Algebraic curves of GL_2-type

Jerome William Hoffman
Louisiana State University

Atkin Memorial Conference, UIChicgo
April 29-May 1, 2011
1. Galois representations of GL$_2$-type

2. Explicit moduli for genus two curves

3. Humbert surfaces

4. Examples
For any number field K let $G_K = \text{Gal}(\overline{Q}/K)$. Let

$$\rho : G_Q \to \text{GL}(V_\ell) \cong \text{GL}_{2d}(\mathbb{Q}_\ell)$$

be a representation. Mostly we will be concerned with $d = 2$.

Assume that

1. There is a number field E/\mathbb{Q} of degree d and a homomorphism $E \to \text{End}(V_\ell)$.

2. There is a finite extension K/\mathbb{Q} such that $\rho(G_K)$ commutes with the image of E.

Then we have a factorization:

$$\rho_K := \rho \mid G_K \to \text{GL}_{E \otimes \mathbb{Q}_\ell}(V_\ell) \cong \text{GL}_2(E \otimes \mathbb{Q}_\ell) \subset \text{GL}(V_\ell) \cong \text{GL}_{2d}(\mathbb{Q}_\ell).$$

We say that ρ_K has an E-linear structure. or ρ has an GL_2-structure over K.
For any number field K let $G_K = \text{Gal}(\overline{Q}/K)$. Let

$$\rho : G_Q \to \text{GL}(V_\ell) \cong \text{GL}_2d(\mathbb{Q}_\ell)$$

be a representation. Mostly we will be concerned with $d = 2$. Assume that

1. There is a number field E/\mathbb{Q} of degree d and a homomorphism $E \to \text{End}(V_\ell)$.
2. There is a finite extension K/\mathbb{Q} such that $\rho(G_K)$ commutes with the image of E.

Then we have a factorization:

$$\rho_K := \rho \mid G_K \to \text{GL}_{E\otimes \mathbb{Q}_\ell}(V_\ell) \cong \text{GL}_2(E\otimes \mathbb{Q}_\ell) \subset \text{GL}(V_\ell) \cong \text{GL}_2d(\mathbb{Q}_\ell).$$

We say that ρ_K has an E-linear structure. or ρ has an GL_2-structure over K.

Jerome William Hoffman
Louisiana State University
Algebraic curves of GL_2-type
For any number field K let $G_K = \text{Gal}(\overline{\mathbb{Q}}/K)$. Let

$$\rho: G_\mathbb{Q} \rightarrow \text{GL}(V_\ell) \cong \text{GL}_{2d}(\mathbb{Q}_\ell)$$

be a representation. Mostly we will be concerned with $d = 2$. Assume that

1. There is a number field E/\mathbb{Q} of degree d and a homomorphism $E \rightarrow \text{End}(V_\ell)$.

2. There is a finite extension K/\mathbb{Q} such that $\rho(G_K)$ commutes with the image of E.

Then we have a factorization:

$$\rho_K := \rho | G_K \rightarrow \text{GL}_{E \otimes \mathbb{Q}_\ell}(V_\ell) \cong \text{GL}_2(E \otimes \mathbb{Q}_\ell) \subset \text{GL}(V_\ell) \cong \text{GL}_{2d}(\mathbb{Q}_\ell).$$

We say that ρ_K has an E-linear structure. or ρ has an GL_2-structure over K.
Example: Abelian varieties of \(\text{GL}_2 \)-type. For an abelian variety \(A/k \) let \(V_\ell(A) \) be its Tate module: a \(2 \text{dim } A \)-dimensional representation of \(G_k \).

Theorem. (Ribet + Serre’s conjecture)

1. Let \(A/\mathbb{Q} \) be a \(\mathbb{Q} \)-simple abelian variety. Suppose that \(E = \mathbb{Q} \otimes \text{End}_\mathbb{Q}(A) \) is a number field of degree \(\text{dim } A \). Then the Tate module \(V_\ell(A) \) defines a representation of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) with values in \(\text{GL}_2(E \otimes \mathbb{Q}_\ell) \). Moreover \(A \) is isogenous to a \(\mathbb{Q} \)-simple factor of \(J_1(N) \) for some \(N \geq 1 \).

2. Let \(C/\overline{\mathbb{Q}} \) be an elliptic curve. Then \(C \) is a quotient of \(J_1(N)_{\overline{\mathbb{Q}}} \) for some \(N \geq 1 \) if and only if \(C \) is a \(\mathbb{Q} \)-curve, i.e., \(C \) is isogenous to each of its conjugates \(\sigma C, \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \).

Problem: Explicitly construct \(\mathbb{Q} \)-curves.
Example: Abelian varieties of GL_2-type. For an abelian variety A/k let $V_\ell(A)$ be its Tate module: a 2 dim A-dimenional representation of G_k.

Theorem. (Ribet + Serre’s conjecture)

1. Let A/\mathbb{Q} be a \mathbb{Q}-simple abelian variety. Suppose that $E = \mathbb{Q} \otimes \text{End}_\mathbb{Q}(A)$ is a number field of degree $= \dim A$. Then the Tate module $V_\ell(A)$ defines a representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with values in $GL_2(E \otimes \mathbb{Q}_\ell)$. Moreover A is isogenous to a \mathbb{Q}-simple factor of $J_1(N)$ for some $N \geq 1$.

2. Let C/\mathbb{Q} be an elliptic curve. Then C is a quotient of $J_1(N)_{\overline{\mathbb{Q}}}$ for some $N \geq 1$ if and only if C is a \mathbb{Q}-curve, i.e., C is isogenous to each of its conjugates σC, $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Problem: Explicitly construct \mathbb{Q}-curves.
Example: Abelian varieties of GL_2-type. For an abelian variety A/k let $V_\ell(A)$ be its Tate module: a 2 dim A-dimensional representation of G_k.

Theorem. (Ribet + Serre’s conjecture)

1. Let A/\mathbb{Q} be a \mathbb{Q}-simple abelian variety. Suppose that $E = \mathbb{Q} \otimes \text{End}_\mathbb{Q}(A)$ is a number field of degree $= \dim A$. Then the Tate module $V_\ell(A)$ defines a representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with values in $GL_2(E \otimes \mathbb{Q}_\ell)$. Moreover A is isogenous to a \mathbb{Q}-simple factor of $J_1(N)$ for some $N \geq 1$.

2. Let $C/\overline{\mathbb{Q}}$ be an elliptic curve. Then C is a quotient of $J_1(N)_{\overline{\mathbb{Q}}}$ for some $N \geq 1$ if and only if C is a \mathbb{Q}-curve, i.e., C is isogenous to each of its conjugates σC, $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Problem: Explicitly construct \mathbb{Q}-curves.
Example: Abelian varieties of GL_2-type. For an abelian variety A/k let $V_\ell(A)$ be its Tate module: a 2 dim A-dimensional representation of G_k.

Theorem. (Ribet + Serre’s conjecture)

1. Let A/\mathbb{Q} be a \mathbb{Q}-simple abelian variety. Suppose that $E = \mathbb{Q} \otimes \text{End}_\mathbb{Q}(A)$ is a number field of degree $= \dim A$. Then the Tate module $V_\ell(A)$ defines a representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with values in $GL_2(E \otimes \mathbb{Q}_\ell)$. Moreover A is isogenous to a \mathbb{Q}-simple factor of $J_1(N)$ for some $N \geq 1$.

2. Let $C/\overline{\mathbb{Q}}$ be an elliptic curve. Then C is a quotient of $J_1(N)_{\overline{\mathbb{Q}}}$ for some $N \geq 1$ if and only if C is a \mathbb{Q}-curve, i.e., C is isogenous to each of its conjugates σC, $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Problem: Explicitly construct \mathbb{Q}-curves.
Theorem. (Shimura) Let \(f = \sum a_n q^n \) be a normalized cuspidal Hecke eigenform of weight 2 on \(\Gamma_1(N) \) for some \(N \geq 1 \). Then there is an abelian variety \(A_f \) defined over \(\mathbb{Q} \) with an action of the field \(E = \mathbb{Q}(..., a_n, ...) \). This is a quotient of \(J_1(N) \). We have \(\dim A_f = [E : \mathbb{Q}] \), \(E = \text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q} \), and thus \(V_\ell(A_f) \) is of \(\text{GL}_2 \)-type over \(\mathbb{Q} \).

Example. \(N = 29 \). There exist Hecke eigenforms \(f, \overline{f} \in S_2(29, (*/29)) \) with field of coefficients \(E = \mathbb{Q}(\sqrt{-5}) \). Shimura’s \(A_f \) is two-dimensional, and in fact it is isogenous to \(C \times \sigma C \) for an elliptic \(\mathbb{Q} \)-curve \(C/\mathbb{Q} (\sqrt{5}) \). Also we have an isogeny \(A_f \cong \text{Jac}(X) \) where \(X \) is the genus 2 curve

\[
y^2 = -(x^3 + 4x^2 + x + 2)(8x^3 - 4x^2 - 9x - 14).
\]
Theorem. (Shimura) Let \(f = \sum a_n q^n \) be a normalized cuspidal Hecke eigenform of weight 2 on \(\Gamma_1(N) \) for some \(N \geq 1 \). Then there is an abelian variety \(A_f \) defined over \(\mathbb{Q} \) with an action of the field \(E = \mathbb{Q}(\ldots, a_n, \ldots) \). This is a quotient of \(J_1(N) \). We have \(\dim A_f = [E : \mathbb{Q}] \), \(E = \text{End}_{\mathbb{Q}}(A_f) \otimes \mathbb{Q} \), and thus \(V_\ell(A_f) \) is of \(\text{GL}_2 \)-type over \(\mathbb{Q} \).

Example. \(N = 29 \). There exist Hecke eigenforms \(f, \overline{f} \in S_2(29, \mathbb{Q}(\sqrt{-5})) \) with field of coefficients \(E = \mathbb{Q}(\sqrt{-5}) \). Shimura’s \(A_f \) is two-dimensional, and in fact it is isogenous to \(C \times C \) for an elliptic \(\mathbb{Q} \)-curve \(C/\mathbb{Q}(\sqrt{5}) \). Also we have an isogeny \(A_f \cong \text{Jac}(X) \) where \(X \) is the genus 2 curve

\[
y^2 = -(x^3 + 4x^2 + x + 2)(8x^3 - 4x^2 - 9x - 14).
\]
Theorem. (Shimura) Let \(f = \sum a_n q^n \) be a normalized cuspidal Hecke eigenform of weight 2 on \(\Gamma_1(N) \) for some \(N \geq 1 \). Then there is an abelian variety \(A_f \) defined over \(\mathbb{Q} \) with an action of the field \(E = \mathbb{Q}(..., a_n, ...) \). This is a quotient of \(J_1(N) \). We have \(\dim A_f = [E : \mathbb{Q}] \), \(E = \text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q} \), and thus \(V_\ell(A_f) \) is of \(\text{GL}_2 \)-type over \(\mathbb{Q} \).

Example. \(N = 29 \). There exist Hecke eigenforms \(\tilde{f}, \bar{f} \in S_2(29, (*/29)) \) with field of coefficients \(E = \mathbb{Q}(\sqrt{-5}) \). Shimura’s \(A_f \) is two-dimensional, and in fact it is isogenous to \(C \times ^\sigma C \) for an elliptic \(\mathbb{Q} \)-curve \(C/\mathbb{Q}(\sqrt{5}) \). Also we have an isogeny \(A_f \cong \text{Jac}(X) \) where \(X \) is the genus 2 curve

\[
y^2 = -(x^3 + 4x^2 + x + 2)(8x^3 - 4x^2 - 9x - 14).\]
Note that for a given ρ, there can be more than one pair E, K such that ρ_K has an E-linear structure.

Examples are given by quaternion structures. Here $d = 2$. That is, assume:

1. there is a quaternion algebra B/\mathbb{Q} and a homomorphism $B \rightarrow \text{End}(V_\ell)$ and
2. a finite extension K/\mathbb{Q} such that the image of B commutes with ρ_K.

Then ρ_K has an E-linear structure for every quadratic subfield $E \subset B$.

Jerome William Hoffman
Louisiana State University

Algebraic curves of GL_2-type
Note that for a given \(\rho \), there can be more than one pair \(E, K \) such that \(\rho_K \) has an \(E \)-linear structure. Examples are given by quaternion structures. Here \(d = 2 \). That is, assume:

1. there is a quaternion algebra \(B/\mathbb{Q} \) and a homomorphism \(B \to \text{End}(V_\ell) \) and
2. a finite extension \(K/\mathbb{Q} \) such that the image of \(B \) commutes with \(\rho_K \).

Then \(\rho_K \) has an \(E \)-linear structure for every quadratic subfield \(E \subset B \).
Note that for a given ρ, there can be more than one pair E, K such that ρ_K has an E-linear structure. Examples are given by quaternion structures. Here $d = 2$. That is, assume:

1. there is a quaternion algebra B/\mathbb{Q} and a homomorphism $B \to \text{End}(V_\ell)$ and
2. a finite extension K/\mathbb{Q} such that the image of B commutes with ρ_K.

Then ρ_K has an E-linear structure for every quadratic subfield $E \subset B$.
From now on, we take $d = 2$

Suppose ρ has an E-linear structure defined over K (so $[E : \mathbb{Q}] = 2$).

Let $\lambda, \overline{\lambda}$ be the places of E lying over the prime number ℓ (possibly $\lambda = \overline{\lambda}$). Then we get a decomposition $E \otimes \mathbb{Q}_\ell = \oplus_{\lambda, \overline{\lambda}} E_\lambda$ hence

$$\rho_K \otimes E = \rho_{K, \lambda} \oplus \overline{\rho}_{K, \lambda}, \quad L(\rho_K, s) = L(\rho_{K, \lambda}, s)L(\overline{\rho}_{K, \lambda}, s).$$
From now on, we take $d = 2$

Suppose ρ has an E-linear structure defined over K (so $[E : \mathbb{Q}] = 2$).

Let $\lambda, \overline{\lambda}$ be the places of E lying over the prime number ℓ (possibly $\lambda = \overline{\lambda}$). Then we get a decomposition $E \otimes \mathbb{Q}_\ell = \bigoplus_{\lambda, \overline{\lambda}} E_\lambda$ hence

$$\rho_K \otimes E = \rho_K,\lambda \oplus \overline{\rho}_K,\lambda, \quad L(\rho_K, s) = L(\rho_K,\lambda, s)L(\overline{\rho}_K,\lambda, s).$$
From now on, we take $d = 2$

Suppose ρ has an E-linear structure defined over K (so $[E : \mathbb{Q}] = 2$).

Let $\lambda, \overline{\lambda}$ be the places of E lying over the prime number ℓ (possibly $\lambda = \overline{\lambda}$). Then we get a decomposition $E \otimes \mathbb{Q}_\ell = \bigoplus_{\lambda, \overline{\lambda}} E_\lambda$ hence

$$\rho_K \otimes E = \rho_{K, \lambda} \oplus \overline{\rho}_{K, \lambda}, \quad L(\rho_K, s) = L(\rho_{K, \lambda}, s)L(\overline{\rho}_{K, \lambda}, s).$$
Special case: Suppose that:

1. K/\mathbb{Q} is also a quadratic extension.
2. The generator $s \in \text{Gal}(K/\mathbb{Q})$ induces an isomorphism $s : \rho_{K, \lambda} \cong \rho_{K, \lambda}$.

Then

$$\rho = \text{Ind}_K^\mathbb{Q}(\rho_{K, \lambda})$$

therefore

$$L(\rho, s) = L(\rho_{K, \lambda}, s).$$
Special case: Suppose that:

1. K/\mathbb{Q} is also a quadratic extension.
2. The generator $s \in \text{Gal}(K/\mathbb{Q})$ induces an isomorphism
 $$s : \rho_{K,\lambda} \cong \overline{\rho}_{K,\lambda}.$$

Then
$$\rho = \text{Ind}_K^\mathbb{Q}(\rho_{K,\lambda})$$

therefore
$$L(\rho, s) = L(\rho_{K,\lambda}, s).$$
Let X be a projective nonsingular curve of genus 2 defined over \mathbb{Q}. We assume an equation $y^2 = f(x)$ where $f(x) \in \mathbb{Q}[x]$ has degree 5 or 6 with distinct roots.

Then

$$V_\ell = H^1(X \otimes \overline{\mathbb{Q}}, \mathbb{Q}_\ell) = H^1(Jac(X) \otimes \overline{\mathbb{Q}}, \mathbb{Q}_\ell)$$

gives a four dimensional representation of $G_{\mathbb{Q}}$. These are of GL_2-type if the Jacobian $Jac(X)$ has extra endomorphisms.

For any abelian variety A defined over a field k we let

$End^0_k(A) := \text{End}_k(A) \otimes \mathbb{Q}$

be the semisimple \mathbb{Q}-algebra of endomorphisms defined over k; $End^0(A) = End^0_k(A)$.
Let X be a projective nonsingular curve of genus 2 defined over \mathbb{Q}. We assume an equation $y^2 = f(x)$ where $f(x) \in \mathbb{Q}[x]$ has degree 5 or 6 with distinct roots. Then
\[V_{\ell} = H^1(X \otimes \overline{\mathbb{Q}}, \mathbb{Q}_{\ell}) = H^1(Jac(X) \otimes \overline{\mathbb{Q}}, \mathbb{Q}_{\ell}) \]
gives a four dimensional representation of $G_{\mathbb{Q}}$. These are of GL_2-type if the Jacobian $Jac(X)$ has extra endomorphisms.

For any abelian variety A defined over a field k we let $\text{End}_{k}^{0}(A) := \text{End}_{k}(A) \otimes \mathbb{Q}$ be the semisimple \mathbb{Q}-algebra of endomorphisms defined over k; $\text{End}^{0}(A) = \text{End}_{k}^{0}(A)$
Let \(X \) be a projective nonsingular curve of genus 2 defined over \(\mathbb{Q} \). We assume an equation \(y^2 = f(x) \) where \(f(x) \in \mathbb{Q}[x] \) has degree 5 or 6 with distinct roots. Then

\[
V_\ell = H^1(X \otimes \overline{\mathbb{Q}}, \mathbb{Q}_\ell) = H^1(Jac(X) \otimes \overline{\mathbb{Q}}, \mathbb{Q}_\ell)
\]

gives a four dimensional representation of \(G_\mathbb{Q} \). These are of \(\text{GL}_2 \)-type if the Jacobian \(Jac(X) \) has extra endomorphisms. For any abelian variety \(A \) defined over a field \(k \) we let

\[
\text{End}_k^0(A) := \text{End}_k(A) \otimes \mathbb{Q}
\]

be the semisimple \(\mathbb{Q} \)-algebra of endomorphisms defined over \(k \); \(\text{End}_k^0(A) = \text{End}_k^0(A) \)
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type.

How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type.

How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type. How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type. How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type.

How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
Then if A is a two dimensional absolutely simple abelian variety defined over a number field k then $\text{End}^0(A)$ is one of the following:

1. \mathbb{Q};
2. a real quadratic field E/\mathbb{Q};
3. an indefinite quaternion algebra B/\mathbb{Q};
4. a quartic CM field K/\mathbb{Q}.

Items 2 (RM) and 3 (QM) lead to representations of GL_2-type. How to write down genus two curves over \mathbb{Q} such that $\text{Jac}(X)$ has RM or QM?
The familiar invariants of an elliptic curve, e.g., j, g_2, g_3 arise as invariants and covariants of the action of $\text{PGL}(2)$ on binary quartic forms $f(x, y) = a_0 x^4 + a_1 x^3 y + a_2 x^2 y^2 + a_3 x y^3 + a_4 y^4$. These were worked out in the 19th century.

Reason: every genus 1 curve can be expressed as a double cover of \mathbb{P}^1 with four branch points. Then $f(x, y) = 0$ give the coordinates of the branch points. This leads to coordinate systems on the moduli spaces of elliptic curves: these are the modular curves. Riemann already knew that the moduli space \mathcal{M}_g of genus $g \geq 2$ curves had dimension $3g - 3$, but explicit models of these as algebraic varieties are not easy to find.
The familiar invariants of an elliptic curve, e.g., j, g_2, g_3 arise as in- and covariants of the action of $\text{PGL}(2)$ on binary quartic forms $f(x, y) = a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4$. These were worked out in the 19th century.

Reason: every genus 1 curve can be expressed as a double cover of \mathbb{P}^1 with four branch points. Then $f(x, y) = 0$ give the coordinates of the branch points. This leads to coordinate systems on the moduli spaces of elliptic curves: these are the modular curves.

Riemann already knew that the moduli space \mathcal{M}_g of genus $g \geq 2$ curves had dimension $3g - 3$, but explicit models of these as algebraic varieties are not easy to find.
The familiar invariants of an elliptic curve, e.g., j, g_2, g_3 arise as in-
and covariants of the action of $\text{PGL}(2)$ on binary quartic forms
$f(x, y) = a_0 x^4 + a_1 x^3 y + a_2 x^2 y^2 + a_3 x y^3 + a_4 y^4$. These were
worked out in the 19th century.
Reason: every genus 1 curve can be expressed as a double cover of
\mathbb{P}^1 with four branch points. Then $f(x, y) = 0$ give the coordinates
of the branch points. This leads to coordinate systems on the
moduli spaces of elliptic curves: these are the modular curves.
Riemann already knew that the moduli space M_g of genus $g \geq 2$
curves had dimension $3g - 3$, but explicit models of these as
algebraic varieties are not easy to find.
Let X be a projective nonsingular curve of genus 2 defined over a field k. Then X has a model in the form

$$y^2 = f(x) \quad \text{deg } f = 6, \text{ with distinct roots.}$$

As for elliptic curves, the moduli for genus 2 curves then can be expressed via the in- and covariants of the action of $\text{PGL}(2)$ on binary sextic forms. The expression of the moduli of genus 2 curves via projective invariants of binary sextics was done by Clebsch, and in more modern times by Igusa and Mestre.

Note that $\dim \mathcal{M}_2 = 3$, so there are three “J-invariants” j_1, j_2, j_3. Recall also that the map $X \mapsto \text{Jac}(X) : \mathcal{M}_2 \to \mathcal{A}_2$ to the moduli space of principally polarized abelian varieties of dimension 2 is a birational correspondence.
Let X be a projective nonsingular curve of genus 2 defined over a field k. Then X has a model in the form

$$y^2 = f(x) \quad \text{deg} \, f = 6, \text{ with distinct roots.}$$

As for elliptic curves, the moduli for genus 2 curves then can be expressed via the in- and covariants of the action of $\text{PGL}(2)$ on binary sextic forms. The expression of the moduli of genus 2 curves via projective invariants of binary sextics was done by Clebsch, and in more modern times by Igusa and Mestre.

Note that $\dim \mathcal{M}_2 = 3$, so there are three “J-invariants” j_1, j_2, j_3. Recall also that the map $X \mapsto \text{Jac}(X): \mathcal{M}_2 \to A_2$ to the moduli space of principally polarized abelian varieties of dimension 2 is a birational correspondence.
Let X be a projective nonsingular curve of genus 2 defined over a field k. Then X has a model in the form

$$y^2 = f(x) \quad \text{deg } f = 6,$$

with distinct roots.

As for elliptic curves, the moduli for genus 2 curves then can be expressed via the in- and covariants of the action of $\text{PGL}(2)$ on binary sextic forms. The expression of the moduli of genus 2 curves via projective invariants of binary sextics was done by Clebsch, and in more modern times by Igusa and Mestre.

Note that $\dim \mathcal{M}_2 = 3$, so there are three “J-invariants” j_1, j_2, j_3. Recall also that the map $X \mapsto \text{Jac}(X): \mathcal{M}_2 \to \mathcal{A}_2$ to the moduli space of principally polarized abelian varieties of dimension 2 is a birational correspondence.
Let X be a projective nonsingular curve of genus 2 defined over a field k. Then X has a model in the form

$$y^2 = f(x) \quad \text{deg } f = 6, \text{ with distinct roots.}$$

As for elliptic curves, the moduli for genus 2 curves then can be expressed via the in- and covariants of the action of PGL(2) on binary sextic forms. The expression of the moduli of genus 2 curves via projective invariants of binary sextics was done by Clebsch, and in more modern times by Igusa and Mestre.

Note that $\dim \mathcal{M}_2 = 3$, so there are three "J-invariants" j_1, j_2, j_3. Recall also that the map $X \mapsto \text{Jac}(X) : \mathcal{M}_2 \to \mathcal{A}_2$ to the moduli space of principally polarized abelian varieties of dimension 2 is a birational correspondence.
Analytic moduli.
Let
\[\mathcal{H}_2 = \{ \tau = \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix} \in \text{M}_2(\mathbb{C}) \mid \text{Im}(\tau) > 0 \} \]
the Siegel space of genus 2.
As an analytic space, \(\mathcal{A}_2^{an} = \Gamma \backslash \mathcal{H}_2 \) where
\[\Gamma = \{ g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}_4(\mathbb{Z}) \} \]
acting via \(\tau \mapsto (A\tau + B)(C\tau + D)^{-1} \).
We get coverings by taking subgroups of finite index in \(\Gamma \) (congruence subgroups!)
Analytic moduli.

Let

\[\mathcal{H}_2 = \{ \tau = \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix} \in \text{M}_2(\mathbb{C}) \mid \text{Im}(\tau) > 0 \} \]

the Siegel space of genus 2.

As an analytic space, \(\mathcal{A}_2^{an} = \Gamma \backslash \mathcal{H}_2 \) where

\[\Gamma = \{ g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}_4(\mathbb{Z}) \} \]

acting via \(\tau \mapsto (A\tau + B)(C\tau + D)^{-1} \).

We get coverings by taking subgroups of finite index in \(\Gamma \) (congruence subgroups!)
Analytic moduli.

Let

\[\mathcal{H}_2 = \{ \tau = \begin{pmatrix} \tau_1 & \tau_2 \\
\tau_2 & \tau_3 \end{pmatrix} \in M_2(\mathbb{C}) | \text{Im}(\tau) > 0 \} \]

the Siegel space of genus 2.

As an analytic space, \(\mathcal{A}_2^{an} = \Gamma \backslash \mathcal{H}_2 \) where

\[\Gamma = \{ g = \begin{pmatrix} A & B \\
C & D \end{pmatrix} \in \text{Sp}_4(\mathbb{Z}) \} \]

acting via \(\tau \mapsto (A\tau + B)(C\tau + D)^{-1} \).

We get coverings by taking subgroups of finite index in \(\Gamma \) (congruence subgroups!)
Algebraic moduli. A natural set of coordinates on the covering of M_2 given by level 2 structure is gotten by taking the cross ratios of the roots e_i, $i = 1, ..., 6$ of

$$y^2 = f(x) = (x - e_1) ... (x - e_6).$$

level 2 structure = an ordering of the 6 roots $e_1, ..., e_6$:
$Sp_4(\mathbb{Z}/2) = S_6$.
So we can describe subvarieties of M_2 by equations $H(e_1, ..., e_6) = 0$, etc. Cross-ratios in the e_i can be expressed by certain Siegel modular functions (ratios of thetanullwerte.)
Algebraic moduli. A natural set of coordinates on the covering of \mathcal{M}_2 given by level 2 structure is gotten by taking the cross ratios of the roots e_i, $i = 1, ..., 6$ of

$$y^2 = f(x) = (x - e_1)...(x - e_6).$$

level 2 structure = an ordering of the 6 roots $e_1, ..., e_6$: $Sp_4(\mathbb{Z}/2) = S_6$.
So we can describe subvarieties of \mathcal{M}_2 by equations $H(e_1, ..., e_6) = 0$, etc. Cross-ratios in the e_i can be expressed by certain Siegel modular functions (ratios of thetanullwerte.)
We are interested in the subvariety $H_\Delta \subset \mathcal{M}_2$ of those genus 2 curves X where $\text{Jac}(X)$ has endomorphisms by an order in a real quadratic field $\mathbb{Q}(\sqrt{\Delta})$. We have $\dim H_\Delta = 2$ and these are called Humbert surfaces.

1. When the integer Δ is a square, H_Δ is a product of modular curves; $\text{Jac}(X)$ factors into 2 elliptic curves for $X \in H_\Delta$.

2. When Δ is a not a square, H_Δ is a Hilbert modular surface for the field $\mathbb{Q}(\sqrt{\Delta})$.
We are interested in the subvariety $H_\Delta \subset \mathcal{M}_2$ of those genus 2 curves X where $\text{Jac}(X)$ has endomorphisms by an order in a real quadratic field $\mathbb{Q}(\sqrt{\Delta})$. We have $\dim H_\Delta = 2$ and these are called Humbert surfaces.

1. When the integer Δ is a square, H_Δ is a product of modular curves; $\text{Jac}(X)$ factors into 2 elliptic curves for $X \in H_\Delta$.

2. When Δ is a not a square, H_Δ is a Hilbert modular surface for the field $\mathbb{Q}(\sqrt{\Delta})$.

Jerome William Hoffman
Louisiana State University
We are interested in the subvariety $H_\Delta \subset \mathcal{M}_2$ of those genus 2 curves X where $\text{Jac}(X)$ has endomorphisms by an order in a real quadratic field $\mathbb{Q}(\sqrt{\Delta})$. We have $\dim H_\Delta = 2$ and these are called Humbert surfaces.

1. When the integer Δ is a square, H_Δ is a product of modular curves; $\text{Jac}(X)$ factors into 2 elliptic curves for $X \in H_\Delta$.

2. When Δ is a not a square, H_Δ is a Hilbert modular surface for the field $\mathbb{Q}(\sqrt{\Delta})$.
Explicit equations for Humbert surfaces were written down for \(\Delta = 5, 8 \) by G. Humbert. Modern treatment given by P. Bending, Hashimoto, Hirzebruch, Murabayashii, R. M. Wilson, Sakai, Shephard-Barron, R. Taylor, van der Geer.

Algorithms to compute equations of general Humbert surfaces have been developed by B. Runge, D. Gruenewald.
Explicit equations for Humbert surfaces were written down for $\Delta = 5, 8$ by G. Humbert. Modern treatment given by P. Bending, Hashimoto, Hirzebruch, Murabayashi, R. M. Wilson, Sakai, Shephard-Barron, R. Taylor, van der Geer. Algorithms to compute equations of general Humbert surfaces have been developed by B. Runge, D. Gruenewald.
The analytic equations of Humbert surfaces are quite simple: Each point of H_Δ is $Sp_4(\mathbb{Z})$-equivalent to a point $\tau \in \mathfrak{H}_2$ which satisfies

$$a\tau_1 + b\tau_2 + \tau_3 = 0, \ a, b, \in \mathbb{Z}, \ b^2 - 4a = \Delta, \ b = 0 \ or \ 1.$$

We want equations in the algebraic moduli. Humbert’s construction is based on Poncelet’s theorem. Given two projective plane conics C and D, if an n-gon can be inscribed in C in such a way that each edge of the polygon is tangent to D (i.e., the n-gon is circumscribed about D) then, given any point $P \in C$, there is an n-gon inscribed in C and circumscribed about D which passes through P.
The analytic equations of Humbert surfaces are quite simple: Each point of H_{Δ} is $\text{Sp}_4(\mathbb{Z})$-equivalent to a point $\tau \in \mathfrak{H}_2$ which satisfies

$$a\tau_1 + b\tau_2 + \tau_3 = 0, \quad a, b, \in \mathbb{Z}, \quad b^2 - 4a = \Delta, \quad b = 0 \text{ or } 1.$$

We want equations in the algebraic moduli. Humbert’s construction is based on Poncelet’s theorem. Given two projective plane conics C and D, if an n-gon can be inscribed in C in such a way that each edge of the polygon is tangent to D (i.e., the n-gon is circumscribed about D) then, given any point $P \in C$, there is an n-gon inscribed in C and circumscribed about D which passes through P.

Jerome William Hoffman Louisiana State University
Algebraic curves of GL$_2$-type
The analytic equations of Humbert surfaces are quite simple: Each point of \(H_\Delta \) is \(\text{Sp}_4(\mathbb{Z}) \)-equivalent to a point \(\tau \in \mathcal{H}_2 \) which satisfies

\[
a \tau_1 + b \tau_2 + \tau_3 = 0, \quad a, b, \in \mathbb{Z}, \quad b^2 - 4a = \Delta, \quad b = 0 \text{ or } 1.
\]

We want equations in the algebraic moduli. Humbert’s construction is based on Poncelet’s theorem. Given two projective plane conics \(C \) and \(D \), if an \(n \)-gon can be inscribed in \(C \) in such a way that each edge of the polygon is tangent to \(D \) (i.e., the \(n \)-gon is circumscribed about \(D \)) then, given any point \(P \in C \), there is an \(n \)-gon inscribed in \(C \) and circumscribed about \(D \) which passes through \(P \).
The analytic equations of Humbert surfaces are quite simple: Each point of H_Δ is $\text{Sp}_4(\mathbb{Z})$-equivalent to a point $\tau \in \mathfrak{H}_2$ which satisfies

$$a\tau_1 + b\tau_2 + \tau_3 = 0, \ a, b, \in \mathbb{Z}, \ b^2 - 4a = \Delta, \ b = 0 \text{ or } 1.$$

We want equations in the algebraic moduli. Humbert’s construction is based on Poncelet’s theorem. Given two projective plane conics C and D, if an n-gon can be inscribed in C in such a way that each edge of the polygon is tangent to D (i.e., the n-gon is circumscribed about D) then, given any point $P \in C$, there is an n-gon inscribed in C and circumscribed about D which passes through P.

Jerome William Hoffman
Louisiana State University
The analytic equations of Humbert surfaces are quite simple: Each point of H_Δ is $Sp_4(\mathbb{Z})$-equivalent to a point $\tau \in \mathfrak{H}_2$ which satisfies

$$a\tau_1 + b\tau_2 + \tau_3 = 0, \quad a, b, \in \mathbb{Z}, \quad b^2 - 4a = \Delta, \quad b = 0 \text{ or } 1.$$

We want equations in the algebraic moduli. Humbert’s construction is based on Poncelet’s theorem. Given two projective plane conics C and D, if an n-gon can be inscribed in C in such a way that each edge of the polygon is tangent to D (i.e., the n-gon is circumscribed about D) then, given any point $P \in C$, there is an n-gon inscribed in C and circumscribed about D which passes through P.
Proof (Cayley): Consider the dual projective plane: \((P^2)^* = \) the variety of lines in \(P^2\).
Let \(D^* \subset (P^2)^*\) be the variety of lines tangent to \(D\). This is also a conic.
Define
\[
E(C, D) := \{(P, \ell) \in C \times D^* \mid P \in \ell\},
\]
the incidence correspondence.
Then \(E(C, D)\) is an elliptic curve, and a Poncelet \(n\)-gon corresponds to a point of order \(n\) on \(E(C, D)\).
Proof (Cayley): Consider the dual projective plane:

$$(\mathbb{P}^2)^* = \text{the variety of lines in } \mathbb{P}^2.$$

Let $D^* \subset (\mathbb{P}^2)^*$ be the variety of lines tangent to D. This is also a conic.

Define

$$E(C, D) := \{(P, \ell) \in C \times D^* \mid P \in \ell\},$$

the incidence correspondence.

Then $E(C, D)$ is an elliptic curve, and a Poncelet n-gon corresponds to a point of order n on $E(C, D)$.

Proof (Cayley): Consider the dual projective plane:

$$(\mathbb{P}^2)^* = \text{the variety of lines in } \mathbb{P}^2.$$

Let $D^* \subset (\mathbb{P}^2)^*$ be the variety of lines tangent to D. This is also a conic.

Define

$$E(C, D) := \{(P, \ell) \in C \times D^* \mid P \in \ell\},$$

the incidence correspondence.

Then $E(C, D)$ is an elliptic curve, and a Poncelet n-gon corresponds to a point of order n on $E(C, D)$.

Jerome William Hoffman
Louisiana State University

Algebraic curves of GL_2-type
Proof (Cayley): Consider the dual projective plane:

$$(P^2)^* = \text{the variety of lines in } P^2.$$

Let $D^* \subset (P^2)^*$ be the variety of lines tangent to D. This is also a conic.

Define

$$E(C, D) := \{ (P, \ell) \in C \times D^* \mid P \in \ell \},$$

the incidence correspondence.

Then $E(C, D)$ is an elliptic curve, and a Poncelet n-gon corresponds to a point of order n on $E(C, D)$.
Humbert, Mestre: Given a Poncelet n-gon, one constructs a hyperelliptic curve X together with an action of $\mathbb{Q}(\zeta_m + \zeta_m^{-1})$ on $\text{Jac}(X)$. X is a double cover of C branched over the vertices of the n-gon. When $n = 5, 8$ this curve X has genus 2, with endomorphisms by $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{2})$ respectively. $\Delta = 8: -2\tau_1 + 2\tau_3 = 0$. This corresponds to a Poncelet 4-gon.
Humbert, Mestre: Given a Poncelet \(n \)-gon, one constructs a hyperelliptic curve \(X \) together with an action of \(\mathbb{Q}(\zeta_m + \zeta_m^{-1}) \) on \(\text{Jac}(X) \). \(X \) is a double cover of \(C \) branched over the vertices of the \(n \)-gon.

When \(n = 5, 8 \) this curve \(X \) has genus 2, with endomorphisms by \(\mathbb{Q}(\sqrt{5}) \) and \(\mathbb{Q}(\sqrt{2}) \) respectively.

\[\Delta = 8: -2\tau_1 + 2\tau_3 = 0. \] This corresponds to a Poncelet 4-gon.
Humbert, Mestre: Given a Poncelet n-gon, one constructs a hyperelliptic curve X together with an action of $\mathbb{Q}(\zeta_m + \zeta_m^{-1})$ on $\text{Jac}(X)$. X is a double cover of C branched over the vertices of the n-gon.

When $n = 5, 8$ this curve X has genus 2, with endomorphisms by $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{2})$ respectively.

$\Delta = 8$: $-2\tau_1 + 2\tau_3 = 0$. This corresponds to a Poncelet 4-gon.
Quadrilateral $\alpha\beta\gamma\delta$ is inscribed on conic C, tangent to conic D.

Genus 2 curve X is double cover of C branched over $p, q, \alpha, \beta, \gamma, \delta$.

Humbert 8 = Poncelet 4
This configuration leads to the explicit equation for $H_8 = 0$ in terms of the roots e_i of the sextic $f(x)$ where the genus 2 curve is represented by $y^2 = f(x)$.

$$H_8(e_1, \ldots, e_8) =$$

$$(e_3 - e_1)(e_3 - e_2)(e_3 - e_4)(e_4 - e_2)^2(e_3 - e_5)(e_6 - e_1)(e_6 - e_2)(e_6 - e_4)(e_6 - e_5)(e_1 - e_5)^2$$

$$+ (e_1 - e_2)(e_1 - e_3)(e_1 - e_4)(e_2 - e_4)^2(e_3 - e_5)^2(e_6 - e_2)(e_6 - e_3)(e_6 - e_4)(e_6 - e_5)(e_1 - e_5)$$

$$+ (e_3 - e_1)^2(e_4 - e_1)(e_4 - e_2)(e_4 - e_3)(e_2 - e_5)^2(e_4 - e_5)(e_6 - e_1)(e_6 - e_2)(e_6 - e_3)(e_6 - e_5)$$

$$+ (e_2 - e_1)(e_1 - e_3)^2(e_2 - e_3)(e_2 - e_4)(e_2 - e_5)(e_4 - e_5)^2(e_6 - e_1)(e_6 - e_3)(e_6 - e_4)(e_6 - e_5)$$

$$+ 16(e_1 - e_2)(e_2 - e_3)(e_1 - e_4)(e_3 - e_4)(e_2 - e_5)(e_3 - e_5)$$

$$(e_4 - e_5)(e_1 - e_6)(e_2 - e_6)(e_3 - e_6)(e_4 - e_6)(e_1 - e_5)$$
\[\Delta = 5: -\tau_1 + \tau_2 + \tau_3 = 0. \] This corresponds to a Poncelet 5-gon.
Pentagon $\alpha \beta \gamma \delta \varepsilon$
inscribes conic C
circumscribes conic D

Genus 2 curve X is the
double cover of C branched
above $\alpha, \beta, \gamma, \delta, \varepsilon$ and
a point q in C intersect D.

The correspondence

$P \rightarrow P' + P''$

lifts to a correspondence

ϕ of X with $\phi^2 + \phi - 1 = 0$
in $\text{Jac}(X)$.
This configuration leads to the explicit equation for $H_5 = 0$ in terms of the roots e_i of the sextic $f(x)$ where the genus 2 curve is represented by $y^2 = f(x)$.

$$H_5(e_1, ..., e_6) =$$

$$(e_2 - e_3)^2 (e_5 - e_1) (e_5 - e_2) (e_5 - e_3) (e_5 - e_4) (e_1 - e_6) (e_2 - e_6) (e_3 - e_6) (e_4 - e_6) (e_1 - e_4)^2$$

+$$(e_1 - e_2) (e_1 - e_3) (e_3 - e_4)^2 (e_1 - e_5) (e_2 - e_5)^2 (e_2 - e_6) (e_3 - e_6) (e_4 - e_6) (e_5 - e_6) (e_1 - e_4)$$

+$$(e_1 - e_2)^2 (e_4 - e_1) (e_4 - e_2) (e_4 - e_3) (e_4 - e_5) (e_5 - e_3)^2 (e_1 - e_6) (e_2 - e_6) (e_3 - e_6) (e_5 - e_6)$$

+$$(e_3 - e_1) (e_3 - e_2) (e_3 - e_4) (e_4 - e_2)^2 (e_3 - e_5) (e_5 - e_1)^2 (e_1 - e_6) (e_2 - e_6) (e_4 - e_6) (e_5 - e_6)$$

+$$(e_2 - e_1) (e_2 - e_3) (e_3 - e_1)^2 (e_2 - e_4) (e_2 - e_5) (e_4 - e_5)^2 (e_1 - e_6) (e_3 - e_6) (e_4 - e_6) (e_5 - e_6)$$
Let B/\mathbb{Q} be an indefinite quaternion algebra. Two-dimensional principally polarized abelian varieties A with $B \subset \text{End}(A)$ are parametrized by the points of the Shimura curve S_B associated to B. There is a universal family $X \to S_B$ of genus two curves which have Jacobians that have QM by B.

Problem. Find explicit equations for these universal families, for small values of the discriminant of B.

So far the only known examples are for discriminants 6, 10.
Let B/\mathbb{Q} be an indefinite quaternion algebra. Two-dimensional principally polarized abelian varieties A with $B \subset \text{End}(A)$ are parametrized by the points of the Shimura curve S_B associated to B. There is a universal family $X \to S_B$ of genus two curves which have Jacobians that have QM by B.

Problem. Find explicit equations for these universal families, for small values of the discriminant of B.

So far the only known examples are for discriminants 6, 10.
Let B/\mathbb{Q} be an indefinite quaternion algebra. Two-dimensional principally polarized abelian varieties A with $B \subset \text{End}(A)$ are parametrized by the points of the Shimura curve S_B associated to B. There is a universal family $X \to S_B$ of genus two curves which have Jacobians that have QM by B.

Problem. Find explicit equations for these universal families, for small values of the discriminant of B.

So far the only known examples are for discriminants 6, 10.
The idea of Hashimoto and Murabayashi is to consider the intersection of Humbert surfaces.
If a simple abelian surface \(A \) has \(\text{End}^0(A) \supset \mathbb{Q}(\sqrt{\Delta_1}), \mathbb{Q}(\sqrt{\Delta_2}) \) for two different real quadratic fields, then \(\text{End}^0(A) \) is a quaternion algebra. Thus

\[
H_{\Delta_1} \cap H_{\Delta_2} = \text{union of Shimura curves}.
\]
The idea of Hashimoto and Murabayashi is to consider the intersection of Humbert surfaces. If a simple abelian surface A has $\text{End}^0(A) \supset \mathbb{Q}(\sqrt{\Delta_1}), \mathbb{Q}(\sqrt{\Delta_2})$ for two different real quadratic fields, then $\text{End}^0(A)$ is a quaternion algebra. Thus

$$H_{\Delta_1} \cap H_{\Delta_2} = \text{union of Shimura curves}.$$
Example 1 (Brumer/Hashimoto) Let

\[f(X; a, b, c) = X^6 - (4 + 2b + 3c)X^5 + (2 + 2b + b^2 - ac)X^4 \]
\[- (6 + 4a + 6b - 2b^2 + 5c + 2ac)X^3 \]
\[+ (1 + b^2 - ac)X^2 + (2 - 2b)X + (c + 1) \]

Let \(C(a, b, c) : Y^2 = f(X; a, b, c) \), assume \(f(X, a, b, c) \) has 6 distinct roots. Then \(C(a, b, c) \) is a genus two curve with RM by \(\mathbb{Q}(\sqrt{5}) \). These endomorphisms are defined over \(\mathbb{Q}(a, b, c) \). Hence if \(a, b, c, \in \mathbb{Q} \), the curve is modular.
Example 1 (Brumer/Hashimoto) Let

\[
f(X; a, b, c) = X^6 - (4 + 2b + 3c)X^5 + (2 + 2b + b^2 - ac)X^4 \\
- (6 + 4a + 6b - 2b^2 + 5c + 2ac)X^3 \\
+ (1 + b^2 - ac)X^2 + (2 - 2b)X + (c + 1)
\]

Let \(C(a, b, c) : Y^2 = f(X; a, b, c) \), assume \(f(X, a, b, c) \) has 6 distinct roots. Then \(C(a, b, c) \) is a genus two curve with RM by \(\mathbb{Q}(\sqrt{5}) \). These endomorphisms are defined over \(\mathbb{Q}(a, b, c) \). Hence if \(a, b, c, \in \mathbb{Q} \), the curve is modular.
Example 1 (Brumer/Hashimoto) Let

\[f(X; a, b, c) = X^6 - (4 + 2b + 3c)X^5 + (2 + 2b + b^2 - ac)X^4 \\
- (6 + 4a + 6b - 2b^2 + 5c + 2ac)X^3 \\
+ (1 + b^2 - ac)X^2 + (2 - 2b)X + (c + 1) \]

Let \(C(a, b, c) : Y^2 = f(X; a, b, c) \), assume \(f(X, a, b, c) \) has 6 distinct roots. Then \(C(a, b, c) \) is a genus two curve with RM by \(\mathbb{Q}(\sqrt{5}) \). These endomorphisms are defined over \(\mathbb{Q}(a, b, c) \). Hence if \(a, b, c, \in \mathbb{Q} \), the curve is modular.
Example 2 (P. Bending) Let $K \subset \mathbb{C}$ be a field. Let $A, P \neq 0, Q, D \neq 0$ in K. Define

$$B = \frac{Q(PA - Q) + 4P^2 + 1}{P^2}, \quad C = \frac{4(PA - Q)}{P}.$$

Define α_i by $\prod_{i=0}^{2}(X - \alpha_i) = X^3 + AX^2 + BX + C$. Then the genus 2 curve

$$Y^2 = D \prod_{i=0}^{2}(X^2 - \alpha_iX + P\alpha_i^2 + Q\alpha_i + 4P)$$

is defined over K and has RM by $\mathbb{Q}(\sqrt{2})$, also defined over K. Hence if $K = \mathbb{Q}$, these curves are modular.
Example 2 (P. Bending) Let $K \subset \mathbb{C}$ be a field. Let $A, P \neq 0, Q, D \neq 0$ in K. Define

$$B = \frac{Q(PA - Q) + 4P^2 + 1}{P^2}, \quad C = \frac{4(PA - Q)}{P}.$$

Define α_i by $\prod_{i=0}^{2} (X - \alpha_i) = X^3 + AX^2 + BX + C$. Then the genus 2 curve

$$Y^2 = D \prod_{i=0}^{2} (X^2 - \alpha_i X + P\alpha_i^2 + Q\alpha_i + 4P)$$

is defined over K and has RM by $\mathbb{Q}(\sqrt{2})$, also defined over K. Hence if $K = \mathbb{Q}$, these curves are modular.
Example 2 (P. Bending) Let $K \subset \mathbb{C}$ be a field. Let $A, P \neq 0, Q, D \neq 0$ in K. Define

$$B = \frac{Q(PA - Q) + 4P^2 + 1}{P^2}, \quad C = \frac{4(PA - Q)}{P}.$$

Define α_i by $\prod_{i=0}^2(X - \alpha_i) = X^3 + AX^2 + BX + C$. Then the genus 2 curve

$$Y^2 = D \prod_{i=0}^2(X^2 - \alpha_iX + P\alpha_i^2 + Q\alpha_i + 4P)$$

is defined over K and has RM by $\mathbb{Q}(\sqrt{2})$, also defined over K. Hence if $K = \mathbb{Q}$, these curves are modular.
Example 2 (P. Bending) Let $K \subset \mathbb{C}$ be a field. Let $A, P \neq 0, Q, D \neq 0$ in K. Define

$$B = \frac{Q(PA - Q) + 4P^2 + 1}{P^2}, \quad C = \frac{4(PA - Q)}{P}.$$

Define α_i by $\prod_{i=0}^{2}(X - \alpha_i) = X^3 + AX^2 + BX + C$. Then the genus 2 curve

$$Y^2 = D \prod_{i=0}^{2}(X^2 - \alpha_iX + P\alpha_i^2 + Q\alpha_i + 4P)$$

is defined over K and has RM by $\mathbb{Q}(\sqrt{2})$, also defined over K. Hence if $K = \mathbb{Q}$, these curves are modular.
Example 2 (P. Bending) Let $K \subset \mathbb{C}$ be a field. Let $A, P \neq 0, Q, D \neq 0$ in K. Define

$$B = \frac{Q(PA - Q) + 4P^2 + 1}{P^2}, \quad C = \frac{4(PA - Q)}{P}.$$

Define α_i by $\prod_{i=0}^{2}(X - \alpha_i) = X^3 + AX^2 + BX + C$. Then the genus 2 curve

$$Y^2 = D \prod_{i=0}^{2}(X^2 - \alpha_i X + P\alpha_i^2 + Q\alpha_i + 4P)$$

is defined over K and has RM by $\mathbb{Q} (\sqrt{2})$, also defined over K. Hence if $K = \mathbb{Q}$, these curves are modular.
Example 3 (Bending/Hashimoto/Murabayashii) Let $K \subset \mathbb{C}$ be a field. Let N, D in K^* with $N^2 \neq -1$. Let C be the curve

$$Y^2 = D[(N-1)X^6 - 6NX^5 + 3(N+1)X^4 - 8N^2X^3 + 3(N-1)X^2 + 6N + N+1]$$

Then $\text{End}_K^0(\text{Jac}(C))$ contains the division quaternion algebra B_6 of discriminant 6, namely $\left(\frac{2,-3}{\mathbb{Q}}\right)$. The action of $\mathbb{Q}(\sqrt{2}) \subset B_6$ is defined over K and the action of $\mathbb{Q}(\sqrt{-3}) \subset B_6$ is defined over $K(\sqrt{-3})$. Hence if $N, D \in \mathbb{Q}$ these are modular.
Example 3 (Bending/Hashimoto/Murabayashii) Let $K \subset \mathbb{C}$ be a field. Let N, D in K^* with $N^2 \neq -1$. Let C be the curve

$$Y^2 = D[(N-1)X^6 - 6NX^5 + 3(N+1)X^4 - 8N^2X^3 + 3(N-1)X^2 + 6N + N+1]$$

Then $\text{End}_K^0(\text{Jac}(C))$ contains the division quaternion algebra B_6 of discriminant 6, namely $\left(\frac{2,-3}{\mathbb{Q}}\right)$. The action of $\mathbb{Q}(\sqrt{2}) \subset B_6$ is defined over K and the action of $\mathbb{Q}(\sqrt{-3}) \subset B_6$ is defined over $K(\sqrt{-3})$. Hence if $N, D \in \mathbb{Q}$ these are modular.
Example 3 (Bending/Hashimoto/Murabayashii) Let $K \subset \mathbb{C}$ be a field. Let N, D in K^* with $N^2 \neq -1$. Let C be the curve

$$Y^2 = D[(N-1)X^6 - 6NX^5 + 3(N+1)X^4 - 8N^2X^3 + 3(N-1)X^2 + 6N + N+1]$$

Then $\text{End}^0_K(\text{Jac}(C))$ contains the division quaternion algebra B_6 of discriminant 6, namely $\left(\frac{2,-3}{\mathbb{Q}}\right)$. The action of $\mathbb{Q}(\sqrt{2}) \subset B_6$ is defined over K and the action of $\mathbb{Q}(\sqrt{-3}) \subset B_6$ is defined over $K(\sqrt{-3})$. Hence if $N, D \in \mathbb{Q}$ these are modular.
Example 3 (Bending/Hashimoto/Murabayashi) Let $K \subset \mathbb{C}$ be a field. Let N, D in K^* with $N^2 \neq -1$. Let C be the curve

\[Y^2 = D[(N-1)X^6 - 6NX^5 + 3(N+1)X^4 - 8N^2X^3 + 3(N-1)X^2 + 6N + N+1] \]

Then $\text{End}_K^0(\text{Jac}(C))$ contains the division quaternion algebra B_6 of discriminant 6, namely $\left(\frac{2,-3}{\mathbb{Q}}\right)$. The action of $\mathbb{Q}(\sqrt{2}) \subset B_6$ is defined over K and the action of $\mathbb{Q}(\sqrt{-3}) \subset B_6$ is defined over $K(\sqrt{-3})$. Hence if $N, D \in \mathbb{Q}$ these are modular.
Example 4 (QM by B_{10}) Let

$$C : y^2 = x^6 - 16x^5 + 40x^4 + 140x^3 + 80x^2 - 64x + 64.$$

Then $\text{Jac}(C)$ has multiplications by the quaternion division ring of discriminant 10. We have

$$\det(X - \rho(\text{Frob}_p)) = g_p(X)\overline{g_p(X)}$$

for $g_p(X) \in \mathbb{Q}(\sqrt{5})[X]$.

Jerome William Hoffman
Louisiana State University

Algebraic curves of GL_2-type
<table>
<thead>
<tr>
<th>p</th>
<th>$g_p(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$X^2 + \sqrt{5}X + 3$</td>
</tr>
<tr>
<td>11</td>
<td>$X^2 + 3X + 11$</td>
</tr>
<tr>
<td>13</td>
<td>$X^2 + 3\sqrt{5}X + 13$</td>
</tr>
<tr>
<td>17</td>
<td>$X^2 + \sqrt{5}X + 17$</td>
</tr>
<tr>
<td>19</td>
<td>$X^2 + 19$</td>
</tr>
<tr>
<td>23</td>
<td>$X^2 + 23$</td>
</tr>
<tr>
<td>29</td>
<td>$X^2 + 9X + 29$</td>
</tr>
<tr>
<td>31</td>
<td>$X^2 + 31$</td>
</tr>
<tr>
<td>37</td>
<td>$X^2 + 37$</td>
</tr>
<tr>
<td>41</td>
<td>$X^2 + 41$</td>
</tr>
<tr>
<td>43</td>
<td>$X^2 + 43$</td>
</tr>
<tr>
<td>47</td>
<td>$X^2 + 5\sqrt{5}X + 47$</td>
</tr>
</tbody>
</table>
Example 5 (RM by $\mathbb{Q}(\sqrt{2})$) Let

$$C : y^2 = 21x^5 + 50x^4 + 5x^3 - 20x^2 + 4x.$$

Then $\text{Jac}(C)$ has multiplications by $\mathbb{Q}(\sqrt{2})$, but the endomorphisms are defined over $\mathbb{Q}(\sqrt{2})$. The ℓ-adic representation here is not obviously automorphic. The conductor is $2^23^27^2$. This is a special case of a 1-parameter family of Hashimoto/Sakai.
<table>
<thead>
<tr>
<th>p</th>
<th>$\det(X - \rho(\text{Frob}_p))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$(X^2 - 5)^2$</td>
</tr>
<tr>
<td>11</td>
<td>$(X^2 + 4\sqrt{2}X + 11)(X^2 - 4\sqrt{2}X + 11)$</td>
</tr>
<tr>
<td>13</td>
<td>$X^4 + 6X^2 + 13^2$</td>
</tr>
<tr>
<td>17</td>
<td>$(X^2 + (4\sqrt{2} - 2)X + 17)(X^2 + (-4\sqrt{2} - 2)X + 17)$</td>
</tr>
<tr>
<td>19</td>
<td>$X^4 - 10X^2 + 19^2$</td>
</tr>
<tr>
<td>23</td>
<td>$(X^2 + 4\sqrt{2}X + 23)(X^2 - 4\sqrt{2}X + 23)$</td>
</tr>
<tr>
<td>29</td>
<td>$(X^2 + 6\sqrt{2}X + 29)(X^2 - 6\sqrt{2}X + 29)$</td>
</tr>
<tr>
<td>31</td>
<td>$(X^2 + 31)^2$</td>
</tr>
<tr>
<td>37</td>
<td>$(X^2 + 10X + 37)(X^2 - 10X + 37)$</td>
</tr>
<tr>
<td>41</td>
<td>$(X^2 + (4\sqrt{2} - 2)X + 41)(X^2 + (-4\sqrt{2} - 2)X + 41)$</td>
</tr>
<tr>
<td>43</td>
<td>$X^4 + 3X^2 + 43^2$</td>
</tr>
<tr>
<td>47</td>
<td>$(X^2 - 8X + 47)^2$</td>
</tr>
</tbody>
</table>
Example 6 (RM by $\mathbb{Q}(\sqrt{2})$) Let

$$C : y^2 = 9x^5 - 210x^4 + 165x^3 + 16740x^2 - 74844x$$

Then $\text{Jac}(C)$ has multiplications by $\mathbb{Q}(\sqrt{2})$, but the endomorphisms are defined over $\mathbb{Q}(\sqrt{-2})$. The ℓ-adic representation here is not obviously automorphic. The conductor is $2^33^77^111$. This is special case of a 1-parameter family of Hashimoto/Sakai.
<table>
<thead>
<tr>
<th>p</th>
<th>$\text{det}(X - \rho(\text{Frob}_p))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$(X^2 - 5)^2$</td>
</tr>
<tr>
<td>13</td>
<td>$X^4 - 6X^2 + 13^2$</td>
</tr>
<tr>
<td>17</td>
<td>$(X^2 + (4\sqrt{2} - 2)X + 17)(X^2 + (-4\sqrt{2} - 2)X + 17)$</td>
</tr>
<tr>
<td>19</td>
<td>$(X^2 + 4\sqrt{2}X + 19)(X^2 - 4\sqrt{2}X + 19)$</td>
</tr>
<tr>
<td>23</td>
<td>$(X^2 + 4\sqrt{2}X + 23)(X^2 - 4\sqrt{2}X + 23)$</td>
</tr>
<tr>
<td>29</td>
<td>$X^4 - 10X^2 + 29^2$</td>
</tr>
<tr>
<td>31</td>
<td>$(X^2 + 4\sqrt{2}X + 31)(X^2 - 4\sqrt{2}X + 31)$</td>
</tr>
<tr>
<td>37</td>
<td>$(X^2 + 6X + 37)(X^2 - 6X + 37)$</td>
</tr>
<tr>
<td>41</td>
<td>$(X^2 + (4\sqrt{2} + 6)X + 41)(X^2 + (-4\sqrt{2} + 6)X + 41)$</td>
</tr>
<tr>
<td>43</td>
<td>$(X^2 + 8X + 43)^2$</td>
</tr>
<tr>
<td>47</td>
<td>$(X^2 + 8X + 47)(X^2 - 8X + 47)$</td>
</tr>
</tbody>
</table>
Thanks to Ramin Takloo-Bighash and Winnie Li!