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In this paper, we construct a linear differential system in both continuous time and discrete time to model HIV transmission on
the population level. The main question is the determination of parameters based on the posterior information obtained from
statistical analysis of the HIV population. We call these parameters dynamic constants in the sense that these constants determine
the behavior of the system in various models.There is a long history of using linear or nonlinear dynamic systems to study the HIV
population dynamics or other infectious diseases. Nevertheless, the question of determining the dynamic constants in the system
has not received much attention. In this paper, we take some initial steps to bridge such a gap. We study the dynamic constants that
appear in the linear differential system model in both continuous and discrete time. Our computations are mostly carried out in
Matlab.

1. Introduction

Patients infected with Human Immunodeficiency Virus
(HIV) are very likely to develop Acquired Immunodeficiency
Disease Syndrome- (AIDS-) related diseases that are usually
fatal if not treatedwith effective antiretroviral therapies. Since
the discovery of HIV in 1983, an efficacious vaccine is yet to
be developed to fight the deadly virus. Although highly active
antiretroviral therapies (HAART) invented inmid-1990s have
savedmillions of lives and deterred the disease progression of
those infected, HIV infection remains a public health threat.
Reducing the risk of HIV transmission is of top priority.

One particular challenge in HIV prevention is its long
period of latency period.The average time of anHIV infected
patient to become symptomatic with AIDS-related diseases
can be more than 10 years [1]. In the sexual transmission
of HIV, many of the HIV infected patients may not be
aware of their HIV infection status, and the virus continues

spreading to their HIV negative partners. Therefore, an in-
depth understanding of HIV transmission is the key to
successful HIV prevention.

HIV dynamics have long been studied in the field
of mathematical epidemiology using linear and nonlinear
models [2, 3]. The classic model in epidemiology is the SIR
model, which considers the dynamics of the susceptible,
infected, and recovered populations [4]. This model is not
useful for HIV dynamics, as there is no recovered population.
An extension of this is the SEIR model, which includes
the population of individuals who are exposed but not yet
infected. The period between exposure and infectiousness
in HIV lasts about two to four weeks [1]. Since a recovered
population does not exist, we can consider this period to have
a negligible effect on population dynamics.

Hierarchical models are common in HIV modeling due
to the high correlation between risky behavior and HIV
incidence [5]. In this paper we will incorporate risk indirectly
by considering diagnosed and undiagnosed populations.
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Intuitively, diagnosed individuals would modify their behav-
ior relative to their behavior prior to the diagnosis.

In this paper, we shall form two models: a continuous
time linear differential model and a discrete time differential
model. These models are the most fundamental among their
kinds. The focus will then be given to determination of
the parameter estimates, the dynamic constants in these
models. As we will show in this paper, the estimates of the
dynamic constants depend on the type of model as well as
the qualitative properties of the models.

There are two important dynamic constants in ourmodel,
namely, the transmission rates for diagnosedHIV population
and for undiagnosedHIV population. One important finding
in our study is that the transmission rates for the diagnosed
and undiagnosed infected populations are comparable. This
leads to our conclusion that the transmission rates should be
attached to different groups of susceptibles based on their risk
level.

2. General Nonlinear Differential Model

One of the frequently used mathematical models for HIV
population dynamics can be described as follows. Let 𝑆(𝑡) be
the susceptibles. We divide the HIV positive population into
two groups: 𝑁0 is the populations that are unaware of the
infection;𝑁1 is the populations that are aware of the infection.
Let 𝜖𝑖 be the mortality rate for the group 𝑁𝑖. Let 𝑟 be the
growth rate of the susceptibles. Let 𝛾0 be the transmission rate
of 𝑁0 group and let 𝛾1 be the transmission rate of 𝑁1 group.
Then we have the following nonlinear differential equations:

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝑆 (𝑡) (𝑟 − 𝛾0𝑁0 (𝑡) − 𝛾1𝑁1 (𝑡)) ;

𝑑𝑁0 (𝑡)
𝑑𝑡 = (1 − 𝛽) 𝛾1𝑁1 (𝑡) 𝑆 (𝑡) + 𝛾0𝑁0𝑆 (𝑡) − 𝛿𝑁0

− 𝜖0𝑁0;
𝑑𝑁1 (𝑡)

𝑑𝑡 = 𝛽𝛾1𝑁1 (𝑡) 𝑆 (𝑡) + 𝛿𝑁0 − 𝜖1𝑁1.

(1)

Here 𝛾1𝑁1(𝑡)𝑆(𝑡) counts for those who are infected by group𝑁1 (per unit time), and among them 𝛽 is the proportion of
those who are aware of their infection.The constant 𝛿 denotes
the rate of the HIV positive population in 𝑁0 group who
become aware of their infection (per unit time). So there is
a flow of 𝛿𝑁0(𝑡) from group 𝑁0 to 𝑁1 once a member from𝑁0 finds out his/her infection through HIV testing.

Many variations of this nonlinear dynamic model have
been considered and appeared in the literature to study the
HIV population dynamics. For example, in [6], mortality
rate of the susceptibles is considered and appears in the
differential equation of 𝑆(𝑡). In addition, the parameters are
allowed to change but are piecewise constant.

In our differential equation model, we have a few con-
stants: 𝛽, 𝛿, 𝛾0, 𝛾1, 𝜖0, and 𝜖1. These constants essentially
determine the qualitative and quantitative properties of
the mathematical model. We shall call these constants the
dynamic constants of the model. Notice that some of the

constants, like 𝛾𝑖, may have prior estimates, based on the data
collected directly from the groups 𝑁𝑖 and 𝑆. Some of the
constants, like 𝜖𝑖, will have posterior estimates. The constants𝛿, 𝛽 may have prior estimates. Our main focus here is to give
posterior estimates of these constants.

We shall remark here that the dynamic constants are
model-dependent. This might not be obvious. Even though
many of them can be estimated statistically without reference
to any models, applying these estimates directly to the model
may be problematic, as we shall see in the next section. In this
paper, we take some initial steps to estimate the model-based
dynamic constants.

3. Linear Differential Model and Preliminary
Discussions

We shall now build a simpler linear model. The main
assumption is that the susceptible population is a lot larger
than 𝑁0 and 𝑁1. The change of susceptible population, due
to HIV infection, is quite small, comparing with the overall
size of susceptible. Therefore, we may ignore the dynamics
of susceptible population, by assuming that the susceptible
population is a constant. This more or less justifies the use of
linear system only involving 𝑁0 and 𝑁1.

Let us start with the HIV transmission rate estimates by
Pinkerton [7]. The estimates of transmission rates are

𝛾0 ≅ 0.0927,
𝛾1 ≅ 0.0268. (2)

𝛾𝑖 are estimated in terms of infection transmitted per person
per year. Since the overall susceptible population is a lot larger
that 𝑁𝑖, we can assume that HIV transmission events are
proportional to the size of 𝑁1 and 𝑁0. Based on this hypoth-
esis, we may model HIV transmission by linear differential
equations:

𝑑𝑁0𝑑𝑡 = (1 − 𝛽) 𝛾1𝑁1 + 𝛾0𝑁0 − 𝛿𝑁0 − 𝜖0𝑁0,
𝑑𝑁1𝑑𝑡 = 𝛽𝛾1𝑁1 + 𝛿𝑁0 − 𝜖1𝑁1.

(3)

The dynamic constants 𝛿 and 𝛽 remain unchanged. It is also
known that 𝜖1 ≅ 1.9% [8]. There is no statistics done on 𝜖0.
So we can assume 𝜖0 ≅ 1.9% as well.

Next, we shall apply the known estimates and study our
linear differential model. Notice that 𝛽 remain unknown at
this moment. According to [8], 𝛿 is somewhere around 1/4.
We may tentatively set 𝛿 = 1/4. Utilizing the estimates of
dynamic constants directly from [7, 8], let us consider several
cases.
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Table 1: Population of undiagnosed individuals with HIV from 2007 to 2013.

Year Diagnosed Undiagnosed Percentage of total
2007 929.3 183.777 16.5
2008 956.9 178.1165 15.7
2009 982.4 170.6282 14.8
2010 1007.6 165.3507 14.1
2011 1031.6 162.4248 13.6
2012 1057.2 160.7760 13.2
2013 1080.5 161.46 13.0
Source: [8].
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Figure 1: Comparison of TN𝑡 and N𝑡+1: 𝑁1 group.

3.1. 𝛽 = 4/5. We start by assuming that 𝛽 takes the value of
the overall portion of those who are aware of their infection.
Now we have the following linear equations:

𝑑𝑁0𝑑𝑡 = 0.0268
5 𝑁1 + 0.0927𝑁0 − 1

4 𝑁0 − 0.019𝑁0.
𝑑𝑁1𝑑𝑡 = 0.0268 × 4

5 𝑁1 + 1
4 𝑁0 − 0.019𝑁1.

(4)

We found that the two linear independent solutions have
growth rate of

𝜆+ = 0.01,
𝜆− = −0.18. (5)

However, we know that the growth of 𝑁0 + 𝑁1 is about 0.048.
Hence our assumption 𝛽 = 𝜂 = 4/5 is not valid. Even if we
ignore the mortality rate, we have

𝜆+ = 0.021,
𝜆− = −0.16. (6)

This is still far below the estimated 4.8% growth rate.

3.2. 𝛽 = 1 or 𝛽 = 0. One extreme is that 𝛽 = 1, meaning that
the population infected by 𝑁1 gets tested and becomes aware
of their infection (within the first year). We have

𝑑𝑁0𝑑𝑡 = 0.0927𝑁0 − 1
4 𝑁0 − 0.019𝑁0,

𝑑𝑁1𝑑𝑡 = 0.0268𝑁1 + 1
4 𝑁0 − 0.019𝑁1.

(7)

Under this assumption 𝑁0 will decrease at the rate of −0.268,
which means that the population 𝑁0 will gradually vanish in
a few years. This cannot be true.

Another extreme is that 𝛽 = 0, meaning that the
population infected by 𝑁1 will be initially unaware of their
infection (within the first year). We have

𝑑𝑁0𝑑𝑡 = 0.0268𝑁1 + 0.0927𝑁0 − 1
4 𝑁0 − 0.019𝑁0,

𝑑𝑁1𝑑𝑡 = 1
4 𝑁0 − 0.019𝑁1.

(8)

We have
𝜆+ = 0.016,
𝜆− = −0.211. (9)

The overall HIV population growth will be less than 0.016.
This is quite small comparing with the estimate that the
growth rate is about 0.048.
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Figure 2: Comparison of TN𝑡 and N𝑡+1: 𝑁0 group.

3.3. 𝛿, 𝛽 Not Fixed. One might conclude that 𝛿 must be
a much smaller number than 1/4, what we have initially
assumed. We let 𝛿 and 𝛽 be unfixed. In this case, we have

𝑑𝑁0𝑑𝑡 = (0.0927 − 𝛿) 𝑁0 + (1 − 𝛽) (0.0268) 𝑁1
− 0.019𝑁0,

𝑑𝑁1𝑑𝑡 = 0.0268𝛽𝑁1 + 𝛿𝑁0 − 0.019𝑁1.
(10)

We have the matrix

𝐴 = (0.0927 − 𝛿 − 0.019 (0.0268) (1 − 𝛽)
𝛿 0.0268𝛽 − 0.019) . (11)

We know the growth rates are controlled by the eigenvalues
of 𝐴. In particular, we might assume that det(𝐴 − 𝜆) = 0 with𝜆 = 0.048. This will guarantee that the dominant term of the
solution will grow at the rate of 0.048 (per year). Hence we
obtain

(0.0257 − 𝛿) (0.0268𝛽 − 0.067) = 0.0268 (1 − 𝛽) 𝛿. (12)

Simplifying it, we have

1.56𝛿 + 0.0268𝛽 ≅ 0.067. (13)

Since 0 ≤ 𝛽 ≤ 1, we find that 0.043 ≥ 𝛿 ≥ 0.0258. This
suggests that there are between 2% to 5%of 𝑁0 getting tested.
This percentage seems to be too low comparingwith the CDC
estimate of about 25%.

We shall remark that our discussion is based on the
estimates that 𝛾0 = 0.0927 and 𝛾1 = 0.0268 [7]. As we have
seen, directly using these estimates as dynamic constants in
differential equation modeling will be inadequate to produce
the right kind of outcomes and trend. In this paper, we shall
discuss posterior estimate of parameters and hope to find
some remedy.

4. Posterior Estimate of Parameters

In our earlier discussion, we directly insert the transmission
rates from the statistical analysis into the linear differential
system.The result is not satisfactory. It is desirable to estimate
the transmission rates that will produce the right kind of
outcome from the linear differential system model. Let us
recall the CDC data from 2007 to 2013 (in thousands) [8].

We first simplify our notation. Let N = (𝑁1
𝑁0

). We rewrite
our linear system as

𝑑N
𝑑𝑡 = MN (𝑡) , (14)

where

M = ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0) . (15)

The general solution to this system is

N (𝑡) = P exp 𝜆1𝑡 + Q exp 𝜆2𝑡. (16)

Here 𝜆1, 𝜆2 are eigenvalues of 𝑀. They can be both real or
complex. There is also a degenerate case 𝜆1 = 𝜆2 that we do
not treat here.The behavior of the linear differential system is
quite different in these two cases. It is not surprising that we
need to use two different methods to estimate the matrixM.

4.1. 𝜆1, 𝜆2 Real: Simple Curve Fitting. We try a global
optimization curve fitting using Matlab. We have

N (𝑡) = (14.12
79.86) exp − 0.1919𝑡

+ ( 892.3
115.57) exp 0.0273𝑡.

(17)
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Let A = ( 14.12 892.3
79.86 115.57

). Then

M ≅ A(−0.1919 0
0 0.0273)A−1

= ( 0.032 −0.040
0.0291 −0.197) .

(18)

Notice that the dominant term ( 892.3
115.57

) exp 0.0273𝑡 suggested
the overall rate of growth ofHIV infected population grows at
the rate close to 2.73%.This seems to be reasonable. But 𝛿, the
rate of flow of population from 𝑁0 to 𝑁1, is estimated at −4%.
This is completely off the mark. One remedy is that we first
estimate the dominant term and then estimate the remainder.

4.2. 𝜆1, 𝜆2 Real: Dominant TermEstimate. Suppose that 𝜆2 <𝜆1. Then P exp 𝜆1𝑡 is the dominant term. We shall have

‖N (𝑡)‖ ≅ ‖P‖ exp 𝜆1𝑡. (19)

Now

‖N (𝑡)‖
= [947.3, 973.3, 997.1, 1021.1, 1044.3, 1069.4, 1092.5] . (20)

Using curve 𝐹(𝑡) = 𝑎𝑒𝜆𝑡 to fit this data, we obtain
𝑎 = 927.7,
𝜆 = 0.0236. (21)

4.3. 𝜆1 Dominant, 𝜆2 Real. Now we can assume 𝜆1 = 0.0236
and use curve fitting to find 𝜆2, P, andQ. We have

P = (922.1
115.9) ,

Q = (−20.4
77.6 ) ,

(22)

and 𝜆2 = −0.172, 𝜆1 = 0.0236. It follows that
M = ( 𝛽𝛾1 − 𝜖1 𝛿

(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0)

= (0.0173 0.0498
0.0238 −0.1656) .

(23)

We derive that 𝛾1−𝜖1 ≅ 0.041 and 𝛿 ≅ 0.05.These parameters
seem to be reasonable. However, 𝛾0 − 𝜖0 = 0.0498 − 0.1656 =−0.1158. Hence 𝛾0 will be a negative number which is not
possible.

4.4. 𝜆1, 𝜆2 Complex with Fixed Real Part. Suppose that 𝜆1
and 𝜆2 are complex. Then 𝜆1 and 𝜆2 are conjugate to each
other. In particular, the real part of 𝜆,R(𝜆1) = R(𝜆2) should
be approximately 0.0236. Write 𝜆1 = 𝜆0 + 𝑖𝜇. We should have

N (𝑡) = P exp 𝜆0𝑡 cos 𝜇𝑡 + Q exp 𝜆0𝑡 sin 𝜇𝑡, (24)

where 𝜇 is sometimes called a phase constant. A simple curve
fitting shows that

P = (904.12
182.7 ) ,

Q = (−117
420 )

(25)

and 𝜆0 = 0.0236 and 𝜇 = −0.017. Hence
𝑀 ≅ [P,Q] (0.0236 0.017

−0.017 0.0236) [P,Q]−1

= ( 0.0187 0.0325
−0.0089 −0.0285) .

(26)

Let us see what this tells us. We have

M = ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0)

= ( 0.0187 0.0325
−0.0089 −0.0285) ,

𝛾1 − 𝜖1 = 0.0187 − 0.0089 ≅ 0.01,
𝛾0 − 𝜖0 = 0.004,

𝛿 = 0.0325.

(27)

This roughly says that there are about 3.25% of 𝑁0 that
become aware of their infection every year. The annual
transmission rate for𝑁1 is 2.9%.The annual transmission rate
for 𝑁0 is 2.3%.

4.5. 𝜆1, 𝜆2 Complex. We finally use Matlab global optimiza-
tion to fit the data in the curve

N (𝑡) = P exp 𝜆0𝑡 cos 𝜇𝑡 + Q exp 𝜆0𝑡 sin 𝜇𝑡. (28)

We obtain 𝜆0 = 0.0088, 𝜇 = −0.036,
P = (902.4

184 ) ,

Q = (−476.3
149.5 ) .

(29)

Hence we obtain the estimate

M

≅ (902.4 −476.3
184 149.5 ) (0.0088 0.036

−0.036 0.0088) (902.4 −476.3
184 149.5 )

−1

= (−0.0065 0.1684
−0.0091 0.0241) .

(30)
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Now we have

𝛽𝛾1 − 𝜖1 ≅ −0.0065,
𝛿 ≅ 0.1684,

(1 − 𝛽) 𝛾1 ≅ −0.0091,
𝛾0 − 𝛿 − 𝜖0 ≅ 0.0241.

(31)

It follows that

𝛾1 ≅ 𝜖1 − 0.0156 ≅ 0.0034,
𝛾0 = 0.193 + 𝜖1 ≅ 0.21. (32)

So 𝛾1 is neglectable and 𝛾0 is about 21%.This again makes the
model invalid.

4.6. Discussion. In this section, we choose dynamics con-
stants to fit the temporal data. We have found that these
dynamic constants depend on the qualitative properties of the
model. Yet, none of the dynamic constants we choose match
perfectly with the existing estimates. One reason is that yearly
data is not suitable for a continuous timemodel.Therefore, we
shall explore the discrete time model.

5. Discrete Dynamic Model

We may regard N𝑡 (𝑡 = 1, 2, 3, 4, 5, 6, 7) as a discrete time
dynamical system. Let us assume that this discrete dynamics
is defined by a transition matrix T:

N𝑡+1 = TN𝑡. (33)

In principle, based on our earlier discussion,

T = I + ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0) . (34)

Now we would like to estimate T.

5.1. Basic Estimates. The easiest way to find T is by consider-
ing the following matrix equations:

[N𝑖N𝑖+1] = T [N𝑖−1N𝑖] . (35)

For example, for 𝑖 = 2, we will have

(956.9 982.4
178.1 170.6) = T(929.3 956.9

183.7 178.1) . (36)

Then we find the following estimate of T:

( 0.9775 0.2641
−0.0370 1.1568)

(1.0118 0.0800
0.0302 0.7959)

(0.9922 0.1928
0.0370 0.7563)

(1.0481 −0.1482
0.0318 0.7880 )

(0.9427 0.5214
0.0639 0.5844) .

(37)

We can see some consistency among these transition matri-
ces. For example, the (2, 1)-th entry has been around 3%.This
translates into

(1 − 𝛽) 𝛾1 ≅ 3%. (38)

This is the rate of transmission for group 𝑁1. It seems to be
consistent with the estimate of [7].

5.2. (Arithmetic) Average Estimate of T. Nowwemay average
all T’s and obtain

T ≅ (0.9945 0.1820
0.0252 0.8163) . (39)

Hence

M = ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0)

= (−0.0055 0.1820
0.0252 −0.1837) .

(40)

Our estimate yields that 𝛿 ≅ 18%; in other words, about 18%
of those unaware of their infection will become aware of their
infection next year. We also have

𝛾0 − 𝜖0 = 𝛿 + (𝛾0 − 𝛿 − 𝜖0) = −0.0017. (41)

If the mortality rate 𝜖0 is set to be 0.019, then we have 𝛾0 =0.017. Similarly, we have

𝛾1 − 𝜖1 = 𝛽𝛾1 − 𝜖1 + (1 − 𝛽) 𝛾1 ≅ 0.02. (42)

If the mortality rate 𝜖1 is set to be 0.019, then we have 𝛾1 =0.039. This suggests that the transmission rate of 𝑁1 group is
twice as large as the transmission rate of 𝑁0 group.Theremay
be some truth to it. However, we believe that this estimate is
off the mark due to the reason that [N𝑖N𝑖+1] are correlated
with each other. Hence each estimate T will be biased. We
shall correct this and give a more robust estimate later.
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5.3. Least Square Estimate of T. Perhaps a good way to
estimate T is the least square method. We write

[N2N3 ⋅ ⋅ ⋅N7] = T [N1N2 ⋅ ⋅ ⋅N6] . (43)

Applying the least square method, we find that the least
square solution to T is

(1.0013 0.1406
0.0245 0.8350) . (44)

This estimate seems to be better than the arithmetic average,
in the sense that, irregularities will have smaller effect on
the least square solution. Because we can reorder N𝑖’s and
the least square solution does not change, we also avoid the
pitfall that N𝑖 and N𝑖+1 are correlated. We have our posterior
estimates:

M ≅ ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0)

= (0.0013 0.1406
0.0245 −0.1650) .

(45)

This estimate is similar to the arithmetic average we just
computed. The dynamic constant estimates will be very
similar. We shall then look for a solution that is more robust.
One particular reason that the least square estimate is not
satisfactory is that there are additional relations like

N𝑖+𝑘 = T𝑘N𝑖 (46)

that least square method does not take into consideration. In
other words, T2, T3 can also be estimated and shall be taken
into consideration when we estimate T. We shall offer one
remedy that avoids this issue.

5.4. A More Robust Estimate. One of the problems with our
estimate is thatN𝑡 andN𝑡+1 are correlated to each other. As a
remedy, we pickN1 andN6 as far from each other as possible.
We observe that

T [N1N6] = [N2N7] . (47)

We compute

T = [N2N7] [N1N6]−1 = (0.9965 0.1681
0.023 0.8533) . (48)

Then

M = ( 𝛽𝛾1 − 𝜖1 𝛿
(1 − 𝛽) 𝛾1 𝛾0 − 𝛿 − 𝜖0)

≅ (−0.0035 0.1681
0.023 −0.1467) .

(49)

We have
𝛿 ≅ 0.1681,

𝛾0 − 𝜖0 ≅ 0.0214,
𝛾1 − 𝜖1 ≅ 0.0195.

(50)

5.5. Discussion. This estimate of M is quite consistent with
the least square estimate. Our estimate seems to suggest that
the transmission rates for 𝑁0 and 𝑁1 may be in the similar
range. By [8], assume that 𝜖0 = 𝜖1 = 0.019. We have

𝛾1 = 0.0385,
𝛾0 = 0.04,
𝛿 = 0.185;
𝛽 = 𝛽𝛾1𝛾1 = 0.019 − 0.0035

0.0385 = 0.4.
(51)

Every year about 18.5% of those unaware of their HIV
positiveness become aware of their infection due to testing.
About 40% of those infected by 𝑁1 group become aware
of their infection. This seems to be consistent with some of
the observations in [7], with one exception; namely, in our
estimates, the transmission rates for𝑁1 and𝑁0 are very close.
Figures 1 and 2 show the difference between TN𝑡 and N𝑡+1.

5.6. Arithmetic Average versus Geometric Average. Now we
may state our problem in greater generality. Given a temporal
vector N(𝑡), suppose that N(𝑡 + 1) = TN(𝑡) with transitional
matrix T. How should one estimate the matrix T?

As we discussed earlier, we can use least squares with the
equations

N (𝑡 + 1) = TN (𝑡) . (52)

The least square estimate of T, in some sense, is very similar
to the arithmetic mean of the transitional matrix T. But what
makes better sense is a geometric mean. More precisely, we
have to take into consideration that

N (𝑡 + 𝑘) = T𝑘N (𝑡) . (53)

Suppose that T𝑡 is the transitional matrix at time 𝑡. Then
a good estimate of T should be the “geometric average”
of T𝑡. For scalars, one can define the geometric average
of 𝑝1, 𝑝2, . . . , 𝑝𝑛 to be the 𝑛th root of ∏𝑝𝑖. But matrix
multiplications are not commutative and one cannot define
the geometric average of matrices. It remains a challenging
problem to define computationally a geometric mean of T𝑡.

5.7. Roots Estimate. Tentatively, we may define the geometric
mean by taking roots. For example, we may now consider

T2 [N1N4] = [N3N6] . (54)

Then

T ≅ (1.0038 0.1277
0.0228 0.8443) ,

M ≅ (0.0038 0.1277
0.0228 −0.1557) .

(55)

We can also consider

T4 [N1N3] = [N5N7] . (56)



8 Computational and Mathematical Methods in Medicine

We have

T = (1.0008 0.1430
0.0301 0.8011) ,

M ≅ (0.0008 0.143
0.0301 −0.2 ) .

(57)

Both estimates of T are consistent with the least square
estimate and the estimates in the previous section. Above all,
all our estimates point to the same range of transmission rates
for both 𝑁0 and 𝑁1.
6. Concluding Remarks

Nowwe shall compare our dynamic constant estimates in the
linear differential model in continuous time and in discrete
time.

In the continuous timemodel, we obtain the transmission
rate 𝜖1 of about 4% for the 𝑁1 group, those who were aware
of their HIV infection. Nevertheless, 𝛿 the rate of flow from𝑁0 to 𝑁1 due to HIV testing turned out to be too low and 𝜖0
often came out to be negative, which cannot be the case. The
best results are obtained whenwe assume the two eigenvalues
are complex. In this case

𝛾1 ≅ 0.029,
𝛿 ≅ 0.0325,

𝛾0 ≅ 0.023.
(58)

Yet 𝛿 seems to be quite low. According to the CDC report [8],𝛿 is estimated at about 25%.
There are various reasons why our dynamic constants are

inconsistent with known estimates. Firstly, the CDC data we
use tends to underestimate the 𝑁0 and 𝑁1 population sizes,
particularly inmore recent years.TheCDCestimates the sizes
of the populations infected withHIV by back calculation.The
estimates for any given year will increase as new diagnoses are
obtained. HIVmay go undiagnosed for up to 10 years without
causing the death of the patient (Table 1) [5]. Depending1
on the stage of the disease, the individual will be counted
as undiagnosed for a number of years prior to the diagnosis.
This causes the estimates of the population sizes to be smaller
than the actual size of the population. A new estimate of the
HIVprevalence agreeswith this conclusion [9]. Although this
new estimate is more conservative than the back calculation
method, it may still underestimate the 𝑁0 population. Both
estimates show a downward trend in the data, but this is likely
to be erased as more individuals are diagnosed in the later
stages of the disease.

Secondly, our computations assume that the susceptible
population is much larger than the infected population.
However, failing to obtain the right estimates suggests that
opposite may be true—the susceptible population could be
much smaller. HIV infection is overrepresented in some
subpopulations, such as men who have sex with men (MSM)
[1].This subpopulation is only about 5%of theUS population,
or approximately 15 million individuals. Not all MSM can

be considered to have equal risk of contracting the disease,
and since over 1 million individuals are currently living with
the disease, the susceptible population may be comparable
to the size of the infected population. For this reason, any
differential system model of the HIV transmission must
include the susceptible population.

The discrete dynamics model seems to be most robust
against the bias caused by back calculation and the size of the
susceptibles. By ignoring the 2013 year’s data, we are able to
determine the transmission rates as

𝛾1 ≅ 0.0385,
𝛾0 ≅ 0.04. (59)

Also 𝛿 ≅ 0.184, not too different from the CDC estimate0.25. We see that the dynamic constants in the discrete
time model are less affected by the underestimation caused
by back calculation. It is also true that the relative size of
susceptibles has less effect on the discrete time model than
on the continuous time model.

Finally, our estimates of the transmission rates for diag-
nosed and undiagnosed HIV population are relatively close.
This is very different from the previous estimate, where the
transmission rate of the undiagnosed population is about
4 times as high as the diagnosed population [7]. This
implies that the transmission rates should be attached to
the susceptible population. It makes sense to divide the
susceptible population into groups depending on the possible
transmission rates for them.We shall pursue this in a different
paper.
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Composition Comments

1. We referred to table 1 in the text, please check.


