \(x \) and \(y \) in \(k[C] = \frac{k[x,y]}{<y^2 - x^3>} \) (which generate \(k[C] \)). Since any element in the image set \(\phi^*(k[C]) \) is a polynomial in the images of the generators, we see that \(t \), for instance, is not in the image, since \(t \) obviously cannot be written as a polynomial in \(t^2 \) and \(t^3 \). Thus \(\phi^* \) is not a \(k \)-algebra isomorphism, and \(\phi \) is not an isomorphism of affine algebraic varieties.

In fact there is no isomorphism from \(C = V(y^2 - x^3) \) to \(\mathcal{A}^1 \) (that is, the two varieties are not isomorphic). This can also be shown by considering \(k \)-algebra homomorphisms between the coordinate rings.

Now we discuss another plane curve, often called the node. It is also defined by a single polynomial \(f(x,y) = y^2 - x^2(x+1) \). We will use \(C \) again to denote this curve:

\[
C = V(f) = V(y^2 - x^2(x+1))
\]

(10)

The polynomial \(f = y^2 - x^2(x+1) \) is irreducible, which we can show by considering factorizations, just as in the previous example with the cubic cusp. Thus the ideal \(I(C) \) is just \(<y^2 - x^2(x+1)>\). The map \(\phi : \mathcal{A}^1 \rightarrow C \subset \mathcal{A}^2 \) defined by

\[
\phi(t) = (t^2 - 1, t(t^2 - 1))
\]

(11)

is a morphism of affine algebraic varieties. To demonstrate this, we first check that every point in the image of \(\phi \) in fact satisfies the defining equation of \(C \); that is, we first show that \(\forall t \in \mathcal{A}^1 \), the point \((x,y) = (t^2 - 1, t(t^2 - 1)) \) satisfies \(y^2 = x^2(x+1) \). This is a straightforward computation:

\[
x^2(x+1) = (t^2 - 1)^2t^2 = y^2
\]

(12)

This proves that \(\phi \) maps \(\mathcal{A}^1 \) into \(C \). To show \(\phi \) is onto, we must show that, given \((x,y) \) satisfying \(y^2 = x^2(x+1) \), there exists \(t \in \mathcal{A}^n \) with \(x = t^2 - 1 \) and \(y = t(t^2 - 1) \). Let \(x \in k \). Recall that \(k \) is algebraically closed; therefore we can take square roots to find (generically) two values of \(t \) such that \(x = t^2 - 1 \), namely \(t = \pm \sqrt{x+1} \). (The usual picture of this curve in the real plane, which shows no points with \(x \) coordinate less than \(-1 \), is misleading because the real number field is not algebraically closed.) Now since \(y^2 = x^2(x+1) \), we have \(y = \pm x\sqrt{x+1} = \pm tx \). Thus, one of the two choices for \(t \) maps into \((x,y) \) under \(\phi \), so \(\phi \) is onto. We see that the two values of \(t \) corresponding to each \(x \) map to different points (reflected across \(x=0 \)) except for \(t = \pm 1 \), both of which map to \((0,0)\). (There is one value of \(x \), namely \(x = -1 \), for which there is only one value of \(t \).) So \(\phi \) is bijective except for a “double point” at the origin in \(\mathcal{A}^2 \).

8.3 Hypersurfaces

Now we discuss the ”largest” (proper) algebraic sets in \(\mathcal{A}^n \). First, a definition:

Definition 2 The codimension of an algebraic set \(X \subset \mathcal{A}^n \) is \(n - \text{dim}(X) \)
Codimension is not an intrinsic concept; it depends on the dimension of the space in which \(X \) is embedded. If we instead embed \(X \) in \(\mathbb{A}^m \), \(m \neq n \), then of course the codimension of \(X \) changes. Note that if \(X \subseteq \mathbb{A}^n \) is irreducible, then the codimension of \(X \) is equal to the height of the prime ideal \(I(X) \) in \(k[x_1, \ldots, x_n] \).

Definition 3 A hypersurface in \(\mathbb{A}^n \) is an algebraic set of codimension one.

Examples include curves in \(\mathbb{A}^2 \) (such as the cusp and the node) and surfaces in \(\mathbb{A}^3 \). One special type of hypersurface is a hyperplane, which is the vanishing set of a linear polynomial in \(k[x_1, \ldots, x_n] \):

\[
H = V(\sum a_i x_i + b)
\]

We state without proof the following theorem:

Theorem 4 (Krull’s Hauptidealsatz): Any prime ideal \(P \subseteq k[x_1, \ldots, x_n] \) with \(\text{ht}(P) = 1 \) is principal: \(P = \langle f \rangle \), where \(f \) is an irreducible polynomial in \(k[x_1, \ldots, x_n] \).

Since the codimension of \(X \) is equal to the height of the prime ideal \(I(X) \subseteq k[x_1, \ldots, x_n] \), the height of \(I(H) \) is 1 for a hypersurface \(H \). Thus \(I(H) \) is principal by the Hauptidealsatz, so an irreducible hypersurface is the vanishing set of a single polynomial.

Quadric surfaces are a rich source of examples of hypersurfaces. A quadric surface is a variety defined by a polynomial \(f \) of second degree:

\[
f = \sum a_{ij} x_i x_j + \sum b_i x_i + c
\]

(We can assume without loss of generality that the \(a_{ij} \) form a symmetric matrix if \(\text{char}(k) \neq 2 \).)

Examples of quadric surfaces include conics in the plane as well as certain familiar surfaces in 3-space such as cones (e.g. \(V(x^2 + y^2 - z^2) \)), ellipsoids (e.g. \(V(x^2 + 2y^2 + 3z^2 - 1) \)), and hyperboloids (e.g. \(V(x^2 + y^2 - z^2 - 1) \)).

We have seen that the radical ideal corresponding to any variety of codimension 1 is principal. It might be tempting to think that every variety of codimension \(m \) has an ideal generated by \(m \) polynomials, but this is false, even for varieties of codimension 2. One example of this is the variety \(C \subseteq \mathbb{A}^3 \) which is the image of \(\mathbb{A}^1 \) under the map \(t \mapsto (t^3, t^4, t^5) \). It is easy to see that every point on \(C \) satisfies the relations \(x^3 - yz = y^2 - xz = x^2 y - z^2 = 0 \). Thus the ideal \(\langle x^3 - yz, y^2 - xz, x^2 y - z^2 \rangle \) is contained in the radical ideal \(I(C) \). The converse is also true, \(I(C) = \langle x^3 - yz = y^2 - xz = x^2 y - z^2 = 0 \rangle \), but this is not so obvious.

Exercise 5 Show that \(I(C) = \langle x^3 - yz, y^2 - xz, x^2 y - z^2 \rangle \)