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Abstract. We give an example of a noncongruence subgroup Γ ⊂

SL(2, Z) whose space of weight 3 cusp forms S3(Γ) admits a basis sat-
isfying the Atkin-Swinnerton-Dyer congruence relations with respect to
a weight 3 newform for a certain congruence subgroup. This gives a
modularity interpretation of the motive attached to S3(Γ) by A. Scholl
and also verifies the Atkin-Swinnerton-Dyer congruence conjecture for
this space.

1. Introduction

Let Γ ⊂ SL(2, Z) be a subgroup of finite index. We distinguish two cases:

1. Γ is a congruence subgroup. This means that Γ contains

Γ(N) = {γ ∈ SL(2, Z) | γ ≡ I mod N}

for some integer N ≥ 1.
2. Γ is a noncongruence subgroup, which means that it is not a congruence

subgroup.

Recall that SL(2, R) acts on the upper half-plane of complex numbers H by
linear fractional transformations. For any Γ as above the quotient Γ\H is a
Riemann surface, which on adding a finite number of points (cusps) becomes
compact. It is known that this Riemann surface is the set of C-points of an
algebraic curve defined over a finite extension K of Q. If Γ is a congruence
subgroup the explicit K-model of this Riemann surface is a moduli space
for a family of elliptic curves with additional structures. We let Mk(Γ),
resp. Sk(Γ), denote the finite-dimensional vector space of modular forms,
resp. cusp forms, for Γ. Also Sk(Γ0(N), χ) is the space of cusp forms with
character χ : (Z/N)∗ → C∗.

There is a vast theory of modular forms when Γ is a congruence subgroup.
Key points are the action of the Hecke algebra T on the spaces of modular
forms, the theory of newforms, and the L-functions associated to the Hecke
eigenfunctions. General reference: [Shi71]. Recall:
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Theorem 1.1. Let 0 6= f ∈ Mk(Γ0(N), χ). Suppose that k ≥ 2 and that f
is an eigenfunction of Tp ∈ T, all p - N , with eigenvalue ap. Let K be the
necessarily finite extension of Q generated by the ap and the χ(p). Let λ be
a finite place of K, of residual characteristic l, and let Kλ be the completion
of K in λ. There exists a semisimple continuous representation

ρλ : Gal(Q/Q) −→ GL(2, Kλ)

which is unramified outside Nl and such that

Tr(ρλ(Frobp)) = ap, det(ρλ(Frobp)) = χ(p)pk−1, if p - Nl.

The above statement is taken from [DS74], and the result is commonly
attributed to Deligne, although a complete proof seems not to have been
published by him. See the remark 6.2 in [DS74] for more precisions on this.

For N ≥ 1 a positive integer let X(N) be the coarse moduli scheme
associated to the functor FN : (Schemes/Z[1/N ]) → (Sets):

FN (S) =

{

(E,α), where E/S is a generalized elliptic curve

α : E[N ]
∼
−→ µN × Z/N is an isomorphism of determinant one

}

and let j : Y (N) ↪→ X(N) be the inclusion of the open subset corresponding
to smooth E/S (a summary of properties of these can be found in [Sch85ii],
with details in [DR73],[KM85] and [Con]). When N = 1 this is the j-line.
One has

X(N)an = X(N)(C) = Γ(N)\H∗.

X(N) is proper and smooth over Z[1/N ] and its geometric fibers are irre-
ducible curves. X(N) ⊗ Q is the curve denoted ΓN in [Shi58, p. 11] and
the function field Q(X(N)) is the field of all modular functions of level N

whose Fourier expansion relative to q1/N = e2πiz/N have coefficients in Q.
When N ≥ 3 this scheme represents the corresponding functor. In that case
we let f : E → Y (N) be the universal elliptic curve. Recall the parabolic
cohomology groups

k
NVB = H1(X(N)an, j∗SymkR1f∗Q)

k
NVl = H1

et(X(N) ⊗Q, j∗SymkR1f∗Ql)

∼= k
NVB ⊗Q Ql.

Then

k
NVDR = k

NVB ⊗C = Sk+2(Γ(N)) ⊕ Sk+2(Γ(N))

which is a Hodge decomposition of type (k + 1, 0) + (0, k + 1).

Theorem 1.2. The canonical representation

ρ : Gal(Q/Q) −→ GL(k
NVl)
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is unramified outside Nl, is pure of weight k + 1, and

det(1 − ρ(Frobp)U) = det(1 − TpU + pSpU
2 | Sk+2(Γ(N)))

for all p - Nl. Here Tp and Sp are the standard Hecke operators.

This theorem is due to Deligne [Del73] and it extends earlier results of
Eichler, Shimura, Kuga and Ihara, [Eic54], [Shi58], [KS65], [I67]. As a
consequence, Deligne proved the Ramanujan-Petersson conjecture on the
growth of the q-expansion coefficients of cusp forms. Scholl [Sch90] has
constructed motives k

NVl whose realizations, Betti, deRham, l-adic, are the

spaces k
NVB, k

NVDR, k
NVl.

Remark. In fact Scholl constructs motives k
NWl based not on X(N),

but on the the modular curve MN which parametrizes all level N structures
(this is also utilized in [Del73]). MN is not absolutely irreducible over Q:
its analytic space is a disjoint union of ϕ(N) copies of the Riemann surface
for Γ(N). The function field Q(MN ) is the field of all modular functions of
level N whose q1/N -expansion coefficients are in Q(ζN ), ζN = e2πi/N , the
field denoted FN in [Shi71, p. 137]. We can recover the k

NVl, etc. from the
k
NWl, etc., by taking invariants under

H =

{(

∗ 0
0 1

)}

⊂ GL(2, Z/N)

which acts on MN preserving all relevant structures. Note that MN/H ∼=
X(N).

Theorem 1.1 follows from theorem 1.2 and from the action of the Hecke
algebra: for each newform f of level N one obtains after tensoring with the
eigenvalue field K of f , a projector Ψf on the l-adic representation. Similar
results hold for N = 1, 2 by taking appropriate invariants.

The study of modular forms on noncongruence subgroups was initiated
by Atkin and Swinnerton-Dyer who performed many computer experiments
in the 1960’s and discovered emprirically congruences that now bear their
names, [ASD71]. A. J. Scholl began a theoretical investigation starting in
the 1980’s (see [Sch85i], [Sch85ii], [Sch87], [Sch88], [Sch93], [Sch96], [Sch97]).
In particular, he constructed l-adic representaions k

ΓVl for any Γ, but there is
no simple relation to the Hecke algebra, nor any analog of theorem 1.1, if Γ is
noncongruence, for the reason that the Hecke algebra does not act by corre-
spondances on the associated curve X(Γ). General philosophy suggests that
these l-adic representations should be governed by automorphic representa-
tions associated to symplectic groups when k is even, and orthogonal groups
when k is odd, but one does not expect classical cusp forms, associated to
GL(2, Q), to appear in general when Γ is noncongruence. When k = 0,
these l-adic representations include the H1’s of essentally all smooth pro-
jective curves over Q since by Belyi’s theorem, every smooth and projective
curve over Q has a nonempty Zariski open subset with a uniformization by
a subgroup Γ, generally noncongruence. Moreover, Scholl has given explicit
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examples of Γ, k where the image of the Galois group is an open subgroup of
GSp(2d,Ql), so these cannot be associated to classical cusp forms, [Sch04].

Nonetheless, there are situations where classical cusp forms arise in the
l-adic representations of noncongruence subgroups. Let d = dimSk+2(Γ),
hence 2d = dim k

ΓVl. When d = 1 we have a 2-dimensional representation,
and one can expect modular forms on congruence subgroups. Scholl exam-
ined several examples of these, [Sch88], [Sch93]. For instance if Γ = Γ711, a
subgroup of index 9 with three cusps of width 7, 1, 1, he found that

Tr(Frobp | 2
ΓVl) = cp(g) for all p 6= 2, 7, l

where cp(g) is the pth q-expansion coefficient of the unique newform g ∈
S4(Γ0(14), χ) for a certain character χ. Also, by studying the crystalline
realization 2

ΓVp he was able to prove the ASwD congruences for the expansion
coefficients of the unique element f ∈ S4(Γ), relative to the {cp(g)}. Let us
recall the definitions.

The Riemann surface Γ\H∗ is the set of C-points of an algebraic curve
X(Γ) defined over a number field K. There exists a subfield L of K, an
element κ ∈ K with κµ ∈ L, where µ is the width of the cusp ∞, and a
positive integer M such that κµ is integral outside M and Sk(Γ) has a basis
consisting of M -integral forms. Here a form f ∈ Sk(Γ) is called M -integral
if in its Fourier expansion at the cusp ∞

f(τ) =
∑

n≥1

an(f)qn/µ,(1)

the Fourier coefficients an(f) can be written as κnbn(f) with bn(f) lying in
the ring OL[1/M ], where OL denotes the ring of integers of L. Note that the
expansion coefficients of a modular form on a noncongruence subgroup can
have unbounded denominators, contrary to what happens for congruence
subgroups.

Let f =
∑

n≥1 an(f)qn/µ be an M -integral cusp form in Sk(Γ), and let g =
∑

n≥1 cn(g)qn be a normalized newform of weight k level N and character

χ. The following definition is taken from [LLY03].

Definition 1.3. The two forms f and g above are said to satisfy the Atkin-
Swinnerton-Dyer congruence relation if, for all primes p not dividing MN
and for all n ≥ 1,

(anp(f) − cp(g)an(f) + χ(p)pk−1an/p(f))/(np)k−1(2)

is integral at all places dividing p.

Scholl proved the following in [Sch85ii]

Theorem 1.4. Suppose that X(Γ) has a model over Q as before. Attached
to Sk(Γ) is a compatible family of 2d-dimensional l-adic representations ρl

of the Galois group Gal(Q̄/Q) unramified outside lM such that for primes
p > k + 1 not dividing Ml, the following hold.
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(i) The characteristic polynomial

Hp(T ) =
∑

0≤r≤2d

Br(p)T
2d−r(3)

of ρl(Frobp) lies in Z[T ] and is independent of l, and its roots are algebraic

integers with absolute value p(k−1)/2;
(ii) For any M -integral form f in Sk(Γ), its Fourier coefficients an(f),

n ≥ 1, satisfy the congruence relation

ordp(anpd(f) +B1(p)anpd−1(f) + · · · +B2d−1(p)an/pd−1(f) +B2d(p)an/pd(f))

≥ (k − 1)(1 + ordpn)

(4)

for n ≥ 1.

Thus, if d = 1, and f ∈ Sk(Γ) is M -integral, it will satisfy ASwD con-
gruences relative to a newform g on a congruence subgroup if one can prove
that the l-adic representation above is modular, that is, isomorphic with the
representation attached by Deligne to the newform g.

In a recent paper, Li, Long and Yang [LLY03] have given the first exam-
ple with d = 2 and k ≥ 3 where one can establish ASwD relations for a
noncongruence subgroup. Their Γ is of index three inside Γ1(5), and they
show the existence of a basis f+, f− of S3(Γ) which satisfies ASwD relations
relative to a basis g+, g− of S3(Γ0(27), χ), where χ is the unique character
of order 2 and conductor 3. Since Γ1(5) is a normal subgroup of index 4
in Γ0(5) there is A ∈ Γ0(5) of order 4 that acts on the curve X1(5) ∼ P1

permuting the four cusps in pairs. Γ corresponds to the cyclic covering of
degree 3: X(Γ) → X1(5) that ramifies the two cusps of width 5, and A
extends to an operator on X(Γ) and also on the elliptic surface E → X(Γ)
gotten by pulling back the universal elliptic curve over X1(5). Thus Sk(Γ)
is an A-module. When k = 3 this is two-dimensional, and f± are the A-
eigenvectors with eigenvalues ±i. The operator A also commutes with the
action of the Galois group on the 4-dimensional 1

ΓVl.
Heuristically, the success of their method can be understood as follows.

There is a nondegenerate bilinear pairing

b : 1
ΓVl ⊗

1
ΓVl −→ Ql(−2)

which is symmetric since k = 1 is odd. Thus the Galois representation ρ
takes values in the group of orthogonal similitudes GO(b). It is well-known
that SO(4, C) = SL(2, C)×SL(2, C) up to covering. We may regard 1

ΓVl as
a rank 2 module over Q(A)⊗Ql = Q(i)⊗Ql, and the Galois representation
takes values in GO(b) ⊂ G(Ql) where

G = Res
Q(i)
Q (GL(2)),

which is a form of GL(2)×GL(2). One then expects that ρ should be auto-
morphic for this G, which means that we expect to find a pair of newforms
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g± with coefficients in Q(i) and conjugate under i→ −i, such that

Tr(Frobp | 1
ΓVl) = cp(g+) + cp(g−)

for almost all p, which is exactly what LLY found. Similar results should
be true for k odd and d = 2, or for any k in which there are sufficient
symmetries to decompose the l-adic representation into pieces with d ≤ 2,
this being what happens for congruence subgroups, the symmetries coming
from the Hecke algebra.

2. The method

We give another example of a noncongruence subgroup Γ, with dimS3(Γ) =
2 for which we can establish modularity and ASwD congruences. The ex-
ample in [LLY03] is of index three in Γ1(5), which is one of the 6 torsion free
genus 0 subgroups of index 12 in PSL(2,Z) identified by Sebbar [Seb01].
We use the same construction, but applied to another subgroup on this
list. Namely, we define a subgroup Γ of index 3 inside Γ′ = Γ0(8) ∩ Γ1(4),
whose image in PSL(2, Z) is of index 12, by constructing an explicit covering
X(Γ) → X(Γ′) of degree 3 with certain ramification properties. We identify
an operator A that normalizes Γ′ and extends to an automorphism of X(Γ)
and also to the elliptic surface E → X(Γ). That done, we find explicit q-
expansions for the cusp forms in S3(Γ), which is a 2-dimensional space. Next,
we compute a table of traces of Frobp and Frobp2 acting on H1(X(Γ),F),

where F = j∗R
1f∗Ql. This is an application of the Grothendieck-Lefschetz

formula which asserts here that

Tr(Frobq|H
1(X(Γ),F)) = −

∑

x∈X(Fq)

Tr(Frobx|Fx).

(Note that H i(X(Γ),F) = 0 for i = 0, 2.) The local traces are of two types:

1. The fiber Ex is smooth. Then

Tr(Frobx|Fx) = Tr(Frobx|H
1(Ex,Ql)) = q + 1 − #Ex(Fq).

2. The fiber Ex is singular. Tate’s algorithm ([Tate72]) is then used to
determine the fiber in the minimal model of the reduction mod x. Then

Tr(Frobx|Fx) =











1 if the fiber is split multiplicative.

−1 if the fiber is nonsplit multiplicative.

0 if the fiber is additive.

Code was written in Magma to accomplish this. Next, William Stein’s
tables ([Stein]) were searched to find spaces of cusp forms on congruence
subgroups that matched the traces we computed. The modular forms having
been found, the method of Faltings/Serre/Livné ([Fal83], [Ser84], [Liv87])is
applied to establish rigorously that the Galois representation

1
ΓVl = H1(X(Γ),F)
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is isomorphic to the one coming from this space of cusp forms. The ASwD
congruences then follow from the general theory developed in [Sch85i], [Sch85ii].
Our main result is

Theorem 2.1. 1.) Let

ρ : Gal(Q/Q) −→ GL(1ΓVl)

be the 4-dimensional Galois representation constructed by Scholl associated
to the cusp forms of weight 3 on the noncongruence subgroup Γ ⊂ Γ0(8) ∩
Γ1(4) defined by a cyclic covering of degree three X(Γ) → X0(8). The unique
normalized newform

f ∈ S3(Γ0(12), χ), with χ of order 2 and conductor 3

satisfies the relation

Tr(ρ(Frobp)) = 2cp(f), p 6= 2, 3, l,

where cp(f) is the pth coefficient in the q-expansion of f . In other words,

1
ΓVl

∼= V 2
f,l

where Vf,l is the representation attached to the cusp form f.
2.) There is a basis h1, h2 of S3(Γ) each member of which satisfies ASwD

congruences relative to f.

3. Results

We start with Γ′ = Γ0(8)∩Γ1(4), which has the same image in PSL(2,Z)
as Γ0(8). The modular curve X0(8) has genus zero, and we can choose a
convenient Hauptmodul t for it as follows.

Consider Γ1(4). This has 3 cusps: 0, 1/2,∞ of widths 4, 1, 1 respectively.
A picture of its fundamental domain is : 

 

t = ( 1 1
0 1 )

g = ( 1 0
4 1 )

0 1

2
− 1

2

By definition, a Hauptmodul of a genus 0 curve X is a generator for the
function field of X relative to its constant field. For a modular curve of
genus 0 such as Γ1(4), this is a meromorphic automorphic form of weight
0, in particular, s(γ.z) = s(z), for all γ ∈ Γ1(4) and the function field of
X1(4) is Q(s). We can choose a Hauptmodul for X1(4) by letting s(0) =
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1, s(1/2) = ∞, s(∞) = 0, which fixes it uniquely. From Kubert’s paper
[Ku76] we find an equation for the universal elliptic curve over X1(4) to be,
after a change of variables s = 16b+ 1,

y2 + 4xy + 4(1 − s)y = x3 + (1 − s)x2.

The j-invariant is

j =
16(s2 + 14s+ 1)3

s(s− 1)4

which shows cusp widths of 4, 1, 1 at s = 1,∞, 0 as it should be. The double
covering X0(8) → X1(4) ramifies the cusp of width 4 and one of the cusps
of width 1. We can accomplish this by setting t2 = 1− s. Note that t→ −t
generates the Galois group of this covering. The four cusps of Γ0(8) occur
at t = 0,∞, 1,−1 of widths 8, 2, 1, 1 respectively. Note that Γ0(8)\H is
isomorphic with the t-line C − {0, 1,−1}. We compactify this by adding
cusps to get P1. The universal family of elliptic curves is obtained by this
substitution. A picture of the fundamental domain is:

( 1 1
0 1

)

( 1 0
8 1

)
(

5 −2

8 −3

)

− 1

4
0 1

4

1

2

3

4

Let E be the the minimal smooth model of the elliptic surface given by

y2 + 4xy + 4t2y = x3 + t2x2

where the parameter t runs through the points in the projective line P1.
Viewed as an elliptic curve defined over Q(t), its discriminant is

∆ = −256t10 + 256t8.

We easily get the j-invariant using Magma:

j =
16(t4 − 16t2 + 16)3

t8(1 + t)(1 − t)
.(5)

This shows cusp widths of 8, 2, 1, 1 at t = 0,∞, 1,−1.
Here is a table of cusps and the generators of stabilizers for each cusp.

This was computed using Magma.
Let g be the unique element of S6(Γ1(4)). We know that

dimS6(Γ1(4)) = 1.
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Cusps of Γ0(8) Widths Generators of stabilizers

∞ 1

(

1 1
0 1

)

0 8

(

1 0
−8 1

)

1/4 1

(

−3 1
−16 5

)

1/2 2

(

−3 2
−8 5

)

Table 1. Table of cusps of Γ0(8)

In fact it is easy to see that

g(z) =
√

∆(2z) = η(2z)12 = q

∞
∏

n=1

(1 − q2n)12, q = e2πiz.

The general theory of Eisenstein series guarantees the existence of E1, E2 ∈
M3(Γ0(8)) which are 0 at all cusps except t = ∞, 0 respectively. Since the
number of zeros on X0(8) of any modular form of weight k is

µ · k

12
= k

where µ is the index of the subgroup, here 12, we see that Table 2 displays
all the zeros and poles of the indicated modular forms.

Widths 2 8 1 1
z 1/2 0 ∞ 1/4
s ∞2 1 0 0
t ∞ 0 1 -1
g 02 02 0 0
E1 1 0 0 0
E2 0 1 0 0
E2

1/g ∞2 * 0 0

Table 2. Data for modular forms on Γ0(8)

Recalling that a meromorphic modular form of weight 0 for Γ0(8) is a
rational function of t, and that a rational function is determined up to
constant multiple by its zeros and poles, we see that t = E1/E2, up to a
scaling of the Ei. From the above table, E2

1/g has weight 0 and hence is in
the function field, and looking at zeros and poles we see E2

1 = g · (t2 − 1)

and hence E1 =
√

g · (t2 − 1).
We let Γ ⊂ Γ0(8)∩Γ1(4) be the subgoup of index 3 defined by the covering

X → X0(8) with equation t = u3. In other words, we let X = P1 with
coordinate u and define a map X → X0(8) by this rule. This covering
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ramifies only the cusps t = 0,∞ with ramification index 3, so that Γ has 8
cusps, at u = 0,∞, u = ζ i, i = 0, ...5 with widths 24, 6, 1 respectively. Here
ζ is a primitive sixth root of unity. Looking at Sebbar’s table [Seb01] we see
that Γ is not a congruence subgroup. Using standard formulas, we compute

dimS3(Γ) = 2.

Here is a picture of its fundamental domain:

0 1− 1

2

3

2

t6

g = ( 1 0
8 1

)

1

2

t =
(

1
1

2

0 1

)

1

4
− 1

4
− 3

4
− 5

4
−1 7

4

5

4

3

4

t−1gtt−2gt2 g tgt−1 t2gt−2 t3gt−3

We found explicit expansions for 2 cusp forms in a basis of this. We
chose as expansion point for the modular forms, the point u = 1 of width 1.
Since this lies over the point where z = i∞, the expansion parameter will be
q = exp(2πiz), which is the standard local parameter for the cusp z = i∞.
We define h1, h2 ∈ S3(Γ) as in the paper LLY as

h1 = 3

√

E2
1E2, h2 = 3

√

E1E
2
2 .(6)

Since these have zeros of order 3 at the cusps t = ±1, which are unramified
in the covering by X these become single valued holomorphic on X, whereas
their order at the ramified cusps t = 0,∞ only become integral on X. We
find the r-expansion of h1, h2 by first finding the q-expansion of E1, E2. Note
that q is a local coordinate at t = 1 on X(Γ0(8) ∩ Γ1(4)). Unlike the LLY
paper, we do not use the explicit formulas from the theory of Eisenstein
series. Instead, we use a computer to recursively solve the j-equation (5) in
unknowns:

t− 1 = aq + bq2 + cq3 + . . .
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It is clear that t− 1 has a simple zero in q since j has a simple pole in q.
Thus, we can find that

t = 1 − 8q + 32q2 − 96q3 + 256q4 − 624q5 + 1408q6 − 3008q7

+6144q8 − 12072q9 + 22976q10 − 42528q11 + 76800q12

−135728q13 + 235264q14 − 400704q15 + 671744q16 − 1109904q17

+1809568q18 − 2914272q19 + 4640256q20 − 7310592q21

+11404416q22 − 17626944q23 + o(q24)

Since we also know the expansion of g at this point, we get that of E1, E2

as below.

E1 = q − 4q2 + 8q3 − 16q4 + 26q5 − 32q6 + 48q7 − 64q8 + 73q9

−104q10 + 120q11 − 128q12 + 170q13 − 192q14 + 208q15

−256q16 + 290q17 − 292q18 + 360q19 − 416q20 + 384q21

−480q22 + 528q23 +O(q24)

and

E2 = q + 4q2 + 8q3 + 16q4 + 26q5 + 32q6 + 48q7 + 64q8 + 73q9

+104q10 + 120q11 + 128q12 + 170q13 + 192q14 + 208q15

+256q16 + 290q17 + 292q18 + 360q19 + 416q20 + 384q21

+480q22 + 528q23 +O(q24)

Using the relations (6), therefore, we immediately get h1 and h2. However,
these two expressions disagree with the signs of corresponding coefficients
we expected. One effective way to solve this is to rewrite them by taking
r = iq and then divide the whole expression by i in each. Therefore, the
cusp forms for Γ are

h1 = r −
4i

3
r2 −

8

9
r3 +

176i

81
r4 −

850

243
r5 +

3488i

729
r6 +

5988

6561
r7

−
152512i

19683
r8 +

56881

59049
r9 −

2497000i

1594323
r10 +

35104520

4782969
r11

+
15246464i

14348907
r12 +

952141694

129140163
r13 +O(r14)

and

h2 = r +
4i

3
r2 −

8

9
r3 −

176i

81
r4 −

850

243
r5 −

3488i

729
r6 +

5988

6561
r7

+
152512i

19683
r8 +

56881

59049
r9 +

2497000i

1594323
r10 +

35104520

4782969
r11

−
15246464i

14348907
r12 +

952141694

129140163
r13 +O(r14)

We observe that the coefficients in prime (starting from 5) degrees of h1

and h2 turn out to be the same as Table 3 shows.
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c5 c7 c11 c13 c17 · · ·

-850
243

5968
6561

35104520
478269

952141694
129140163 −206256733102

31381059609 · · ·

Table 3. Coefficients in prime degrees of h1 and h2

p 5 7 11 13 17 19 23
Trp 0 4 0 -44 0 52 0
Trp2 100 -188 484 292 1156 -92 2116

p 29 31 37 41 43 47 53
Trp 0 -92 52 0 -44 0 0
Trp2 3364 388 -4124 6724 -6428 8836 11236

Table 4. Table of Tr ρ∗(Frobq)

On the other hand, we have the following the expansion of the unique
element of S3(Γ0(12), χ), where χ : (Z/12)∗ → C∗ is the unique character
of order 2 and conductor 3:

f = q − 3q3 + 2q7 + 9q9 − 22q13 + 26q19 − 6q21 + 25q25 − 27q27

−46q31 + 26q37 + 66q39 − 22q43 − 45q49 − 78q57 + 74q61 + 18q63

+122q67 − 46q73 − 75q75 − 142q79 + 81q81 − 44q91 + 138q93

+2q97 +O(q102)

This was found using Magma and corresponds to 12k3A[0, 1]1 in William
Stein’s database, [Stein]. A computer program written in Magma yields the
results in Table 4 on Trp, the traces of Frobp.

Comparing the coefficients of the cusp forms and the modular forms in
this example, we can find that

c5 = −
850

243
≡ 0 mod 52,

c7 =
5968

6561
≡ 2 mod 72,

c11 =
35104520

478269
≡ 0 mod 112,

c13 =
952141694

129140163
≡ −22 mod 132,

. . . . . .

Since 2 and 3 are primes of bad reduction, the congruences do not hold
for these two primes.
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4. Modularity

We prove the modularity assertion, part 1 of theorem 2.1, via Serre’s
method. Let ρ denote the 2-adic Scholl’s representation attached to S3(Γ),
and let ρ∗ denote the representation attached to H1(X(Γ), F) where F =
j∗R

1f∗Q2, with f : E → X(Γ) the elliptic surface considered in section 3.
Unless stated otherwise, representation means continuous representation of
Gal(Q/Q).

Recall that ρ is known to differ from ρ∗ at most by a twist by a character
of order two. We will establish the modularity of ρ∗, which implies the
modularity of ρ. The fibration f : E → X(Γ) is invariant under A : u→ −u.
Hence, A induces an operator, also called A on the 4-dimensional vector
space underlying ρ∗ and commuting with the action of the Galois group.
Thus we have a decomposition ρ∗ = ρ∗1 ⊕ ρ∗−1, where ρ∗1, resp., ρ∗−1 is the
restriction of ρ∗ to Ker(A − 1), resp. Ker(A+ 1). It will be seen that both
ρ∗1 and ρ∗−1 are isomorphic with ρf = ρf,2 the 2-adic representation attached
by Deligne (see theorem 1.1) to the cusp form f ∈ S3(Γ0(12), χ) in section
3. Both ρ∗1 and ρ∗−1 are 2-dimensional. This can be seen as follows. The
operator A decomposes the motive associated to S3(Γ), and in particular
the deRham realizations of both Ker(A± 1) carry Hodge structures of type
(2, 0) + (0, 2), which implies that both spaces are even-dimensional, so the
same goes for the 2-adic realizations ρ∗1 and ρ∗−1. If one of them were 4-
dimensional, the operator A would have to act as either 1 or −1 on all
of S3(Γ) which is the (2, 0)-part of the deRham realization of the motive
attached to S3(Γ). Thus, A would act trivially on h1/h2. But this rational
function is, up to constant multiple, the Hauptmodul u of the curve X(Γ),
as we have already seen, and A acts on this nontrivially: u → −u. Note
that all these representations are unramified outside S = {∞, 2, 3}.

Now

Ker(A− 1) = H1(X(Γ)/A,F/A)

where X(Γ)/A denotes the quotient by the group of order 2 generated by

A. The sheaf F/A is j∗R
1f̃∗Q2, where f̃ : E/A → X(Γ)/A is the quotient

elliptic surface. These are easily seen to be X̃, Ẽ where X̃ is the projective
line with coordinate v = u2, and Ẽ is the elliptic surface with equation y2 +
4xy+4v3y = x3 + v3x2. We compute the Trρ∗1 (Frobp) in the representation
ρ∗1 by the same method as in section 3, as outlined in section 2. This is done
with the same Magma program, but applied to the elliptic surface whose
equation we just gave. The result is the same as table 4, but with every
entry divided by 2. Thus

1

2
Trρ∗ (Frobp) = Trρ∗1 (Frobp) = Trρ∗−1 (Frobp) = cp(f)

where cp(f) is the pth q-expansion coefficient of the newform f , for all primes
5 ≤ p ≤ 201.

The following is proved in [Liv87, Theorem 4.3]:
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Theorem 4.1. Let K be a global field, S a finite set of places of K, E a
finite extension of Q2, with ring of integers OE and maximal ideal m. Then
there exists a finite set T of primes of K, disjoint from S, with the following
property: Let

ρ1, ρ2 : Gal(K/K) −→ GL(2, E)

be two continuous representations that are unramified outside S and such
that

1. Trρ1 ≡ Trρ2 ≡ 0 mod m, and detρ1 ≡ detρ2 mod m.
2. Trρ1(Frobt) = Trρ2(Frobt), and detρ1(Frobt) = detρ2(Frobt) for all
t ∈ T .

Then ρ1 and ρ2 have isomorphic semi-simplifications. Such a set of primes
T is called sufficient for S.

Our application will be to the case K = Q, S = {∞, 2, 3} and the repre-
sentations ρ1 = ρf and ρ2 = ρ∗1 where f is the newform in the statement of
theorem 2.1 (the case ρ2 = ρ∗−1 is exactly the same).

Lemma 4.2. T = {5, 7, 11, 13, 19, 23, 73} is sufficient for S = {∞, 2, 3}.

Proof. This exactly as in [Liv87, Prop. 4.11]. The image of the map called
F there is a noncubic subset of (Z/2)3, indeed, it is all of (Z/2)3 − 0.

First we verify that condition 1. of the above theorem is true here:

Lemma 4.3. Let ρ : Gal(Q/Q) −→ GL(2, Q2) be a continuous represen-
tation unramified outside S = {∞, 2, 3}, and suppose that Tr ρ(Frobp) ≡ 0
mod 2, for p = 5, 7, 11, 13. Then Tr ρ ≡ 0 mod 2 identically.

Proof. (see [Liv87, Prop. 4. 10]). Let ρ : Gal(Q/Q) −→ GL(2, Z/2) be
the reduction mod 2 of this representation. This is well-defined: ρ preserves
a Z2-lattice and so defines a representation in GL(2, Z2) which is indepen-
dent up to isomorphism of the choice of the lattice, and has thus a unique
reduction modulo 2. Let L/Q be the extension defined by Ker(ρ), and so
Gal(L/Q) = Im(ρ), which is a subgroup of GL(2, Z/2) ∼= S3. The elements
of order ≤ 2 in this last group have trace 0, whereas the elements of order
3 have trace 1. Suppose that Tr ρ ≡/ 0 mod 2. Then Gal(L/Q) contains an
element of order 3, and so this Galois group must be either cyclic C3 or S3.
Also Trρ(g) ≡ 1 mod 2 on any such element of order 3.

If it were C3 then L would have to be Q(ζ9 + ζ−1
9 ), the real subfield of

the field of ninth roots of unity. This can be seen by classfield theory: By
the Kronecker-Weber theorem, L would be a subfield of a cyclotomic field
Q(ζN ) and L being unramified outside S by the properties of ρ, we can take
N of the form 2a3b. Its Galois group, namely (Z/2a3b)∗, must have C3 as a
quotient, so we must have b ≥ 2, and in fact the only such quotient would
factor through the projection (Z/2a3b)∗ → (Z/32)∗ → C3, which shows that
we L is a subfield of the ninth cyclotomic field. That being the case, we
see that Frob5 acts as a 3-cycle on Q(ζ9 + ζ−1

9 ). In other words, we have
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Trρ(Frob5) = 1, which is contrary to our assumption, and so C3 cannot
occur.

For the case where the Galois group is S3, we need a list of the S3 ex-
tensions of Q that are unramified outside {∞, 2, 3}. Such lists can be found
at the web page of John Jones [JJ]. We find that there are 8 such fields,
given as the Galois closures of the cubic fields whose defining polynomi-
als are x3 − 3x − 2, x3 − 3x − 4, x3 − 9x − 6, x3 − 2, x3 − 3, x3 − 12
,x3 − 3x − 10,x3 − 6. Each of these polynomials is irreducible mod p for at
least one of p = 5, 7, 11, 13, so that in each of these fields Frobp acts as a
3-cycle, and we get a nonzero trace on this Frobenius element, contrary to
our assumptions, so the case S3 cannot happen either.

Corollary 4.4. Tr ρ∗1 ≡ Tr ρ∗−1 ≡ Tr ρ∗f ≡ 0 mod 2.

The following is a variant of [LLY03, Lemma 5.1]:

Lemma 4.5. Let

σ1, σ2 : Gal(Q/Q) −→ Z∗
2

be two continuous representations which are unramified away from 2 and 3,
and agree on the elements Frobp for p = 5, 7, 11, 17. Then they are equal.

Proof. Recall that Z∗
2 = {±1, ±5}× (1+p3), where p = 2Z2 is the maximal

ideal. Let log denote the p-adic logarithm on Z∗
2. More precisely, it has

kernel {±1, ±5} and it maps 1 + x ∈ 1 + p3 to
∑∞

n=1
(−1)n−1

n xn ∈ Z2.

This gives an isomorphism between the multiplicative group 1 + p3 and the
additive group p3. Consider

ψ = log ◦σ1 − log ◦σ2,

which is a homomorphism from Gal(Q/Q) to p3.
If ψ 6= 0, then

n0 = min
{

ordp (ψ(τ)) : τ ∈ Gal(Q/Q)
}

is finite. Then

ψ̄ :=
1

2n0

ψ mod p

is a continuous surjective homomorphism from Gal(Q/Q) to F2 which is
trivial at the Frobenius elements at primes p = 5, 7, 11, 17 by assumption.
This representation of Gal(Q/Q) factors through a quadratic extension of
Q unramified outside 2 and 3. Such fields are extensions of Q by adjoining
square roots of 2, 3, 6,−1,−2,−3,−6, respectively. It is easy to check that
the prime p = 5, 5, 11, 7, 5, 5, 17 is inert in the respective field, and thus ψ̄
at such Frobp would be nontrivial, a contradiction. Therefore ψ = 0, in
other words, the image of the representation σ := σ1(σ2)

−1 is a subgroup of
{±1, ±5}. Hence we consider all Galois extensions of Q with group equal
to a subgroup of a cyclic group of Z/2×Z/2, unramified away from 2 and 3,
and in which p = 5, 7, 11, 17 split completely. If a nontrivial such extension
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exists, then it contains a quadratic subextension unramified outside 2 and
3, and in which p = 5, 7, 11, 17 split completely. As shown above, this is
impossible. Therefore the image of σ can only be {1}, in other words, σ1

and σ2 are equal.

Corollary 4.6. det ρ∗1 = det ρ∗−1 = det ρ∗f = χ̃, where χ̃ is the Galois char-

acter defined by χ̃(Frobp) = χ(p)p2, where χ is the Dirichlet nebentypus
character of the newform f .

Proof. Let H1,p(T ) and H−1,p(T ) be the characteristic polynomials of Frobp

in ρ∗1 and ρ∗−1. These have the form T 2 − TrpT + detp, and the traces are
determined for primes in a range 5 ≤ p ≤ 201. Also, H1,p(T )H−1,p(T ) =
Hp(T ) where

Hp(T ) = (T − αp)(T − βp)(T − p2/αp)(T − p2/βp)

= T 4 −C1(p)T
3 + C2(p)T

2 − p2C1(p)T + p4 ∈ Z[T ],

is the characteristic polynomial of the Frobenius at p in the representation
ρ∗. These polynomials are determined from table 4 by the formulas

C1(p) = αp + βp + p2/αp + p2/βp = Tr(ρ∗2(Frobp)),

C2(p) =
1

2

(

C2
1 − Tr(ρ2∗(Frob2

p))
)

=
1

2

(

(Tr(ρ∗2(Frobp)))
2 − Tr(ρ∗2(Frobp2))

)

.

Everything is computed explicitly for the primes 5 ≤ p ≤ 53, except for the
determinants in the representations ρ∗±1, which are the constant terms of
the H±1,p(T ). But one checks that there is only one possible factorization
H1,p(T )H−1,p(T ) = Hp(T ) for these values, which gives the determinants as
claimed, especially for the primes 5, 7, 11, 17.

Theorem 4.7. The l-adic representation ρl attached to S3(Γ) is modular.
More precisely, ρ∗l , the l-adic representation on H1(X(Γ), j∗R

1f∗Ql), which
differs from ρl by at most a twist by a character of order two, is isomorphic
with ρ2

f,l, where ρf,l is the representation attached by Deligne to the newform

f ∈ S3(Γ0(12), χ).

Proof. Each of these representations forms a strictly compatible system as
l varies, so it is enough to verify the claim for one prime, say l = 2. We
can apply Serre’s theorem 4.1 as we have verified that all the conditions
of that theorem hold for the pair ρ∗1 and ρf (or ρ∗−1 and ρf ). The traces
of Frobenius under all three of these representaions agree for the primes
5, 7, 11.13.19, 23, 73 so the semisimplifications of ρ∗1, ρ

∗
−1 and ρf are isomor-

phic. By a theorem of Ribet [Ri75] the representation ρf is irreducible, so
these threee representaions are isomorphic. Finally ρ∗ = ρ∗1 ⊕ ρ∗−1.

5. Congruences

We now prove the ASwD congruences for our cusp forms h1, h2 ∈ S3(Γ).
Before doing so, we prove the following proposition, which is necessary to
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justify the use of the results of [Sch85ii] in the case of odd weights (see p.
76 of loc.cit.)

Proposition 5.1. Let Γ ⊂ SL(2, Z) be a torsion-free subgroup of finite in-
dex (in particular −1 /∈ Γ). Assume that there is a model X(Γ) for Γ
over Q in the sense of [Sch85ii, sect. 5.1], and that there is an elliptic
surface f : EΓ → X(Γ) defined over Q, such that the analytic space un-
delying the smooth locus f : E◦

Γ → Y (Γ) is the usual fibration of elliptic
curves associated to Γ (see proof). Then for every integer N ≥ 3 such
that Γ · Γ(N) = SL(2, Z), there is a model V/Q for the Riemann surface
±(Γ ∩ Γ(N))\H∗, such that the j-morphism π : V → P1

Q factors through

X(N)Q and such that there is an action of GN = SL(µN × Z/N) on V ,
which is compatible with its action on X(N)Q and with the action of

GN (C) = Γ/Γ ∩ Γ(N)

on V (C).

Proof. As Scholl points out, the fiber product S = X(Γ)×P1

Q
X(N) will not

work for this since its underlying analytic space is the Riemann surface

(±Γ ∩±Γ(N))\H∗

whereas the Riemann surface we want is a double cover of this. We define

V = Isom(p∗1EΓ, p
∗
2E(N))

where p1 and p2 are the projections of S to X(Γ) and X(N) respectively,
and EN → X(N) is the universal generalized elliptic curve. First, we note
that V is a double cover of S. This is because of the following

Proposition 5.2. ([Del75, Prop. 5.3, 5.4]) Let E and F be two curves of
genus one over S without additive fiber. Then Isom(E,F ) is representable
finite and nonramified over S. If jE = jF , the projection of Isom(E,F ) to S
is surjective and is an étale covering of degree 2 over the subset of S where
jE = jF does not take the values 0 or 1728.

I claim that the Riemann surface V (C) is ±(Γ ∩ Γ(N))\H∗. The reason
is that, because Γ ∩ Γ(N) is a subgroup of both Γ and Γ(N), the pull-back
of both E◦

Γ → Y (Γ) and E◦
N → Y (N) to ±(Γ ∩ Γ(N))\H are complex-

analytically isomorphic. This clear in view of the constructions of these
families, to be recalled in a moment. It follows that these pulled-back fam-
ilies are algebraically isomorphic. By the universal mapping property of
V , there is a morphism X(Γ ∩ Γ(N)) → V over S. Note that, a priori,
X(Γ∩Γ(N)) has a model defined over some finite extension of Q. But both
of these are double covers of S. Also, V is a nontrivial covering of S, that
is, it does not break into two components. If it did, there would be a section
over S, and hence a global isomorphism from p∗1EΓ to p∗2E(N), which is im-
possible, by lemma 5.3, applied to ∆1 = Γ∩(±Γ(N)) and ∆2 = (±Γ)∩Γ(N)
Therefore, X(Γ ∩ Γ(N)) → V is an isomorphism over S.
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Since Γ ∩ Γ(N) is a normal subgroup of Γ it is clear that GN (C) =
Γ/Γ ∩ Γ(N) acts on V (C).

Let ∆ ⊂ SL(2, Z) be a subgroup of finite index not containing −1. We
associate a family of elliptic curves E∆ over ±∆\H, as the quotient of H×C

by the equivalence

(τ, z) ∼ (δ · τ, (cτ + d)−1(z +mτ + n))

for all m,n ∈ Z and all δ =

(

a b
c d

)

∈ ∆.

It is clear that for an inclusion ∆′ ⊂ ∆, E∆′ is the pull-back of E∆ via the
map ±∆′\H → ±∆\H. Every one of these families of elliptic curves, when
pulled back to H become isomorphic to the tautological family

{C/Z + Zτ | τ ∈ H}.

Lemma 5.3. Let ∆1,∆2 ⊂ SL(2, Z) be subgroups of finite index, neither
of which contains −1. Suppose that ±∆1 = ±∆2, but that ∆1 6= ∆2. Then
E∆1

is not isomorphic with E∆2
over ±∆1\H = ±∆2\H.

Proof. Any isomorphism ϕ : E∆1
→ E∆2

over ±∆1\H pulls back to an
isomorphism of the tautological family over H. These are well-known to
be of the form (τ, z) → (τ,±z). But neither of these maps intertwines the
equivalence relations given by ∆1 and ∆2. Take the minus sign, for instance.
One would need that for every δ1 ∈ ∆1 there exists δ2 ∈ ∆2 and integers
m,n such that

(δ1 · τ,−(c1τ + d1)
−1z) = (δ2 · τ, (c2τ + d2)

−1(−z +mτ + n))

The equation δ1 · τ = δ2 · τ means that δ1 = ±δ2. But the hypotheses
±∆1 = ±∆2 and ∆1 6= ∆2 means that there is a δ1 for which we must take
the negative sign. This implies z = −z +mτ + n, which must hold for any
fixed τ all z, which is absurd.

The main principle of Scholl’s proof of these identities is the following. We
assume Γ has a modelX = X(Γ) defined over Z[1/M ] in the sense of [Sch85ii,
section 5.1]. He defines A-modules (m)Lk(X,A) and (m)L∞

k (X,A) for any
Z[1/M ]-algebra A, and shows that there is a canonical exact sequence

0 −−−→ Sk+2(X,A) −−−→ (m)Lk(X,A) −−−→ mk+1Sk+2(X,A)∨ −−−→ 0

When A = C and m = 1, the term in the middle is the deRham version of
parabolic cohomology and the above gives its Hodge decomposition, since
Sk+2(X,C) = Sk+2(Γ). (m)L∞

k (X,A) is a local version of this defined at a
cusp. The choice of an appropriate local parameter t at this cusp defines an
expansion map

taylor : (m)Lk(X,A) −→ (m)L∞
k (X,A)
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which when restricted to Sk+2(X,A) is injective (“t-expansion principle”.)
Moreover,

(m)L∞
k (X,A)

∼
−→ Coker((m∂)k+1 : tA[[t]] → tA[[t]])

for a differential operator ∂. When A = Zp, these groups have an inter-
pretation in crystalline cohomology, and in particular, carry a canonical
endomophisms F , which are respected by the evaluation map taylor. The
endomorphism F acts quite simply on the target group:

If x ∈ (p)Lk(X,Zp) ⊂ Lk(X,Zp) has taylor(x) ≡
∑

ant
n mod Im(p∂)k+1

then

taylor(Fx) ≡
∑

pk+1γn
p ant

np mod Im(p∂)k+1

for a certain γp ∈ 1+pZp which depends on the choice of the local parameter
t.

Let f ∈ Sk+2(X,Z[1/M ]) ⊂ Sk+2(X,Zp) ⊂ (p)Lk(X,Zp), p - M . Let

H(T ) ∈ Z[T ] be a polynomial such that H(F )f = 0 in (p)Lk(X,Zp) (note

that F preserves (p)Lk(X,Zp)). Then

taylor(H(F )f) ∈ Im(p∂)k+1

Writing this out explicitly, using the simple form of the action of F on
(p)Lk(X,Zp), gives p-adic congruence relations on the expansion coefficients
of f .

Theorem 5.4. [Sch85ii, Thm. 5.4] Let f ∈ Sk(X(Γ),Z[1/M ]), and let

f̃ =
∑

n≥1

a(n) · exp(2πinτ/µ)

be its Fourier expansions as in 5.2.1 of loc. cit. Fix a prime p |/M and
suppose that

H(T ) =

e
∑

r=0

Ar · T
e−r ∈ Z[T ]

is a polynomial such that H(F )f = 0 in (p)Lk(X,Zp). The the coefficients
a(n), n ≥ 1, satisfy the congruence relation

ordp(

e
∑

r=0

Ara(np
d−r)) ≥ (k − 1)(1 + ordpn).

For instance, let

H(T ) = det(1 − T Frobp | k
ΓVl)

be the characteristic polynomial of Frobenius in l-adic cohomology. One
knows that det(1−T Frobp | k

ΓVl) = det(1−TF | Lk(X,Qp)) so that H(F ) ≡
0 on Lk(X,Qp)), leading to congruences for every f ∈ Sk+2(X,Z[1/M ]).
This is how Scholl proved part (ii) of 1.4.
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We apply this to our Γ. The involution A also decomposes Lk(X,Qp)
into ±1 eigenspaces, on which F acts. This gives characteristic polynomials
H±1(T ) for these, with

H1(T )H−1(T ) = characteristic polynomial of F on Lk(X,Qp) = H(T )

We know that Hp(T ) = H1,p(T )H−1,p(T ) and that

H1,p(T ) = H−1,p(T ) = T 2 − cp(f)T + χ(p)p2

for our weight 3 newform f . We claim

Proposition 5.5. H(T ) = Hp(T ) and H1(T ) = H−1(T ) = T 2 − cp(f)T +
χ(p)p2. In other words, the characteristic polynomials of Frobp acting on the

étale comomology spaces Ker(A± 1)l ⊂
k
ΓVl coincide with the characteristic

polynomials of F acting on the crystalline cohomology spaces Ker(A±1)p ⊂
Lk(X,Qp).

Proof. The involution A acts on the fibration EΓ → X(Γ), and hence on
the parabolic cohomology groups in various realizations. The subspace
Ker(A − 1)∗ in these various realizations is just the parabolic cohomology
of the quotient situation EΓ/A → X(Γ)/A. We have already identified this
quotient explicitly in section 4, and it is easy to check that this family of
elliptic curves has multiplicative reduction in all its cusps, so in particular, it
is semi-stable. This is also true of EΓ → X(Γ). We can apply theorem [?] of
the next section to the parabolic cohomologies both situations to conclude
that H(T ) = Hp(T ) and H1(T ) = H1,p(T ). Since Hp(T ) = H1,p(T )2, we get
that H−1(T ) = H−1,p(T ) also.

Theorem 5.6. The cusp forms h1, h2 ∈ S3(Γ) satisfy Atkin-Swinnerton-
Dyer congruences relative to f ∈ S3(Γ0(12), χ).

Proof. h1 is in Ker(A − 1) ⊂ S3(Γ,Zp) which is in Ker(A − 1)p, and the
previous proposition shows that the characteristic polynomial H1(T ) on this
latter space is T 2−cp(f)T+χ(p)p2. By the Cayley-Hamilton theorem H1(F )
annihilates the space, and in particular h1. The congruences then follow
from Scholl’s results as discussed above.

6. Parabolic cohomology

We gather some well-known results on parabolic cohomology that were
utilized in this paper. The general situation is of a proper morphism f :
E → X deifined over a field K where X is a smooth projective curve, and
the general fiber of f is an elliptic curve. We assume that f is nonconstant.
Let j : Y ⊂ X be the inclusion of the open subset over which f is smooth
and let f stand also for the restriction of f to f−1(Y ). In l-adic theory,
the parabolic cohomology groups are by definition H i(X, j∗Symk(R1f∗Ql)),
k ≥ 0. It is known that when k ≥ 1 these vanish when i 6= 1.
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