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Abstract. If G is a Lie group, H ⊂ G is a closed subgroup, and τ is a unitary

representation of H, then the authors give a sufficient condition on ξ ∈ ig∗ to

be in the wave front set of IndG
H τ . In the special case where τ is the trivial

representation, this result was conjectured by Howe. If G is a reductive Lie

group of Harish-Chandra class and π is a unitary representation of G that

is weakly contained in the regular representation, then the authors give a
geometric description of WF(π) in terms of the direct integral decomposition

of π into irreducibles. Special cases of this result were previously obtained by
Kashiwara-Vergne, Howe, and Rossmann. The authors give applications to

harmonic analysis problems and branching problems.

1. Introduction

If u is a distribution on a smooth manifold X, then the wave front set of u, de-
noted WF(u), is a closed subset of iT ∗X that microlocally measures the smoothness
of the distribution u (see Section 2 for a definition). Similarly, if ζ is a hyperfunc-
tion on an analytic manifold Y , then the singular spectrum of ζ, denoted SS(ζ), is
a closed subset of iT ∗Y that microlocally measures the analyticity of the hyper-
function ζ (see Section 2 for a definition). The singular spectrum is also called the
analytic wave front set.

Suppose G is a Lie group, (π, V ) is a unitary representation of G, and (·, ·) is
the inner product on the Hilbert space V . Then the wave front set of π and the
singular spectrum of π are defined by

WF(π) =
⋃

u,v∈V
WFe(π(g)u, v), SS(π) =

⋃
u,v∈V

SSe(π(g)u, v).

Here the subscript e means we are only considering the piece of the wave front set
(or the singular spectrum) of the matrix coefficient (π(g)u, v) in the fiber over the
identity in iT ∗G.

In the case where G is compact, a notion equivalent to the singular spectrum
of a unitary representation was introduced by Kashiwara and Vergne on the top
of page 192 of [31]. This notion was later used by Kobayashi in [36] to prove a
powerful sufficient condition for discrete decomposability. Our definition of the
wave front set of a representation is equivalent to i times the definition of WF0(π)
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first introduced by Howe in [28] (see Proposition 2.4 for the equivalence of the
two definitions). The wave front set and singular spectrum of a representation are
always closed, invariant cones in ig∗, the dual of the Lie algebra of G.

Suppose G is a Lie group, H ⊂ G is a closed subgroup, and τ is a unitary rep-
resentation of H. Then we may form the unitarily induced representation IndGH τ ,
which is a unitary representation of G (See Section 4 for the definition). Let g (resp.
h) denote the Lie algebra of G (resp. H), and let q : ig∗ → ih∗ be the pullback of
the inclusion. If S ⊂ ih∗ is a subset, we will denote

IndGH S = Ad∗(G) · q−1(S)

and we will call this the set induced by S from ih∗ to ig∗.

Theorem 1.1. Suppose G is a Lie group, H ⊂ G is a closed subgroup, and τ is a
unitary representation of H. Then

WF(IndGH τ) ⊃ IndGH WF(τ)

and

SS(IndGH τ) ⊃ IndGH SS(τ).

When τ = 1 is the trivial representation, we have WF(1) = {0} and we obtain

WF(IndGH 1) ⊃ Ad∗(G) · i(g/h)∗ ⊃ i(g/h)∗.

This special case was conjectured by Howe on page 128 of [28]. Note that when
Γ ⊂ G is a discrete subgroup of a unimodular group G, we obtain

WF(L2(G/Γ)) = SS(L2(G/Γ)) = ig∗.

In the case where G is compact, the equality SS(IndGH τ) = IndGH SS(τ) was ob-
tained by Kashiwara and Vergne in Proposition 5.4 of [31]. In the case where G
is a connected semisimple Lie group with finite center, H = P = MAN ⊂ G is
a parabolic subgroup, and τ is an irreducible, unitary representation of MA ex-
tended trivially to P , the equality WF(IndGP τ) = IndGP WF(τ) follows from work of
Barbasch-Vogan (see page 39 of [1]) together with the principal results of [51], [53].

Let G be a reductive Lie group of Harish-Chandra class. The irreducible repre-
sentations occurring in the direct integral decomposition of L2(G) are called irre-

ducible, tempered representations of G; we denote by Ĝtemp the closed subspace of
the unitary dual consisting of these representations. To each irreducible tempered
representation σ of G, Duflo and Rossmann associated a finite union of coadjoint
orbits Oσ ⊂ ig∗ in [7],[47],[48]. In the generic case, when σ has regular infinitesimal
character, Oσ is a single coadjoint orbit.

If G is a reductive Lie group of Harish-Chandra class and (π, V ) is a unitary
representation of G, then we say π is weakly contained in the regular representation

if suppπ ⊂ Ĝtemp. For such a representation π, we define the orbital support of π
by

O - suppπ =
⋃

σ∈suppπ

Oσ.

If W is a finite-dimensional vector space and S ⊂W , then we define the asymp-
totic cone of S to be

AC(S) = {ξ ∈ V | Γ an open cone containing ξ ⇒ Γ ∩ S is unbounded} ∪ {0}.
One notes that AC(S) is a closed cone.
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Theorem 1.2. If G is a reductive Lie group of Harish-Chandra class and π is
weakly contained in the regular representation of G, then

SS(π) = WF(π) = AC(O - suppπ).

When G is compact and connected, an equivalent formula for SS(π) was obtained
by Kashiwara and Vergne in Corollary 5.10 of [31]. Using similar ideas, Howe
obtained the same formula for WF(π) when G is compact in Proposition 2.3 of
[28]. Related results concerning wave front sets and compact groups G appeared
in [13]. Finally, one can deduce the above formula for WF(π) when π is irreducible
from Theorems B and C of Rossmann’s paper [51].

Note that when K ⊂ G is a maximal compact subgroup of a semisimple Lie
group, it is known that L2(G/K) is a direct integral of principal series represen-
tations (see [16], [17], [19], [23], [24] for the original papers; see Section 1 of [44]
for an expository introduction). Combining this knowledge with Theorem 1.2, we
obtain

WF(L2(G/K)) = SS(L2(G/K)) = ig∗hyp = Ad∗(G) · i(g/k)∗.
Here g∗hyp denotes the set of hyperbolic elements in g∗.

Next, we consider two classes of applications of the above Theorems. First, sup-
pose G is a real, reductive algebraic group and H ⊂ G is a real, reductive algebraic
subgroup. In Theorem 4.1 of the recent preprint [2], Benoist and Kobayashi give a

concrete and computable necessary and sufficient condition for IndGH 1 = L2(G/H)
to be weakly contained in the regular representation. Putting together Theorems
1.1 and 1.2, we obtain the following Corollary.

Corollary 1.3. If G and H are reductive Lie groups of Harish-Chandra class,
H ⊂ G is a closed subgroup, and L2(G/H) is weakly contained in the regular
representation, then

AC(O - suppL2(G/H)) ⊃ Ad∗(G) · i(g/h)∗.

From Example 5.6 of [2], we see that if G = SO(p, q) and H =
∏r
i=1 SO(pi, qi)

with p =
∑r
i=1 pi, q =

∑r
i=1 qi, and 2(pi + qi) ≤ p + q + 2 whenever piqi 6= 0,

then L2(G/H) is weakly contained in the regular representation. To the best of
the authors’ knowledge, Plancherel formulas are not known for the vast majority
of these cases. An elementary computation shows that if in addition, 2pi ≤ p + 1
and 2qi ≤ q + 1 for every i and p+ q > 2, then

ig∗ = Ad∗(G) · i(g/h)∗.

Corollary 1.3 now implies that suppL2(G/H) is “asymptotically equivalent to”
suppL2(G) (we make this notion precise in Section 7). In particular, suppose p
and q are not both odd and F is one of the

(
p+q
p

)
families of discrete series of

G = SO(p, q). Then

HomG(σ, L2(G/H)) 6= {0}
for infinitely many different σ ∈ F (more details appear in Section 7).

In passing, we recall that Kobayashi previously obtained some partial results
concerning the discrete spectrum of L2(G/H) for certain G and H when G is
reductive [38]. While there is some small amount of overlap between this paper
and [38], most of the results in each paper cannot be deduced from the results of
the other paper.



4 BENJAMIN HARRIS, HONGYU HE, AND GESTUR ÓLAFSSON

Next, we utilize Theorem 1.2 together with an analogue of Theorem 1.1 for
restriction due to Howe in order to analyze branching problems for discrete series
representations. First, we recall Howe’s result (see page 124 of [28]). If π is a unitary
representation of a Lie group G, H ⊂ G is a closed subgroup, and q : ig∗ → ih∗ is
the pullback of the inclusion, then

WF(π|H) ⊃ q(WF(π)).

Corollary 1.4. Suppose G is a reductive Lie group of Harish-Chandra class, sup-
pose H ⊂ G is a closed reductive subgroup of Harish-Chandra class, and suppose π
is a discrete series representation of G. Let g (resp. h) denote the Lie algebra of
G (resp. H), and let q : ig∗ → ih∗ be the pullback of the inclusion. Then

AC(O - supp(π|H)) ⊃ q(WF(π)) = q(AC(Oπ)).

Let S be an exponential, solvable Lie group, let T ⊂ S be a closed subgroup, and
let q : is∗ → it∗ is the pullback of the inclusion of Lie algebras. Every irreducible,

unitary representation π ∈ Ŝ (resp. σ ∈ T̂ ) can be associated to a coadjoint orbit
Oπ (resp. Oσ). Fujiwara proved that σ occurs in the decomposition of π|H into
irreducibles iff Oσ ⊂ q(Oπ) [11]. The above Corollary can be viewed as (half of) an
asympototic version of Fujiwara’s statement for reductive groups.

We take note of a special case of Corollary 1.4 that may be of particular interest.

Corollary 1.5. Suppose G is a reductive Lie group of Harish-Chandra class, H ⊂
G is a reductive subgroup of Harish-Chandra class, and π is a discrete series rep-
resentation of G. Let g (resp. h) denote the Lie algebra of G (resp. H), and let
q : ig∗ → ih∗ be the pullback of the inclusion. If π|H is a Hilbert space direct sum
of irreducible representations of H, then

q(WF(π)) ⊂ ih∗ell.

Here ih∗ell ⊂ ih∗ denotes the subset of elliptic elements.

Let G be a real, reductive algebraic group with Lie algebra g, let K ⊂ G be
a maximal compact subgroup with Lie algebra k and complexification KC, and
let N (gC/kC)∗ denote the set of nilpotent elements of g∗C in (gC/kC)∗. In [58],
Vogan introduced the associated variety of an irreducibe, unitary representation

π ∈ Ĝ. Denoted AV(π), it is a closed, K invariant subset of N (gC/kC)∗. For an
irreducible, unitary representation π of G, there is a known procedure for producing
AV(π) from WF(π) and vice versa [53], [51], [1]. In particular, these notions give
equivalent information about π.

Now, suppose H ⊂ G is a real, reductive algebraic subgroup such that K∩H ⊂ H
is a maximal compact subgroup. Let (π, V ) be an irreducible, unitary representation
of G, and let VK be the set of K finite vectors of V . Note VK is a g module. In
Corollary 3.4 of [37] (see also Corollary 5.8 of [39]), Kobayashi showed that if VK |h
is discretely decomposable as an h module, then

q(AV(π)) ⊂ N (hC/(hC ∩ kC))∗.

Here q : g∗C → h∗C is the pullback of the inclusion. Corollary 1.5 can be viewed as
an analogue of Kobayashi’s statement with AV(π) replaced by WF(π) and in the
special case where π is a discrete series representation.
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2. The Definition of the Wave Front Set

In this section, we give definitions of the wave front set of a distribution, the
singular spectrum of a hyperfunction, the wave front set of a unitary Lie group
representation, and the singular spectrum of a unitary Lie group representation. In
addition, we collect a few facts about these objects to be used later in the paper.

There are two types of distributions (resp. tempered distributions) on a real,
finite dimensional vector space V . First, there is the set of generalized measures
(resp. tempered generalized measures), which is the set of continuous linear func-
tionals on the space of smooth, compactly supported functions (resp. Schwartz
functions) on V . Second, there is the set of tempered generalized functions, which
is the set of continuous linear functionals on the space of smooth, compactly sup-
ported densities (resp. Schwartz densities) on V (a Schwartz density is a Schwartz
function multiplied by a translation invariant measure on V ). We will refer to both
(tempered) generalized functions and (tempered) generalized measures as (tem-
pered) distributions in this paper; the reader will be able to tell the difference from
context.

Suppose u is a tempered generalized measure on i(Rn)∗, and define the Fourier
transform of u to be

(F [u])ξ = 〈ux, e〈x,ξ〉〉,
a tempered generalized function on Rn. Further, if v is a tempered generalized
function on Rn, define the Fourier transform of v to be F [v] = u where u is the
unique tempered generalized measure on i(Rn)∗ whose Fourier transform is v. In
what follows, we will often wish to make estimates on F [v]. In so doing, we implic-
itly utilize the standard inner product on Rn, the standard Lebesgue measure dx
on Rn, and division by i to identify F [v] with a generalized function on Rn.

We say a subset Γ of a finite-dimensional vector space V is a cone if tv ∈ V
whenever v ∈ V and t > 0 is a positive real number. If f is a smooth function on a
real vector space V and Γ ⊂ V is an open cone, then we say f is rapidly decaying
in Γ if for every N ∈ N there exists a constant CN > 0 such that

|f(x)| ≤ CN |x|−N .

Colloquially, f is rapidly decaying in Γ if it decays faster than any rational function
in Γ.

The definition of the (smooth) wave front set of a distribution was first given by
Hormander on page 120 of [25]. Here we give the most elementary definition (see
pages 251-270 of [26] for the standard exposition).

Definition 2.1. Suppose u is a generalized function on an open subset X ⊂ Rn,
and suppose (x, ξ) ∈ X × i(Rn)∗ ∼= iT ∗X is a point in the cotangent bundle of
X. The point (x, ξ) is not in the wave front set of u if there exists an open cone
ξ ∈ Γ ⊂ i(Rn)∗ and a smooth compactly supported function ϕ ∈ C∞c (X) with
ϕ(x) 6= 0 such that F [ϕu] is rapidly decaying in Γ. The wave front set of u is
denoted WF(u).

Many authors use the convention that (x, 0) is never in the wave front set for
any x ∈ X. However, we will use the convention that the zero section of iT ∗X
is always in the wave front set because it will make the statements of our results
cleaner.
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There are several (equivalent) variants of this definition that we will sometimes
use. First, instead of a cone ξ ∈ Γ ⊂ i(Rn)∗, one may take an open subset ξ ∈W ⊂
i(Rn)∗ and require

F [ϕu](tη)

to be rapidly decaying in the variable t for t > 0 uniformly in the parameter η ∈W .
Second, suppose U ⊂ X is an open set and Γ1 ⊂ i(Rn)∗ is a closed cone. Then
(U × Γ1) ∩WF(u) = U × {0} iff for every ϕ ∈ C∞c (U) and every compact subset
0 /∈ K ⊂ i(Rn)∗ − Γ1, the expression F [ϕu](tη) is rapidly decaying in t for t > 0
uniformly for η ∈ K (see page 262 of [26]). Third, instead of a smooth, compactly
supported function ϕ, one may take an even Schwartz function ϕ that does not
vanish at zero and form the family of Schwartz functions

ϕt(y) = tn/4ϕ(t1/2(y − x))

for t > 0. Then (x, ξ) is not in the wave front set of u iff there exists an open subset
ξ ∈W ⊂ i(Rn)∗ such that F [ϕtu](tη) is rapidly decaying in the variable t for t > 0
uniformly in η ∈W . This third variant is nontrivial. It is due to Folland (see page
155 of [8]); the case where ϕ is a Gaussian was obtained earlier by Cordoba and
Fefferman [4].

Now, if ψ : X → Y is a diffeomorphism between two open sets in Rn and u is a
distribution on X, then (see page 263 of [26])

ψ∗WF(u) = WF(ψ∗u).

One sees immediately from this functoriality property that the notion of the wave
front set of a distribution on a smooth manifold is independent of the choice of
local coordinates and is therefore well defined.

We note that the original definition of the wave front set involved pseudodif-
ferential operators instead of abelian harmonic analysis. See page 89 of [27] for a
proof that the original definition and the one above are equivalent.

The notion of the singular spectrum of a hyperfunction was first introduced by
Sato in [52], [30]. It was originally called the singular support; however, there
is already a standard notion of singular support in the theory of distributions.
Therefore, we use the term singular spectrum, which is now widely used. The book
[42] is a readable introduction to Sato’s work.

Years after Sato’s work, Bros and Iagolnitzer introduced the notion of the es-
sential support of a hyperfunction [29]. Their definition was subsequently shown
to be equivalent to Sato’s [3]. In his book [26], Hormander introduced the notion
of the analytic wave front set of a hyperfunction, and he proved that his notion is
equivalent to the essential support of Bros and Iagolnitzer.

We say that a smooth function f on R is exponentially decaying for t > 0 if there
exist constants ε > 0 and C > 0 such that

|f(t)| ≤ Ce−εt

for t > 0. We define a family of Gaussians on R by

Gt(s) = e−ts
2

.

We first give a definition of the singular spectrum that is a variant of the one given
by Bros and Iagolnitzer for the essential support.
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Definition 2.2. Suppose u is a distribution on an open subset X ⊂ Rn, and sup-
pose (x, ξ) ∈ X×i(Rn)∗ ∼= iT ∗X is a point in the cotangent bundle of X. The point
(x, ξ) is not in the singular spectrum of u if, and only if for some (equivalently any)
smooth function ϕ ∈ C∞c (X) that is real analytic and nonzero in a neighborhood
of x, there exists an open set ξ ∈W ⊂ i(Rn)∗ such that

F [Gt(|x− y|)ϕ(y)u(y)](tη)

is exponentially decaying in t for t > 0 uniformly for η ∈W . The singular spectrum
of u is denoted SS(u).

In fact, one can extend this definition to hyperfunctions (see Chapter 9 of [26]),
but we will not need to consider hyperfunctions in this paper. In passing, we note
that if u happens to be a tempered distribution, then one need not multiply by the
smooth compactly supported function ϕ in the above definition. The nice thing
about the above definition is that it is a clear analytic analogue of the Cordoba-
Feffermann definition of the smooth wave front set. One simply replaces rapid decay
by exponential decay in the definition. However, exponential decay can sometimes
be inconvenient to check in some situations. Because of this, we now give an
alternate definition of Hormander.

For this definition, we need a remark. Suppose U1 ⊂ U ⊂ Rn are precom-
pact open sets with U1 compactly contained in U . For every multi-index α =
(α1, . . . , αn), define the differential operator

Dα =
∂α1

∂xα1
1

· · · ∂
αn

∂xαnn
,

and let |α| = α1+· · ·+αn. Then there exists (see pages 25-26, 282 of [26]) a sequence
ϕN,U1,U of smooth functions supported in U together with a family of positive
constants {Cα} for every multi-index α = (α1, . . . , αn) such that ϕN,U1,U (y) = 1
whenever y ∈ U1 and

sup
y∈U
|Dα+βϕN,U1,U (y)| ≤ C |β|+1

α (N + 1)|β|

whenever |β| ≤ N . For each such pair of precompact open subsets U1 ⊂ U ⊂ Rn,
we fix such a sequence ϕN,U1,U .

We now give a variant of Hormander’s definition of the analytic wave front set
of a distribution (see pages 282-283 of [26]).

Definition 2.3. Suppose u is a distribution on an open set X ⊂ Rn, and suppose
(x, ξ) ∈ X × i(Rn)∗ ∼= iT ∗X is a point in the cotangent bundle of X. The point
(x, ξ) is not in the singular spectrum of u if, and only if there exists a pair of
precompact open sets x ∈ U1 ⊂ U ⊂ X with U1 compactly contained in U , an open
set ξ ∈W ⊂ i(Rn)∗, and a constant C > 0 such that for every N ∈ N, we have the
estimate

|F [ϕN,U1,Uu](tη)| ≤ CN+1(N + 1)N t−N

uniformly for η ∈W . The singular spectrum of u is denoted SS(u).

One key disadvantage of the definitions of Bros-Iagolnitzer and Hormander is
that they are not obviously invariant under analytic changes of coordinates. This is
certainly an advantage of the original definition of Sato. However, in this paper, we
will use the close relationship between the analytic wave front set of a distribution
and the ability to write the distribution as the boundary value of a complex analytic
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function. This relationship is originally due to Sato [30], [42]; however, we will follow
the treatment in Sections 8.4, 8.5 of [26]. We will use this theory in Section 6. For
now, we remark on the following application.

If ψ : X → Y is a bianalytic isomorphism between two open sets in Rn and u is
a distribution on X, then (see page 296 of [26])

ψ∗ SS(u) = SS(ψ∗u).

One sees immediately from this functoriality property that the notion of the singular
spectrum of a distribution on an analytic manifold is independent of the choice of
analytic local coordinates and is therefore well defined.

Finally, we remark that if u is a distribution on an analytic manifold, then we
have

SS(u) ⊃WF(u).

This is obvious from the above definitions. Roughly speaking, it means that it is
tougher for u to be analytic than smooth.

Suppose G is a Lie group, (π, V ) is a unitary representation of G, and (·, ·) is the
inner product on the Hilbert space V . As in the introduction, we define the wave
front set of π and the singular spectrum of π by

WF(π) =
⋃

u,v∈V
WFe(π(g)u, v), SS(π) =

⋃
u,v∈V

SSe(π(g)u, v).

Here the subscript e means that we are only taking the piece of the wave front
set (or singular spectrum) in the fiber over the identity in iT ∗G. One might ask
why we add this restriction. Utilizing the short argument on page 118 of [28], one
observes that ⋃

u,v∈V
WF(π(g)u, v),

⋃
u,v∈V

SS(π(g)u, v)

are G × G invariant, closed subsets of iT ∗G ∼= G × ig∗. In particular, they are
simply G×WF(π) and G×SS(π). Therefore, if we did not add the the subscript e
in our definitions of the wave front set and singular spectrum of π, then we would
simply be taking the product of our sets with G. This would be more cumbersome
and no more enlightening.

We note in passing that the above digression together with the above definitions
of the wave front set and singular spectrum of a distribution imply that WF(π) and
SS(π) are closed, Ad∗(G)-invariant cones in ig∗. We also note that

SS(π) ⊃WF(π)

for every unitary Lie group representation π since SSe(u) ⊃WFe(u) whenever u is
a distribution on an analytic manifold.

Let B1(V ) denote the Banach space of trace class operators on V . Given a trace
class operator T ∈ EndV , one can define a continuous function on G by

Trπ(T )(g) = Tr(π(g)T ).

We define

W̃F(π) =
⋃

T∈B1(V )

WFe(Trπ(T )(g)), S̃S(π) =
⋃

T∈B1(V )

SSe(Trπ(T )(g)).

The definition on the left was i times the original definition used by Howe for
WF0(π) [28]. Notice that when T = (·, u)v is a rank one operator, Trπ(T )(g) =
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(π(g)u, v) is a matrix coefficient. Therefore, it is clear from our definitions that

WF(π) ⊂ W̃F(π) and SS(π) ⊂ S̃S(π). The primary purpose of the remainder of
this section is to prove equality.

Proposition 2.4. We have

WF(π) = W̃F(π) and SS(π) = S̃S(π).

To prove the Proposition, we will need to recall some facts about wave front sets
of representations from [28]. If T ∈ EndV is a bounded linear operator, let |T |∞
denote the operator norm of T . If T ∈ B1(V ) is a trace class operator, let |T |1
denote the trace class norm of T .

Lemma 2.5 (Howe). Suppose G is a Lie group, and (π, V ) is a unitary represen-
tation of G. The following are equivalent:

(a) ξ /∈ W̃F(π)
(b) For every T ∈ B1(V ), there exists an open set e ∈ U ⊂ G on which the logarithm

is a well-defined diffeomorphism onto its image and an open set ξ ∈ W ⊂ ig∗

such that for every ϕ ∈ C∞c (U), the absolute value of the integral

I(ϕ, η, T )(t) =

∫
G

Trπ(T )(g)etη(log g)ϕ(g)dg

is rapidly decaying in t for t > 0 uniformly for η ∈W .
(c) There exists an open set e ∈ U ⊂ G on which the logarithm is a well-defined

diffeomorphism onto its image and an open set ξ ∈W ⊂ ig∗ such that for every
ϕ ∈ C∞c (U) there exists a family of constants CN (ϕ) > 0 such that

|I(ϕ, η, T )(t)| ≤ C(ϕ)|T |1t−N

for t > 0, η ∈ W , and T ∈ B1(V ). (The constants C(ϕ) may be chosen
independent of both η ∈W and T ∈ B1(V )).

(d) There exists an open set e ∈ U ⊂ G on which the logarithm is a well-defined
diffeomorphism onto its image and an open set ξ ∈W ⊂ ig∗ such that for every
ϕ ∈ C∞c (U), the quantity

|π(ϕ(g)etη(log g))|∞

is rapidly decaying in t for t > 0 uniformly in η ∈W .

This Lemma is a subset of Theorem 1.4 of [28]. Some of the notation has been
slightly altered for convenience. Next, we need an analogue of this Lemma for our
first definition of the singular spectrum, Definition 2.2.

Lemma 2.6. Suppose G is a Lie group and (π, V ) is a unitary representation of
G. The following are equivalent:

(a) ξ /∈ S̃S(π)
(b) For every T ∈ B1(V ) and for some (equivalently every) pair of precompact

open sets e ∈ U1 ⊂ U ⊂ G with U1 compactly contained in U and so that
the logarithm on U is a well-defined bianalytic isomorphism onto its image,



10 BENJAMIN HARRIS, HONGYU HE, AND GESTUR ÓLAFSSON

there exists an open set ξ ∈ W ⊂ ig∗ such that for some (equivalently every)
ϕ ∈ C∞c (U) that is identically one on U1, the absolute value of the integral

I(ϕ, η, T )(t) =

∫
G

Trπ(T )(g)etη(log g)ϕ(g)Gt(| log(g)|)dg

is exponentially decaying in t for t > 0 uniformly for η ∈W .
(c) For some (equivalently every) pair of precompact open sets e ∈ U1 ⊂ U ⊂ G with

U1 compactly contained in U and so that the logarithm on U is a well-defined
bianalytic isomorphism onto its image, there exists an open set ξ ∈ W ⊂ ig∗

such that for some (equivalently every) ϕ ∈ C∞c (U) that is identically one on
U1, there exist constants C(ϕ) > 0 and ε(ϕ) > 0 such that

|I(ϕ, η, T )(t)| ≤ C(ϕ)|T |1e−ε(ϕ)t

for t > 0, η ∈ W , and T ∈ B1(V ). (The constants C(ϕ) and ε(ϕ) may be
chosen independent of both η ∈W and T ∈ B1(V )).

(d) For some (equivalently every) pair of precompact open sets e ∈ U1 ⊂ U ⊂ G with
U1 compactly contained in U and so that the logarithm on U is a well-defined
bianalytic isomorphism onto its image, there exists an open set ξ ∈ W ⊂ ig∗

such that for some (equivalently every) ϕ ∈ C∞c (U) that is identically one on
U1, the quantity

|π(ϕ(g)Gt(| log(g)|)etη(log g))|∞
is exponentially decaying in t for t > 0 uniformly in η ∈W .

We note that the proof of Lemma 2.6 is nearly identical to the proof of Lemma
2.5. As noted before, Lemma 2.5 is part of Theorem 1.4 on page 122 of [28].

Next, we prove Proposition 2.4.

Proof. In both cases, one containment is obvious. Therefore, to prove the Lemma
it is enough to show ⋃

T∈B1(V )

WFe(Trπ(T )) ⊂
⋃

v,w∈V
WFe(π(g)v, w)

and ⋃
T∈B1(V )

SSe(Trπ(T )) ⊂
⋃

v,w∈V
SSe(π(g)v, w).

In particular, it is enough to fix

ξ /∈
⋃

v,w∈V
WFe(π(g)v, w), ζ /∈

⋃
v,w∈V

SSe(π(g)v, w)

and then show that

ξ /∈
⋃

T∈B1(V )

WFe(Trπ(T )), ζ /∈
⋃

T∈B1(V )

SSe(Trπ(T )).

By the second variant of Definition 2.1, we may find an open neighborhood
e ∈ U ⊂ G on which the logarithm is well-defined and an open neighborhood
ξ ∈W ⊂ ig∗ such that for all N ∈ N and ϕ ∈ C∞c (U) the quantity∣∣∣∣tN ∫

U

ϕ(g)et〈log(g),η〉(π(g)v, w)dg

∣∣∣∣
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is bounded as a function of η ∈ W and t > 0 for every v, w ∈ V . By the uniform
boundedness principle, we deduce that the family of operators tNπ(ϕ(g)eit〈log(g),η〉)
is uniformly bounded in the operator norm for η ∈W and t > 0. Therefore∣∣∣π(ϕ(g)eit〈log(g),η〉)

∣∣∣
∞

is rapidly decreasing in t for t > 0 uniformly in η ∈ W . Utilizing Lemma 2.5, the
first statement follows.

For the singular spectrum case, by Definition 2.2, we may find a pair of precom-
pact open neighborhoods e ∈ U1 ⊂ U ⊂ G on which the logarithm is well-defined
and an open neighborhood ζ ∈W ⊂ ig∗ such that for some ϕ ∈ C∞c (U) with ϕ = 1
on U1, we have∣∣∣∣∫

U

ϕ(g)Gt(| log(g)|)et〈log(g),η〉(π(g)v, w)dg

∣∣∣∣ ≤ Cv,w(ϕ)e−ε(v,w,ϕ)t

for t > 0 and η ∈W . We must show that the above constants Cv,w(ϕ) and ε(v, w, ϕ)
are independent of v and w subject to the conditions |v| = |w| = 1. Denote the
above integral by I(ϕ, η, v, w)(t) and fix v. Let

Sn(v) = {w ∈ V | |I(ϕ, η, v, w)(t)| ≤ ne−(1/n)t uniformly for η ∈W}.
By the Baire Category Theorem and the linearity of I in the variable w, we observe
that Snv (v) contains a δ ball, Bδ(0), around zero for some nv. In particular, for
fixed v, the constants Cv,w(ϕ) and ε(v, w, ϕ) can be taken independent of w with
|w| = 1 (Cv,w(ϕ) = nv/δ, ε(v, w, ϕ) = 1/nv in the above argument).

In particular, we may find a pair of precompact open neighborhoods e ∈ U1 ⊂
U ⊂ G on which the logarithm is well-defined and an open neighborhood ζ ∈W ⊂
ig∗ such that for some ϕ ∈ C∞c (U) with ϕ = 1 on U1, we have∣∣∣∣∫

U

ϕ(g)Gt(| log(g)|)et〈log(g),η〉π(g)vdg

∣∣∣∣ ≤ Cv(ϕ)e−ε(v,ϕ)t

for t > 0 and η ∈W . Denote the integral on the left by I(ϕ, η, v)(t) and set

Sn = {v ∈ V | |I(ϕ, η, v)(t)| ≤ ne−(1/n)t uniformly for η ∈W}.
Utilizing the Baire Category Theorem and the linearity of I(ϕ, η, v) in the variable
v, we observe that there exists N for which SN contains a δ ball, Bδ(0), about the
origin. In particular, we may set Cv(ϕ) = N/δ and ε(v, ϕ) = 1/N in the above
inequality for all v ∈ V with |v| = 1. It follows that

|π(ϕ(g)Gt(| log(g)|)et〈log(g),η〉)|∞
is exponentially decaying in t for t > 0 uniformly for η ∈W . The second statement
in Proposition 2.4 now follows from Lemma 2.6. �

3. Wave Front Sets and Distribution Vectors

If (π, V ) is a unitary representation of a Lie group G, then

V∞ = {v ∈ V |g 7→ π(g)v is smooth}.
The Lie algebra g acts on V∞, and we give V∞ a complete, locally convex topology
via the seminorms |v|D = |Dv| for each D ∈ U(g). Now, given a unitary represen-
tation (π, V ), we may form the conjugate representation (π, V ) by simply giving V

the conjugate complex structure. Define V −∞ to be the dual space of V
∞

.
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Given ζ, η ∈ V −∞, we wish to define a generalized matrix coefficient denoted
by (π(g)ζ, η). This generalized matrix coefficient will be a generalized function on
G. To define it, we need a couple of preliminaries. Suppose µ ∈ C∞c (G,D(G)) is a
smooth, compactly supported section of the complex density bundle D(G)→ G on
G, and suppose ζ ∈ V −∞. Then we define π(µ)ζ ∈ V −∞ by

〈π(µ)ζ, v〉 = 〈ζ, π(ι∗µ)v〉 = 〈ζ,
∫
G

π(g)vdµ(g−1)〉

for v ∈ V∞. Here ι denotes inversion on the group G.

Lemma 3.1. For µ ∈ C∞c (G,D(G)) and ζ ∈ V −∞, we have π(µ)ζ ∈ V∞. More-
over, if ζ, η ∈ V −∞, then the linear functional

µ 7→ (π(µ)ζ, η)

is continuous and therefore defines a distribution on G. We will denote this distri-
bution by (π(g)ζ, η).

This Lemma has been well-known to experts for some time. For a proof, see the
expositions on pages 9-13 of [21] and page 136 of [55].

In fact, we may define the (smooth or analytic) wave front set of a unitary
representation in terms of the (smooth or analytic) wave front sets of the generalized
matrix coefficients of G.

Proposition 3.2. We have the equalities

WF(π) =
⋃

ζ,η∈V −∞
WFe(π(g)ζ, η)

and

SS(π) =
⋃

ζ,η∈V −∞
SSe(π(g)ζ, η).

The key to this Proposition is the following Lemma.

Lemma 3.3. If ζ ∈ V −∞, then there exists D ∈ U(g) and u ∈ V such that Du = ζ.

This Lemma has been well-known to experts for some time. For a proof, see the
exposition on page 5 of [21].

Now, we prove the Proposition.

Proof. Clearly the left hand sides are contained in the right hand sides. To show the
other directions, fix ζ, η ∈ V −∞. Write ζ = D1u and η = D2v with D1, D2 ∈ U(g)
and u, v ∈ V . Then we have

WF(π(g)ζ, η) = WF(LD2
RD1

(π(g)u, v))

and
SS(π(g)ζ, η) = SS(LD2RD1(π(g)u, v)).

Here RD1
(resp. LD2

) denotes the action of D1 (resp. D2) via right (resp. left)
translation on C−∞(G). But, by (8.1.11) on page 256 of [26], we deduce

WF(LD2RD1(π(g)u, v)) ⊂WF(π(g)u, v).

And from the remark on the top of page 285 of [26], we deduce

SS(LD2RD1(π(g)u, v)) ⊂ SS(π(g)u, v).

The Proposition follows. �
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4. Wave Front Sets of Induced Representations

Now, suppose H ⊂ G is a closed subgroup, and let D1/2 → G/H be the bundle
of complex half densities on G/H. Let (τ,W ) be a unitary representation of H,
and let W → G/H be the corresponding invariant, Hermitian (possibly infinite-
dimensional) vector bundle on G/H. Then we obtain a unitary representation of
G by letting G act by left translation on

L2(G/H,W ⊗D1/2).

This representation is usually denoted by IndGH τ ; it is called the representation of
G induced from the representation τ of H (sometimes the term “unitarily induced”
is used). Let g (resp. h) denote the Lie algebra of G (resp. H), and let q : ig∗ → ih∗

be the pullback of the inclusion. If S ⊂ ih∗, we define

IndGH S = Ad∗(G) · q−1(S).

If S is a cone, then IndGH S is the smallest closed, Ad∗(G) invariant cone in ig∗ that
contains q−1(S). The purpose of this section is to prove Theorem 1.1. Recall that
we must show

WF(IndGH τ) ⊃ IndGH WF(τ)

and

SS(IndGH τ) ⊃ IndGH SS(τ).

We note that WF(IndGH τ) and SS(IndGH τ) are closed, Ad∗(G) invariant cones

in ig∗. Therefore, to show that WF(IndGH τ) contains IndGH WF(τ) (respectively

SS(IndGH τ) contains IndGH SS(τ)), it is enough to show that WF(IndGH τ) contains

q−1(WF(τ)) (respectively SS(IndGH τ) contains q−1(SS(τ))).
Before proving the Theorem, we first make a few general comments and then

we will prove a Lemma. Suppose H ⊂ G is a closed subgroup of a Lie group. Let
D(G) → G (resp. D(H) → H, D(G/H) → G/H) denotes the complex density
bundle on G (resp. H, G/H). Now, suppose we are given f ∈ C(H), a continuous
function on H, and ω ∈ DH(G/H)∗, an element of the dual of the fiber over {H}
in the density bundle on G/H. We claim that fω defines a generalized function on
G.

To see this, we must show how to pair fω with a smooth, compactly supported
density, µ, on G. Let n = dimG, m = dimH, and recall that for each h ∈ H, µh
is a map

µh : g⊕n → C
satisfying

µh(AX1, . . . , AXn) = |detA|µh(X1, . . . , Xn)

for A ∈ End(g) and X1, . . . , Xn ∈ g. Similarly, ω is a map

ω : (g/h)⊕(n−m) → C

satisfying

ω(AX1, . . . , AXn−m) = |detA|−1ω(X1, . . . , Xn−m)

for A ∈ Aut(g/h) and X1, . . . , Xn−m ∈ g/h.
To pair fω with µ, we must show that µω defines a smooth, compactly supported

density on H. For each h ∈ H, we will define a map

µhω : h⊕m → C.
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To do this, we fix Y1, . . . , Yn−m ∈ g such that {Y1, . . . , Y n−m} is a basis for g/h.
Then we define

(µhω)(X1, . . . , Xm) =

µh(X1, . . . , Xm, Y1, . . . , Yn−m)ω(Y1, . . . , Y n−m)

for any X1, . . . , Xm ∈ h. One checks directly that this definition of µhω is indepen-
dent of the choice of Y1, . . . , Yn−m and that it satisfies

(µhω)(AX1, . . . , AXm) = |detA|(µhω)(X1, . . . , Xm)

for A ∈ End(h) and X1, . . . , Xm ∈ h. In particular, µω is a smooth, compactly
supported density on H, and the pairing

〈fω, µ〉 = 〈f, µω〉

is well-defined and continuous. Thus, fω defines a generalized function on G.

Now, recall (τ,W ) is a unitary representation of H. For w1 ∈W and a non-zero
ω1 ∈ (DH(G/H)1/2)∗, we define a distribution vector

δH(w1, ω1) ∈ C−∞c (G/H,W ⊗D1/2) ∼= C∞(G/H,W ⊗D1/2)∗

by

δH(w1, ω1) : ϕ 7→ 〈ϕ(H), w1 ⊗ ω1〉.
The above pairing is the tensor product of the pairing between W and W via the
inner product on the Hilbert space W and the pairing between DH(G/H)1/2 and
its dual. Similarly, if w2 ∈ W and ω2 ∈ (DH(G/H)1/2)∗ is non-zero, we define a
distribution vector

δH(w2, ω2) ∈ C−∞c (G/H,W ⊗D1/2) ∼= C∞(G/H,W ⊗D1/2)∗.

Now, we have a continuous inclusion

L2(G/H,W ⊗D1/2)∞ ⊂ C∞(G/H,W ⊗D1/2).

Continuity follows from the local Sobolev inequalities. One observes that the lo-
cal Sobolev inequalities hold for functions valued in any separable Hilbert space.
Dualizing, we obtain a continuous inclusion

C−∞c (G/H,W ⊗D1/2) ⊂ L2(G/H,W ⊗D1/2)−∞.

Therefore, since the distributions δH(w1, ω1) and δH(w2, ω2) are supported at a
single point, they are compactly supported and by the above inclusion they both
define distribution vectors for the representation L2(G/H,W ⊗D1/2).

Lemma 4.1. The distribution on G defined by the generalized matrix coefficient

(π(g)δH(w1, ω1), δH(w2, ω2))

(see Lemma 3.1) is equal to the generalized function on G defined by

µ 7→ |det(Ad(h)|g/h)| · (τ(h)w1, w2)ω, µ)

where µ is a smooth, compactly supported section of the density bundle on G and
ω = ω1ω2 ∈ DH(G/H)∗.
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Proof. We will prove the Lemma by directly analyzing the generalized matrix co-
efficient (π(g)δH(w1, ω1), δH(w2, ω2)). Fix µ ∈ C∞c (G,D(G)) a smooth, compactly
supported density on G. By Lemma 3.1,

π(µ)δH(w1, ω1)

is a smooth vector in

L2(G/H,W ⊗D1/2)∞ ⊂ C∞(G/H,W ⊗D1/2).

Pairing it with δH(w2, ω2) means evaluating this smooth function at {H} and pair-
ing it with w2 ⊗ ω2. First, we wish to analyze the smooth function π(µ)δH(w1, ω1)
by pairing it with ψ ∈ C∞c (G/H,W ⊗D1/2). We have

〈π(µ)δH(w1, ω1), ψ〉 =

∫
G

(w1 ⊗ ω1, Lg−1ψ(g))dµ(g).

Now, ω ∈ DH(G/H)∗ is a vector in the dual of fiber of the density bundle on
G/H above H. We let ω∗ ∈ DH(G/H) be the unique vector so that 〈ω∗, ω〉 = 1.

Moreover, extend ω∗ to a nonvanishing section ω̃∗ of the complex density bundle
on G/H. Now, if ϕ ∈ C∞c (G), then instead of integrating ϕµ over G, we wish to
integrate over the fibers of the fibration

G→ G/H

which are simply the cosets xH and then integrate against ω̃∗ along the base. One
sees that for every gH ∈ G/H, there exists a smooth density ηgH ∈ C∞(gH,D(gH))
such that ∫

G

ϕ(g)µ(g) =

∫
G/H

(∫
H

ϕ(gh)dηgH(h)

)
dω̃∗(g).

In addition, note ηHω
∗ = µ and ηH = µω. We apply this integration formula for

ϕ(g) = (w1 ⊗ ω1, Lg−1ψ(g)).

Thus, we obtain
〈π(µ)δH(w1, ω1), ψ〉

=

∫
G/H

[∫
H

(w1 ⊗ ω1, L(gh)−1ψ(g))dηgH(h)

]
dω̃∗(g)

=

∫
G/H

(∫
H

Lg(τ(h)w1 ⊗ h · ω1)dηgH(h), ψ(g)

)
dω̃∗(g).

One sees the distribution π(µ)δH(w1, ω1) is the smooth function with values in
the bundle W ⊗D(G/H)1/2 given by

g 7→
(∫

H

Lg(τ(h)w1 ⊗ h · ω1)dηgH(h)

)
· ω̃∗.

Evaluating at {H} yields(∫
H

τ(h)w1 ⊗ h · ω1dηH(h)

)
· ω∗.

Now, h · ω1 = |det(Ad(h)|g/h)| · ω1. Pairing with w2 ⊗ ω2 yields∫
H

|det(Ad(h)|g/h)|(τ(h)w1, w2)〈ω1ω
∗, ω2〉ηH(h)

= 〈|det(Ad(h)|g/h)| · (τ(h)w1, w2), µω〉.
Here we have used 〈ω1ω2, ω

∗〉 = 1 and ηH = µω. The Lemma follows. �
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Now, we are ready to prove Theorem 1.1.

Proof. Let w1, w2 ∈ W be two vectors, and let (τ(h)w1, w2) be the corresponding
matrix coefficient of (τ,W ). To prove the Theorem, it is enough to show

WF(L2(G/H,W ⊗D1/2)) ⊃ q−1(WFe(τ(h)w1, w2))

and

SS(L2(G/H,W ⊗D1/2)) ⊃ q−1(SSe(τ(h)w1, w2)).

Let V = L2(G/H,W ⊗D1/2) and recall the equalities

WF(π) =
⋃

ζ,η∈V −∞
WFe(π(g)ζ, η)

and

SS(π) =
⋃

ζ,η∈V −∞
SSe(π(g)ζ, η)

from Proposition 3.2.
To prove the Theorem, it is therefore enough to show

WFe(π(g)δH(w2, ω2), δH(w1, ω1)) = q−1(WFe(τ(h)w1, w2))

and

SSe(π(g)δH(w2, ω2), δH(w1, ω1)) = q−1(SSe(τ(h)w1, w2)).

By Lemma 4.1, we know (π(µ)δH(w2, ω2), δH(w1, ω1)) is simply

〈|det(Ad(h)|g/h)| · (τ(h)w1, w2), ωµ〉.

Now, to compute the wave front set and singular spectrum of this generalized
function, we fix a subspace S ⊂ g such that S ⊕ h = g. Then we can work locally
in exponential coordinates S × h→ g and forget about densities (since the density
bundle is locally trivial). In these coordinates, our generalized function is

δ0 ⊗ | det(Ad(expY )|g/h)| · (τ(expY )w1, w2)

with Y ∈ h. Now, |det(Ad(expY )|g/h)| is an analytic, nonzero function in a neigh-
borhood of zero. Therefore, it is enough to compute the wave front set and singular
spectrum of

δ0 ⊗ (τ(expY )w1, w2).

Now, suppose we have open neighborhoods 0 ∈ U1 ⊂ S, 0 ∈ U2 ⊂ h and functions
ϕ1 ∈ C∞c (U1), ϕ2 ∈ C∞c (U2) with ϕ1(0) 6= 0, ϕ2(0) 6= 0. Multiplying our distribu-
tion δ0 ⊗ (τ(expY )w1, w2) by the tensor product ϕ1 ⊗ ϕ2 and taking the Fourier
transform yields

ϕ1(0)⊗F [ϕ2(τ(expY )w1, w2)].

The first term is never rapidly decreasing in any direction in iS∗ regardless of
the choice of U1 and ϕ1. The second term is rapidly decreasing in a direction
ξ ∈ ih∗ for all ϕ2 ∈ C∞c (U2) for some neighborhood 0 ∈ U2 ⊂ ih∗ if and only if
ξ /∈ WFe(τ(h)w1, w2). It follows from the discussion on page 254 of [26] that we
can compute the wave front set of δ0⊗ (τ(expY )w1, w2) utilizing neighborhoods of
the form U1 × U2 and smooth functions of the form ϕ1 ⊗ ϕ2. Hence, we deduce

WF0(δ0 ⊗ (τ(expY )w1, w2)) = iS∗ ×WFe(τ(h)w2, w2).
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However, this product description of the wave front set requires a non-canonical
splitting of the exact sequence

0→ h→ g→ g/h→ 0.

A more canonical way of writing the same thing is

WFe(π(g)δH(w2, ω2), δH(w1, ω1)) = q−1(WFe(τ(h)w1, w2)).

The first statement of Theorem 1.1 now follows.
To compute the singular spectrum, we work in the same non-canonical, exponen-

tial coordinates. We fix precompact, open neighborhoods 0 ∈ U1×U2 ⊂ U ′1×U ′2 ⊂
S×h with U1 (resp. U2) compactly contained in U (resp. U ′). We fix ϕi ∈ C∞c (U ′i)
such that ϕi is one on Ui for i = 1, 2. Let

Gt(s) = e−ts
2

be the standard family of Gaussians on R. Now, we multiply

δ0 ⊗ (τ(expY )w1, w2)

by ϕ1 ⊗ ϕ2 and Gt(|Z|)⊗Gt(|Y |) = Gt(|Z + Y |) and we take the Fourier transform
and evaluate at tζ (Here we assume that | · | is a norm coming from an inner product
for which the subspaces S and h are orthogonal). We obtain

ϕ1(0)⊗F [Gt(|Y |)ϕ2(τ(expY )w1, w2)](tζ).

The first term is never exponentially decaying anywhere in iS∗. The second term
is exponentially decaying precisely when the singular spectrum of (τ(expY )w1, w2)
does not contain ζ by definition. Thus, we obtain

SS0(δ0 ⊗ (τ(expY )w1, w2)) = iS∗ × SSe(τ(h)w2, w2).

However, this product description of the singular spectrum requires a non-canonical
decomposition g = S ⊕ h. A more canonical way of writing the same thing is

SSe(π(g)δH(w2, ω2), δH(w1, ω1)) = q−1(SSe(τ(h)w1, w2)).

The second statement of Theorem 1.1 now follows. �

5. Wave Front Sets of Pieces of the Regular Representation Part I

Our next task is to prove Theorem 1.2. Suppose G is a reductive Lie group of
Harish-Chandra class, and suppose π is weakly contained in the regular represen-
tation of G. Then we must show

SS(π) = WF(π) = AC(O - suppπ).

However, given that SS(π) ⊃WF(π), it is enough to show

WF(π) ⊃ AC(O - suppπ)

and
SS(π) ⊂ AC(O - suppπ).

This section will be devoted to proving the first inclusion. The next section will
be devoted to proving the second inclusion.

Proposition 5.1. Suppose G is a reductive Lie group of Harish-Chandra class,
and suppose π is weakly contained in the regular representation of G. Then

WF(π) ⊃ AC(O - suppπ).
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Fix a maximal compact subgroup K ⊂ G, and let k denote the Lie algebra of K.
Let θ be the Cartan involution of the Lie algebra of G, denoted g, whose fixed points
are k. Suppose h ⊂ g is a θ stable Cartan subalgebra of G, and let H = ZG(h), the
centralizer of h in G, be the corresponding Cartan subgroup. Decompose

h = t⊕ a

into positive one and negative one eigenspaces under the Cartan involution θ. Let
A ⊂ G be the connected analytic subgroup of G with Lie algebra a. Let h∗ =
HomR(h,R), t∗ = HomR(t,R), and a∗ = HomR(a,R) denote the dual spaces, and
let gC = g⊗C, hC = h⊗C denote the complexifications. Further, let ∆ = ∆(gC, hC)
denote the set of roots of gC with respect to hC. Denote by ∆R ⊂ ∆ (resp. ∆iR,
∆C) the set of real (resp. imaginary, complex) roots. This is the set of roots taking
purely real (resp. purely imaginary, neither purely real nor purely imaginary) values
on h. Equivalently, ∆R (resp. ∆iR, ∆C) is the set of roots that vanish on t (resp.
vanish on a, neither vanish on t nor a).

Choose a hyperplane in a∗ that does not contain the image of the projection of
any real or complex roots from h∗ to a∗. Call a real or complex root positive if it
lies on a fixed side of this hyperplane, and denote by ∆+

R ⊂ ∆R (resp. ∆+
C ⊂ ∆C)

the set of positive real (resp. positive complex) roots. For each α ∈ ∆(gC, hC), let
(gC)α ⊂ gC denote the correspoding root space. Thus, we have a decomposition

gC = hC ⊕

( ⊕
α∈∆iR

(gC)α

)
⊕

(⊕
α∈∆R

(gC)α

)
⊕

(⊕
α∈∆C

(gC)α

)
.

Define

pC = hC ⊕

( ⊕
α∈∆iR

(gC)α

)
⊕

 ⊕
α∈∆+

R

(gC)α

⊕
 ⊕
α∈∆+

C

(gC)α

 ,

and note pC ⊂ gC is a complex parabolic subalgebra. Note that the root spaces
(gC)α are complexifications of subspaces of g when α is a real root. When α is a
complex positive root, α is also a complex positive root. Moreover, the space (gC)α⊕
(gC)α is the complexification of a subspace of g. Let n denote the sum of subspaces
of g arising from positive real or complex roots in the above manner. Note that
n ⊂ g is a Lie subalgebra, and let N ⊂ G be the corresponding analytic subgroup.
Then p = Zg(a) ⊕ n ⊂ g is a real parabolic subalgebra of g with complexification
pC.

If L is any Lie group, we define X(L) to be the set of Lie group homomorphisms
from L to R×. Then we define

M =
⋂

χ∈X(ZG(A))

ker |χ|

and we have a Langlands decomposition P = MAN of the parabolic subgroup P .
Now, every parabolic subgroup P that can be constructed from a θ stable Cartan
subalgebra in the above way is called a cuspidal parabolic subgroup, and every
cuspidal parabolic subgroup can be constructed from an unique θ stable Cartan
subgroup, up to conjugacy by K.

Continue to fix a θ-stable Cartan subalgebra h = t⊕ a ⊂ g. Let T = ZG(t) ⊂M
be the compact Cartan subgroup with Lie algebra t, let W (G,H) = NG(H)/H be
the real Weyl group of G with respect to H, and let W (M,T ) = NM (T )/T be the
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real Weyl group of M with respect to T . Let ∆∨(gC, hC) ⊂ hC denote the set of
coroots of gC with respect to hC. Let (ih∗)′ denote the complement of the zero sets
of the coroots on ih∗. An open Weyl chamber in ih∗ is a connected component of
(ih∗)′; a closed Weyl chamber in ih∗ is the closure of an open Weyl chamber. (For
expositions of this basic structure theory see [33] or [56]).

If δ ∈ M̂ is a limit of discrete series representation, then its Harish-Chandra
parameter δ0 ∈ it∗ is well-defined up to conjugation by W (M,H) = NM (H)/H,
the real Weyl group of M with respect to H (see for instance pages 730-738 of
[34] or pages 460-467 of [32] for basic expositions of limits of discrete series). If

P = MAN is a cuspidal parabolic subgroup associated to h, δ ∈ M̂ a limit of

discrete series representation, and ν ∈ Â is a unitary character, we may form the
(possibly infinite-dimensional) vector bundle on G/P corresponding to the tensor
product of δ⊗ ν⊗ 1 with the square root of the density bundle on G/P . The space
of L2 sections of this vector bundle is a tempered representation of G, which we will
call σ(δ, ν). This representation depends on MA, δ, and ν, but it is independent
of the parabolic subgroup P . The reprentation σ(δ, ν) is not in general irreducible,
but it is always a finite sum of irreducible, tempered representations.

As stated in the introduction, our definition of an irreducible, tempered represen-
tation of a reductive Lie group G of Harish-Chandra class is an irreducible, unitary
representation of G contained in the direct integral decomposition of L2(G) (more
precisely, one contained in the support of the Plancherel measure inside the unitary
dual). A glance at the Plancherel formula for L2(G) (see [20]) shows that every
irreducible, tempered representation of G is a subrepresentation of σ(δ, ν) with δ
a discrete series of M . Moreover, if σ1 is an irreducible subrepresentation of both
σ(δ, ν) and σ(δ1, ν1), then the Cartan h, the parabolic P , and the parameters δ and
ν must all be simultaneously conjugate via G to the corresponding parameters for
σ(δ1, ν1). This result is known as the Langlands Disjointness Theorem. It is proved
for linear, connected semisimple groups with finite center on pages 643-646 of [32].
It is proved for real, reductive algebraic groups in [41] and in a different way in
[50]. We claim that this fact is true for reductive groups of Harish-Chandra class
and that the arguments in [32] and [41] are valid in this generality.

For technical reasons, the above description of the irreducible, tempered repre-
sentations of G is insufficient for this paper. Therefore, we recall from Theorem
5.3.5 of [12] that every such subrepresentation of σ(δ, ν) with δ a discrete series can
be written in the form σ(δ′, ν′) with δ′ a limit of discrete series. Further, in [12],
a process is given for producing parameters for the irreducible subrepresentations
of σ(δ, ν) with δ a discrete series (This process is a generalization of the one given
in [57] in the case where G is a real, reductive algebraic group). By the Langlands
Disjointness Theorem, we observe that every irreducible, tempered representation
can be uniquely realized with parameters given in Theorem 5.3.5 of [12]. We will
call this the GV-realization of an irreducible, tempered representation of a reduc-
tive Lie group of Harish-Chandra class. (We note that a cleaner description of the
irreducible, tempered representations of a connected, semisimple Lie group with
finite center is given in [35]. However, the authors do not know of a place where
this description has been generalized to groups of Harish-Chandra class; thus, we
do not use it).
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Now, fix a Cartan subalgebra h that gives rise to a fixed cuspidal parabolic
P = MAN , and fix a closed Weyl chamber ih∗+ ⊂ ih∗. Define

Ĝtemp,ih∗+

to be the set of irreducible, tempered representations with GV-realization σ(δ, ν)

where δ ∈ M̂ , ν ∈ Â, and δ0 +ν ∈ ih∗+. Note that there are finitely many conjugacy
classes of θ stable Cartan subalgebras h, and for each Cartan subalgebra h, there
are finitely many W (G,H) conjugacy classes of closed Weyl chambers ih∗+ ⊂ ih∗.
Thus, we obtain a finite union

Ĝtemp =
⋃
Ĝtemp,ih∗+

where the union is over conjugacy classes of closed Weyl chambers in θ stable Cartan
subalgebras.

For each closed Weyl chamber ih∗+ ⊂ ih∗ in i times the dual of a θ stable Cartan
h, define

πih∗+
∼=
∫
σ∈Ĝtemp,ih∗

+

σ⊕m(π,σ)dµπ|Ĝtemp,ih∗
+

.

If l is the number of conjugacy classes of closed Weyl chambers in θ stable Cartan
subalgebras, then we have an inclusion⊕

ih∗+

πih∗+ ↪→ π⊕l

where the sum on the left is over the set of conjugacy classes of closed Weyl chambers
in θ stable Cartan subalgebras and the map is the direct sum of the inclusions
πih∗+ ↪→ π for every ih∗+.

Now, note that WF(π) = WF(π⊕l) and WF(πih∗+) ⊂ WF(π) (see page 121 of

[28]). Therefore, we deduce ⋃
WF(πh∗+) ⊂WF(π).

Now, suppose S1, . . . , Sn ⊂W is a finite number of subsets of a finite-dimensional,
real vector space W . Then

AC

(
n⋃
i=1

Si

)
=

n⋃
i=1

AC(Si).

Indeed, Si ⊂ ∪Si implies AC(Si) ⊂ AC(∪Si) and the right hand side is contained
in the left hand side. To show the opposite inclusion, suppose ξ is in the set on the
left. Fix a norm on W , and define

Γε = {η ∈W | |tη − ξ| < ε some t > 0}

for every ε > 0. Since ξ is in the set on the left, Γε ∩
⋃n
i=1 Si is unbounded. But,

then certainly Γε∩Si is unbounded for some i. Let the subcollection Iε ⊂ {1, . . . , n}
be the set of i such that Γε∩Si is unbounded. Now, Iε is non-empty for every ε > 0
and Iε′ ⊂ Iε if ε′ < ε. One deduces that there is some i in every Iε and ξ ∈ AC(Si)
for this particular i.

Since

O - suppπ =
⋃
ih∗+

(
O - suppπih∗+

)
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we deduce

AC (O - suppπ) = AC

⋃
ih∗+

(
O - suppπih∗+

) .

Therefore, to prove Proposition 5.1, it is enough to show

WF(πih∗+) ⊃ AC(O - suppπih∗+)

for every closed Weyl chamber in the dual of a θ stable Cartan subalgebra. In
particular, we may assume that π consists of irreducible, tempered representations
with GV-realizations σ(δ, ν) with δ0 + ν ∈ ih∗+ for the same fixed closed Weyl
chamber ih∗+ contained in i times the dual of a fixed θ stable Cartan subalgebra
h ⊂ g.

Next, we note that in the direct integral decomposition of π, the measure µπ on

Ĝtemp,ih∗+
is only well-defined up to an equivalence relation. Here two measures are

equivalent if and only if they are absolutely continuous with respect to each other.
In the next Lemma, we choose a suitable representative for what will follow.

Lemma 5.2. There exists a direct integral decomposition

π ∼=
∫
σ∈Ĝtemp,ih∗

+

σ⊕m(π,σ)µπ

of π into irreducibles such that µπ is a finite Radon measure on Ĝtemp,ih∗+
.

Proof. First, we decompose

π ∼=
∫
σ∈Ĝtemp,ih∗

+

σ⊕m(π,σ)µ′π

into irreducibles with respect to some measure µ′π. We know from general direct
integral theory that µ′π is a positive measure and there exists a countable decom-

position of Ĝtemp,ih∗+
into Borel sets X1, X2, . . . such that µ′k = µ′|Xk is finite (see

for instance pages 168-170, 399 of [6]). Without loss of generality, we may assume
µ′k(Xk) 6= 0 for every k.

Now, define

µ =
∑
k

µ′k
2kµ′k(Xk)

.

Then µ is a finite measure. We claim that µ and µ′ are absolutely continuous with

respect to each other. Indeed, if U ⊂ Ĝtemp,h∗+
and µ′(U) = 0, then µ′k(U) = 0 for

every k. Hence, µ(U) = 0. Similarly, if µ(U) = 0, then
µ′k(U)

2kµ′k(Xk)
= 0 for every k

and therefore µk(U) = 0 for every k. We deduce µ′(U) = 0.
Since µ and µ′ are absolutely continuous with respect to each other, we may

form the direct integral decomposition of π with respect µ instead of µ′ without
changing the (isomorphism class of) unitary representation π.

To complete the proof of the Lemma, we must show that µ is a Radon measure.

For each limit of discrete series representation, δ ∈ M̂ , let Ĝtemp,ih∗+,δ
be the set of

irreducible tempered representations with GV-realizations of the form σ(δ, ν) with
δ0 + ν ∈ ih∗+. Then

Ĝtemp,ih∗+
=
⋃
Ĝtemp,ih∗+,δ
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is a disjoint union of topological spaces. It is not hard to see from the definition of
Radon measure (see for instance page 212 of [9]) that a finite measure on a disjoint
union of topological spaces is Radon if and only if it is Radon on each topological
space in the union. Thus, it is enough to show µ|Ĝtemp,ih∗

+
,δ

is a Radon measure for

every limit of discrete series representation δ ∈ M̂ .

Now, fix such a limit of discrete series δ ∈ M̂ , and note that we have a continuous
injective map

Ĝtemp,ih∗+,δ
↪→ ia∗

by

σ(δ, ν) 7→ dν.

See [10] for a result that expresses the topology on the unitary dual in terms of
characters; this result implies the continuity of the above map. Define ia∗δ to be the
image of the above map. Now, let ∆(g, a) denote the restriction of ∆R(gC, hC) and
∆C(gC, hC) to a∗, and let ∆+(g, a) denote the restriction of the union of ∆+

R (gC, hC)

and ∆+
C (gC, hC) to a∗. We call ∆+(g, a) the set of positive restricted roots of g with

respect to a. If S1, S2 ⊂ ∆+(g, a) are disjoint subsets of positive restricted roots,
define

ia∗(S1, S2)

to be the set of dν ∈ ia∗ such that

• i〈α, dν〉 > 0 if α ∈ S1

• i〈α, dν〉 = 0 if α ∈ S2

• i〈α, dν〉 < 0 if α /∈ S1 ∪ S2.

Now, some subsets of the form ia∗(S1, S2) are empty, but regardless we can still
write

ia∗ =
⋃
S1,S2

ia∗(S1, S2).

as a disjoint union. Observe that whether or not σ(δ, ν) is a GV-realization of
an irreducible, tempered representation depends on whether the parameters (δ, ν)
are in the image of the process laid out on pages 1646, 1642, and 1635 of [12].
In addition, for fixed δ, one notes that this only depends on which of the sets
ia∗(S1, S2) the parameter dν lies in. In particular, for fixed δ there exists a finite
number of pairs (Si1 , Sj1), . . . , (Sik , Sjk) such that ia∗(Sil , Sjl) is non-zero for each
l = 1, . . . , k and

Ĝtemp,ih∗+,δ
=

k⋃
i=1

ia∗(Sil , Sjl).

Here we are viewing Ĝtemp,ih∗+,δ
as a subset of ia∗ via the above continuous inclusion.

Now, each ia∗(Sil , Sjl) is an open subset of an Euclidean space. Since any finite
measure on an Euclidean space is a Radon measure, we deduce that µ|ia∗(Sil ,Sjl )
is a Radon measure. Moreover, every finite sum of Radon measures is a Radon
measure, and therefore µ|Ĝtemp,ih∗

+
,δ

is a Radon measure. The Lemma follows. �

From now on, we will take the direct integral with respect to our fixed finite,
Radon measure. We introduce a continuous map with finite fibers

Ĝtemp,ih∗+
→ ih∗+
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via σ(δ, ν) 7→ δ0 + ν. In particular, we may take our finite, Radon measure µπ on

Ĝtemp,ih∗+
and push it forward to a finite Radon measure on ih∗+. From now on, we

will abuse notation and write µπ for the measure on both spaces.
Before the next Lemma, we require a few general remarks. Any finite, Radon

measure µ on a locally compact topological space defines a continuous, linear func-
tional on Cc(X) (see Chapter 7 of [9]). In particular, if X is a smooth manifold,
then µ restricts to a continuous linear functional on C∞c (X) and defines a (order
zero) distribution on X. Moreover, if X is a smooth manifold and f ∈ L1

loc(X) is
a locally L1 function with respect to a non-vanishing, smooth measure on X, then
the product fµ defines a (order zero) distribution on X.

Let jG be Jacobian of the exponential map exp: g → G in a neighborhood of
the identity; we normalize the Lebesgue measure on g and the Haar measure on G
so that jG(0) = 1. Then jG extends to an analytic function on g. Moreover, it has

an unique analytic square root j
1/2
G with j

1/2
G (0) = 1.

Lemma 5.3. Let f ∈ L1
loc(ih

∗
+) be a locally L1 function on ih∗+ with respect to a

Lebesgue measure, and let µπ be the above finite, Radon measure on ih∗+. For each

σ ∈ Ĝtemp, let Θσ denote the Harish-Chandra character of σ and let

θσ = (exp∗Θσ)j
1/2
G

denote the Lie algebra analogue of the character of σ. If the distribution defined by
the product fµπ is a tempered distribution on ih∗+, then∫

σ∈Ĝtemp,ih∗
+

θσfµπ

defines a tempered distribution on g.

In order to define the above integral, we are identifying f with its pushforward
under the continuous map with finite fibers

Ĝtemp,ih∗+
→ ih∗+.

Proof. We will show that the above integral defines a tempered distribution on g
by showing that it is the Fourier transform of a tempered distribution on ig∗. For

each σ ∈ Ĝtemp,ih∗+
, let Oσ denote the canonical invariant measure on the finite

union of coadjoint orbits associated to σ [47], [48]. We will show that the integral∫
σ∈Ĝtemp,ih∗

+

Oσfµπ

defines a tempered distribution on ig∗ and its Fourier transform is the integral in
the statement of the Lemma. Following Harish-Chandra we define a map

ψ : C∞c (ig∗)→ C∞c ((ih∗+)′)

via

ψ : ϕ 7→ (λ 7→ 〈Oλ, ϕ〉).
Here Oλ denotes the canonical invariant measure on the orbit G · λ, which by an
abuse of notation we will also denote by Oλ. Further (ih∗+)′ ⊂ ih∗ is the set of
regular elements in ih∗+. Harish-Chandra showed that this map, which he called
the invariant integral, extends to a continuous map on spaces of Schwartz functions
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[15]. Moreover, he showed that functions in the image extend uniquely to all of ih∗+
(see page 576 of [18]). Thus, we obtain a continuous map

ψ : S(ig∗)→ S(ih∗+).

Now, if the infinitesimal character of σ is regular, then Oσ = Oλ with λ ∈ (ih∗+)′.
Therefore,

〈Oσ, ϕ〉 = δλ ◦ ψ.
If the infinitesimal character of σ is singular, then Oσ can be written as a limit

Oσ = lim
λ∈(ih∗+)′,λ→λ0

Oλ

where λ0 ∈ ih∗+ is singular [48], [49]. Therefore,

Oσ = δλ0
◦ ψ

for some λ0 ∈ ih∗+. Now, the map

ϕ 7→
∫
σ∈Ĝtemp,h∗

+

〈Oσ, ϕ〉fµπ

for ϕ ∈ C∞c (ig∗) is simply the map

ϕ 7→
∫
ih∗+

ψ(ϕ)fµπ.

Since ψ is a continuous map between Schwartz spaces and fµπ is a tempered dis-
tribution on ih∗+, we conclude that∫

Ĝtemp,ih∗
+

Oσfµπ

is a tempered distribution on ig∗. Now, the Fourier transform of this tempered
distribution is defined by

ω 7→ 〈
∫
Ĝtemp,ih∗

+

Oσfµπ,F [ω]〉 =

∫
Ĝtemp,ih∗

+

〈θσ, ω〉fµπ

for any smooth, compactly supported density ω on ig∗. Here we have used F [Oσ] =
θσ, which was proved by Rossmann in [47], [48]. Thus, the integral is the Fourier
transform of a tempered distribution and is therefore tempered. �

Lemma 5.4. Let f ∈ L1
loc(ih

∗) be a positive, locally L1 function. Assume that for
every δ0 ∈ it∗, the integral∫

ν∈ia∗
f(δ0, ν)dµπ|Ĝtemp,ih∗

+
,δ
≤ |p(δ0)|

is finite and bounded by the absolute value of a polynomial p in the variable δ0 ∈ it∗.
Then

WF(π) ⊃WFe

∫
σ∈Ĝtemp,ih∗

+

Θσfµπ

 .

From this, we immediately deduce

WF(π) ⊃WF0

∫
σ∈Ĝtemp,ih∗

+

θσfµπ

 .
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Proof. First, we note that our hypothesis and Lemma 5.3 together with the rela-

tion exp∗Θσ = θσj
−1/2
G imply that the above integral defines a distribution in a

neighborhood of the identity e ∈ G. Therefore, the right hand side is at least well
defined.

Now, let us break up the integral∫
σ∈Ĝtemp,ih∗

+

Θσfµπ =
∑
δ∈M̂

∫
dν∈ia∗δ

Θσ(δ,ν)f(δ0, ν)µπ|Ĝtemp,ih∗
+
,δ
.

If V (δ, ν) denotes the Hilbert space on which σ(δ, ν) acts, then utilizing the compact

picture for induced representations (see page 169 of [32]), for fixed δ ∈ M̂ , we may
identify the spaces V (δ, ν) as unitary representations of K. Thus, for a fixed limit

of discrete series representation δ ∈ M̂ , we may fix an orthonormal basis for V (δ, ν)
that is independent of dν ∈ ia∗δ , which we will call {eδτ,i(ν)}. We choose this basis

in such a way that each vector eδτ,i(ν) is contained in the isotypic component of

τ ∈ K̂. Now, since

π ∼=
∑
δ∈M̂

∫
dν∈ia∗δ

σ(δ, ν)⊕m(π,σ(δ,ν))dµπ|Ĝtemp,ih∗
+
,δ
,

the representation ∫
dν∈ia∗δ

σ(δ, ν)dµπ|Ĝtemp,ih∗
+
,δ

is a subrepresentation of our representation π. Now, the map ν 7→ eδτ,i(ν) is con-
tained in the above direct integral representation since the measure µπ|Ĝtemp,ih∗

+
,δ

is finite. Thus, for fixed i, we may view eδτ,i(ν) as a vector in our representation π.
Now, we observe that the weighted sum of matrix coefficients∑

δ∈M̂

∑
i,τ

∫
ν∈ia∗δ

(σ(δ, ν)(g)eδτ,i(ν), eδτ,i(ν))f(δ0, ν)µπ|Ĝtemp,ih∗
+
,δ

is simply our integral ∫
σ∈Ĝtemp,ih∗

+

Θσfµπ.

Let V denote the Hilbert space on which π acts. Let P be the orthogonal
projection of V onto the subspace generated by the vectors {eδτ,i}, let S be the

(possibly unbounded) operator on the subspace generated by the vectors {eδτ,i}
that takes eδτ,i(ν) to f(δ0, ν)eδτ,i(ν). Finally, define TN = (I+ΩK)−NSP where ΩK
is the Casimir operator for K.

First, observe

Tr(π(g)SP ) =

∫
σ∈Ĝtemp,ih∗

+

Θσfµπ

as a distribution. Next, we claim that TN is a trace class operator for sufficiently
large N .

Observe ∣∣(I + ΩK)−NSP
∣∣
1

=
∑
δ∈M̂

∑
i,τ

1

(1 + |τ |2)N

∣∣∣∣∣
∫
dν∈ia∗δ

(f(δ0, ν)eδτ,i(ν), eδτ,i(ν))dµπ|Ĝtemp,ih∗
+
,δ

∣∣∣∣∣
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≤
∑
δ∈M̂

∑
i,τ

1

(1 + |τ |2)N
|p(δ0)|

where | · |1 denotes the norm on the Banach space of trace class operators. We recall
that the multiplicity of τ in any irreducible σ(δ, ν) is at most (dim τ)2 (see page 205
of [32] for an exposition or [14] for the original reference). Now, fix an inner product
on the vector space it∗, and let | · | be the associated norm. By Weyl’s dimension
formula, we have (dim τ)2 ≤ C(1 + |τ |2)r where r is the number of positive roots of
K with respect to a maximal torus and C is a positive constant. Moreover, a limits

of discrete series δ ∈ M̂ can only contain τ as a K type if |δ0| ≤ |τ | + C1 where
C1 > 0 is a constant independent of τ (see page 460 of [32] for an exposition and [22]
for the original reference). Counting lattice points, this means that the number of
such δ is bounded by C2(1+ |τ |2)k where k is the rank of G and C2 > 0 is a positive
constant. The relationship between |δ0| and |τ | also implies that we may bound
|p(δ0)| ≤ C3(1 + |τ |2)M for some positive integer M and some constant C3 > 0
whenever τ is a K type of σ(δ, ν). Combining these facts, the above expression
becomes

≤ CC2C3

∑
τ

(1 + |τ |2)r+k+M

(1 + |τ |2)N
.

If N is sufficiently large, this sum will converge and therefore (I + ΩK)−NSP is a
trace class operator on V . Now, using Howe’s original definition of the wave front
set involving trace class operators (see Proposition 2.4), we observe

WF (π) ⊃WFe
(
Tr(π(g)(I + ΩK)−NSP )

)
.

To finish the argument, we first recall

〈
∫
σ∈Ĝtemp,ih∗

+

Θσfµπ, ω〉 = Tr(π(ω)SP )

for any smooth, compactly supported density ω on g. Then we observe

Tr(π(ω)SP ) = Tr(π(ω)(I + ΩK)N (I + ΩK)−NSP )

= Tr(π(L(I+ΩK)Nω)(I + ΩK)−NSP ) = L(I+ΩK)N Tr(π(ω)(I + ΩK)−NSP ).

Since differential operators can only decrease the wave front set, we obtain

WF (π) ⊃WFe

∫
σ∈Ĝtemp,ih∗

+

Θσfµπ


and the Lemma has been verified. �

Next, we need a Lemma involving the canonical measure on regular, coadjoint
orbits. Let G be a Lie group with Lie algebra g, and let g∗ = HomR(g,R) be the
dual of g. For each ξ ∈ ig∗, define a 2-form on G ·ξ = Oξ ⊂ ig∗, the G orbit through
ξ, by

ωξ(ad∗ξ X, ad∗ξ Y ) = −ξ([X,Y ])

for every X,Y ∈ g. This 2-form makes Oξ into a symplectic manifold (see for
instance page 139 of [5]), and the absolute value of the top dimensional form

ω
∧ dimOξ/2
ξ

(dimOξ/2)!(2π)dimOξ/2
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defines an invariant smooth density on Oξ, which we will denote by m(Oξ)ξ and
call the canonical measure on Oξ.

Rather arbitrarily, we fix an inner product (·, ·) on ig∗, and we denote by | · |
the corresponding norm. If M ⊂ ig∗ is any submanifold we denote by Eucl(M) the
following density on M . If ξ ∈ M and dimTξM = k, we fix an orthonormal basis
e1, . . . , ek of TξM , and for every v1, . . . , vk ∈ TξM , we define

Eucl(M)ξ(v1, . . . , vk) = |det((vi, ej)i,j)| .
One notes that this definition is in independent of the orthonormal basis {ej}.

Lemma 5.5. Let G be a Lie group, and let ig∗ be i times the dual of the Lie algebra
of G. If ξ ∈ ig∗, let m(Oξ) denote the canonical measure on the G orbit through ξ
and let Eucl(Oξ) denote the measure on the G orbit through ξ that is induced from
a fixed inner product on ig∗. For every ξ ∈ Oξ, we have

F (ξ)m(Oξ)ξ = Eucl(Oξ)ξ
for some function F on ig∗. Then there exists a positive constant C > 0 (depending
on G) such that

|F (ξ)| ≤ C(1 + |ξ|)dimG/2

for all ξ ∈ ig∗.

Proof. In order to simplify our notation, we prove the Lemma for coadjoint orbits
in Oξ contained in g∗ instead of ig∗. Mutliplying by i everywhere, one will obtain
the above Lemma. Observe that we must define the 2 form ωξ on the coadjoint
orbit G · ξ = Oξ ⊂ g∗ (instead of ig∗) by

ωξ(ad∗ξ X, ad∗ξ Y ) = ξ([X,Y ])

(dividing by i twice removes the negative sign).
Now, fix ξ ∈ g∗, and choose a basis {η1, . . . , ηk} of TξOξ that is orthonormal with

respect to the restriction of the inner product on g∗ to TξOξ. For i = 1, . . . , k, define
Xi ∈ g by η(Xi) = (η, ηi) for all η ∈ g∗. Note that we also have (Xi,W ) = ηi(W )
for all W ∈ g (where the inner product on g is the one induced from our fixed
inner product on g∗). We claim that ad∗X1

ξ, . . . , ad∗Xk ξ is a basis of TξOξ. To show
this, we need only show that {Xi} is a linearly independent set in g/Zg(ξ). Write
ηi = ad∗Yi ξ. If W ∈ Zg(ξ), then

(Xi,W ) = ηi(W ) = ad∗Yi ξ(W ) = − ad∗W ξ(Yi) = 0.

Since each Xi is orthogonal to Zg(ξ), the set {Xi}must remain linearly independent
in g/Zg(ξ).

Next, we compute

Eucl(Oξ)ξ(ad∗X1
ξ, . . . , ad∗Xk ξ) =

∣∣det((ad∗Xi ξ, ηj))
∣∣

and
m(Oξ)ξ(ad∗X1

ξ, . . . , ad∗Xk ξ) = c |det(ξ([Xi, Xj ]))|1/2

= c
∣∣det(ad∗Xi ξ(Xj))

∣∣1/2 = c
∣∣det((ad∗Xi ξ, ηj))

∣∣1/2
where

c =
1

(2π)dimOξ/2
.

Thus, we obtain

F (ξ) =
1

c

∣∣det((ad∗Xi ξ, ηj))
∣∣1/2 .
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Now, we note that
g⊗ g∗ → g∗, by (X, ξ) 7→ ad∗X ξ

is a linear map between finite-dimensional vector spaces. In particular, it is a
bounded, linear map, and there exists a constant C1 (depending on G) such that

| ad∗X ξ| ≤ C1|X||ξ| for all X ∈ g, ξ ∈ g∗.

Therefore, we estimate,∣∣det((ad∗Xi ξ, ηj))
∣∣ ≤ (dimG)2

k∏
i=1

C1|Xi||ξ| = (dimG)2Ck1 |ξ|k/2.

And for ck = (1/c)(dimG)C
k/2
1 , we obtain

|F (ξ)| ≤ ck|ξ|k

whenever dimOξ = k. Since the dimension of every coadjoint orbit is less than or
equal to the dimension of G, we obtain

|F (ξ)| ≤ C(1 + |ξ|)dimG/2

where C is the maximum of the constants ck. The Lemma follows. �

Next, we prove Proposition 5.1.

Proof. Suppose ξ ∈ AC(O - suppπ). We must show ξ ∈ WF(π). As in the last
Lemma, we fix an inner product (·, ·) on ig∗, and we let |·| denote the corresponding
norm. Without loss of generality, we may assume |ξ| = 1. By Lemma 5.4, to show
ξ ∈WF(π), it is enough to show

ξ ∈WF0

∫
σ∈Ĝtemp,ih∗

+

θσfdµπ


for an appropriate function f . Now, to check this fact, we fix an even Schwartz
function F [ϕ] ∈ S(ig∗) such that F [ϕ](x) ≥ 0 for all x and F [ϕ](x) = 1 if |x| ≤ 1.
Then F [ϕ] is the Fourier transform of an even Schwartz function ϕ ∈ S(g).

By Theorem 3.22 on page 155 of [8], if ξ is not in the wave front set of∫
σ∈Ĝtemp,ih∗

+

θσfdµπ

at 0, then there must exist an open cone ξ ∈ Γ such that for η ∈ Γ with ||ξ|−|η|| < ε,
there exist constants CN,ε for every 0 < ε < 1 and N ∈ N such that∣∣∣∣∣∣

F
∫

σ∈Ĝtemp,ih∗
+

θσfdµπ

 ∗ t−n/4F [ϕ](t−1/2·)

 (tη)

∣∣∣∣∣∣ ≤ CN,εt−N .
Here F denotes the Fourier transform and n = dimG. Taking this Fourier trans-
form, the left hand side becomes∫

σ∈Ĝtemp,ih∗
+

Oσfdµπ ∗ t−n/4F [ϕ](t−1/2·)

 (tη)

=

∫
σ∈Ĝtemp,ih∗

+

f(σ)

(∫
Oσ

t−n/4F [ϕ]

(
tη − ζ√

t

)
d(Oσ)ζ

)
dµπ.
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Thus, to prove a contradiction and conclude that ξ is indeed in the wave front set,
we must find a suitable function f , a constant C, and an integer M such that∣∣∣∣∣∣

∫
σ∈Ĝtemp,ih∗

+

f(σ)

(∫
Oσ

t−n/4m F [ϕ]

(
tmηm − ζ√

tm

)
d(Oσ)ζ

)
dµπ

∣∣∣∣∣∣ ≥ Ct−Mm
for a sequence (tm, ηm) with ηm ∈ Γ, ||ξ| − |ηm|| < ε, and tm →∞.

To do this, we first take our open cone Γ, and we note that there exists δ < ε
such that Γ ⊃ Γδ where

Γδ = {η ∈ ig∗| |ξ − tη| < δ some t > 0}.

Since ξ ∈ AC(O - suppπ), we know that (O - suppπ)∩Γδ is noncompact. Therefore,
we may find a sequence {tmηm} inside this intersection such that tm > tm−1 + 2
and |ηm| = 1 for every m.

Let Otmηm = Oσm and for σ′m near σm, consider the set

Sm,σ′m = {ζ ∈ Oσ′m ∩ Γδ| ||ζ| − |tmηm|| < 1}.

Let

Fm(σ′m) = 〈Eucl(Oσ′m), Sm,σ′m〉
be the volume of this set with respect to the Euclidean measure induced on the
corresponding orbit. Since tmηm ∈ Γδ/2 and tmδ/2 ≥ 1 for sufficiently large m, we

deduce that Fm(σm) ≥ t−k1m for sufficiently large m and some k1 > 0. Since Fm(σ′m)

is a continuous function of σ′m, we can find a neighborhood Nm of σm in Ĝtemp,ih∗+

for each m such that Fm(σ′m) ≥ (1/2)t−k1m for every σ′m ∈ Nm. In addition, observe
that the sets ⋃

σ′∈Nm

Sm,σ′m

are disjoint.
Now, since σm is in the support of µπ andNm is an open neighborhood containing

σm, we must have

µπ(Nm) > 0.

Recall that everything we have said thus far is true for any f satisfying the hy-
potheses of Lemma 5.4. We may choose f satisfying Lemma 5.4 such that∫

Nm

fµπ ≥ t−M0
m

for some fixed, sufficiently large integer M0. Checking the hypothesis of Lemma
5.4, it is not hard to see that such a choice of f is possible.

Next, we must estimate

F ′m(σ′m) = 〈m(Oσ′m), Sm,σ′m〉

from Fm where the measure on the orbit is now the canonical invariant measure.
To estimate this volume, we use Lemma 5.5. Recall that we wrote

F (η)m(Oη)η = Eucl(Oη)η

By Lemma 5.5, there exist constants C > 0 and N > 0 such that

F (η) ≥ C(1 + (tm − 1))−N = Ct−Nm
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whenever η ∈ Sm,σ′m with σ′m ∈ Nm. Thus, we obtain

F ′m(σ′m) ≥ Ct−Nm Fm(σ′m) ≥ (C/2)t−N−k1m .

Putting all of this together, we estimate∣∣∣∣∣∣
∫
σ∈Ĝtemp,ih∗

+

f(σ)

(∫
Oσ

t−n/4m F [ϕ]

(
tmηm − ζ√

tm

)
d(Oσ)ζ

)
µπ

∣∣∣∣∣∣
≥

∣∣∣∣∣
∫
σ∈Nm

f(σ)

(∫
Sm,σ

t−n/4m F [ϕ]

(
tmηm − ζ√

tm

)
d(Oσ)ζ

)
µπ

∣∣∣∣∣
≥

∣∣∣∣∣
∫
σ∈Nm

f(σ)

(∫
Sm,σ

t−n/4m · 1d(Oσ)ζ

)
µπ

∣∣∣∣∣
≥
(∫

σ∈Nm
f(σ)

)
· t−n/4m · 〈m(Oσ), Sm,σ〉

≥ (C/2)t−M0−N−k1−n/4
m .

This is what we needed to prove. The Proposition now follows. �

6. Wave Front Sets of Pieces of the Regular Representation Part II

As explained in the beginning of the last section, we now prove the second
inclusion necessary for the proof of Theorem 1.2.

Proposition 6.1. If G is a reductive Lie group of Harish-Chandra class and π is
weakly contained in the regular representation of G, then

SS(π) ⊂ AC(O - suppπ).

First, we require a technical Lemma.
Suppose V is a finite-dimensional real vector space, and fix a basis v1, . . . , vn for

V . Of course, we may also consider the vi as differential operators on V . Suppose
U1 ⊂ U ⊂ V are precompact open sets with U1 compactly contained in U . For
every multi-index α = (α1, . . . , αN ), define

Dα = vα1
1 · · · vαnn ,

and denote |α| = α1 + · · ·αn. Then there exists (see pages 25-26, 282 of [26])
a sequence ϕN,U1,U of smooth functions supported in U together with a fam-
ily of positive constants {Cα} for every multi-index α = (α1, . . . , αn) such that
ϕN,U1,U (y) = 1 whenever y ∈ U1 and

sup
y∈U
|Dα+βϕN,U1,U (y)| ≤ C |β|+1

α (N + 1)|β|

whenever |β| ≤ N . For each such pair of precompact open sets U1 ⊂ U ⊂ V , we fix
such a sequence ϕN,U1,U .

Lemma 6.2. Suppose V is a finite-dimensional real vector space, suppose Ṽ is
an open beighborhood of zero in another finite-dimensional real vector space, and
suppose we have an analytic map

ψ : Ṽ × V → V
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such that for each p ∈ Ṽ , ψp is locally bianalytic and ψ0 = I is the identity.
Suppose u is a distribution on V , suppose (x, ξ) /∈ SS(u), and suppose a is an

analytic function on V . Then one can find an open set 0 ∈ Ũ ⊂ Ṽ , an open set
ξ ∈ W ⊂ iV ∗, and an open set x ∈ U2 ⊂ V such that for every pair of precompact
open sets x ∈ U1 ⊂ U ⊂ U2 ⊂ V with U1 compactly contained in U , there exists a
constant CU1,U > 0 such that∣∣F [a (ψ∗pu)ϕN,U1,U

]
(tη)

∣∣ ≤ CN+1
U1,U

(N + 1)N t−N

whenever p ∈ Ũ , η ∈W , and t > 0.

The thing that makes this Lemma non-trivial is the uniformity of the bound in

the variable p ∈ Ũ . We will prove it by relating the singular spectrum to boundary
values of analytic functions, utilizing Sections 8.4 and 8.5 of [26].

Proof. Since SS(u) ⊂ iT ∗V is a closed set, we may choose an open set x ∈ U3 ⊂ V
and an open cone ξ ∈ Γ(1) such that U3 ×Γ(1) ⊂ iT ∗V − SS(u). Next, fix an open
cone

ξ ∈ Γ(2) ⊂ Γ(2) ⊂ Γ(1).

If Γ ⊂ V is an open convex cone, we may form the dual cone

Γ0 = {ξ ∈ iV ∗| i〈ξ, y〉 ≤ 0 ∀ y ∈ V }.

If η ∈ iV ∗ − Γ(2), we may find a cone of the form Γ0, which is the dual cone

of an open convex cone Γ, such that η ∈ Γ0 ⊂ iV ∗ − Γ(2). Fixing an inner
product on the finite-dimensional real vector space V and using the compactness of
SdimV−1 ∩ (iV ∗ − Γ(1)), we may choose a finite subcover Γ0

1, . . . ,Γ
0
k of iV ∗ − Γ(1).

Here each Γ0
j is the dual cone of an open convex cone Γj . In particular, we have⋃

w∈U3

SSw(u) ⊂ U3 ×
k⋃
i=1

Γ0
i , ξ ∈ iV ∗ −

k⋃
i=1

Γ0
i .

Now, in addition, we may choose (Γ′j)
0 such that Γ0

j is contained in the interior

of (Γ′j)
0, ξ /∈ (Γ′j)

0 for any j, and (Γ′j)
0 is the dual cone of an open convex cone

Γ′j ⊂ Γj . Utilizing Corollary 8.4.13 of [26], we may write u =
∑k
j=1 uj with⋃

w∈U3

SSw(uj) ⊂ U3 × Γ0
j

We note that to obtain the estimate in the Lemma for the distribution u, it is
enough to obtain the estimate for each distribution uj .

Next, choose x ∈ U4 ⊂ U3 an open subset with U4 ⊂ U3 a compact subset. If
γ > 0 is a real number, define

Γj(γ) = {y ∈ Γj | |y| < γ}.
By the remark after Theorem 8.4.15 of [26], for some γj > 0, we may find an analytic
function Fj in U4 + iΓj(γj) ⊂ VC, where VC = V ⊗R C is the complexification of
the vector space V , such that Fj satisfies an estimate

|Fj(x+ iy)| ≤ Cj |y|−Nj

in U4 + iΓj(γ) and

uj = lim
y→0, y∈Γj(γj)

Fj(·+ iy).
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Here the limit is taken in the space of distributions on V . Next, we may complexify
the maps ψp to attain the map

ψC : Ṽ × VC → VC

which is real analytic in the first variable and complex analytic in the second. Taylor

expand each ψC at (0, x) ∈ Ṽ × VC as a function of v ∈ VC with coefficients that

are real analytic functions in p ∈ Ṽ . One sees from this expansion that we may

find open sets x ∈ U2 ⊂ U4 and 0 ∈ Ũ ⊂ Ṽ together with positive constants γ′j > 0
such that

ψp(U2 + iΓ′j(γ
′
j)) ⊂ U4 + iΓj(γj)

for every p ∈ Ũ and every j = 1, . . . , k. After possibly shrinking U2, Ũ and
decreasing γ′j , we see from the Taylor expansion that we may in addition assume

|y|/2 ≤ | Imψp(x+ iy)| ≤ 2|y|

for all p ∈ Ũ , x + iy ∈ U2 + iΓ′j(γ
′
j). From now on, we will write uj for the

restriction of uj to U2 and Fj for the restriction of Fj to U2 + iΓ′j(γ
′
j). As in the

proof of Theorem 8.5.1 of [26], we now have

ψ∗puj = lim
y→0, y∈Γ′j(γ

′
j)
ψ∗pFj(·+ iy)

for p ∈ Ũ and j = 1, . . . , k. In addition, we obtain the bounds

|(ψ∗pFj)(x+ iy)| ≤ 2NCj |y|−Nj = C ′j |y|−Nj

uniform in p ∈ Ũ .
Of course, we may multiply through by our analytic function a to obtain

aψ∗puj = lim
y→0, y∈Γ′j(γ

′
j)
aψ∗pFj(·+ iy)

for p ∈ Ũ and j = 1, . . . , k and

|a(ψ∗pFj)(x+ iy)| ≤ C ′′j |y|−Nj

uniform in p ∈ Ũ .
Now, we use these uniform bounds on aψ∗pFj to obtain uniform bounds on

F
[
a
(
ψ∗pu

)
ϕN,U1,U

]
.

To do this, we utilize the proof of Theorem 8.4.8 of [26]. We observe that the
constant C4 in (8.4.9) on the top of page 286 of [26] depends only on the constants
C ′j , Nj in the above bound on aψ∗Fj and on the functions ϕN,U1,U . Since these

constants are uniform in p, we obtain the necessary bounds on F
[
a
(
ψ∗pu

)
ϕN,U1,U

]
uniform in p ∈ Ũ and the Lemma has been proven. �

Now, suppose (π, V ) is a unitary representation of a reductive Lie group G of
Harish-Chandra class. Decompose

π ∼=
∫
σ∈Ĝtemp

σ⊕m(σ,π)dµπ

into irreducibles. As in Lemma 5.2, we may assume that µπ is a finite Radon

measure on Ĝtemp. By Lemma 5.3, if f ∈ L1
loc(Ĝtemp) is a locally L1 function on

the tempered dual such that fµπ|Ĝtemp,ih∗
+

is a tempered distribution on ih∗+ for
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every closed Weyl chamber in i times the dual of a Cartan subalgebra, ih∗+, then
the integral ∫

σ∈Ĝtemp

θσfdµπ

defines a tempered distribution on ig∗. Moreover, we see that this will be the case
if f is integrable with respect to µπ (since this implies that f |Ĝtemp,ih∗

+

is integrable

with respect to µπ|Ĝtemp,ih∗
+

for every closed Weyl chamber in i times the dual of

a Cartan subalgebra, ih∗+). Moreover, by the proof of Lemma 5.3, we see that the
Fourier transform of this tempered distribution is∫

σ∈suppπ

Oσfdµπ.

Clearly this distribution is supported in O - suppπ. Therefore, by Lemma 8.4.17
on page 194 of [26], we deduce

SS0

(∫
σ∈suppπ

θσfdµπ

)
⊂ AC(O - suppπ)

whenever f is integrable with respect to µπ.
Before we begin the proof of Proposition 6.1, we need a bit of notation.
Fix a basis {Xi} of g. For every multi-index I = (i1, i2, . . . , im), let |I| =

∑
ij

be the cardinality of I, and write XI for the product

Xi1
1 X

i2
2 · · ·Xim

m .

Now, for every pair of precompact open sets e ∈ U1 ⊂ U ⊂ G on which the
logarithm is well-defined and for which U1 is compactly contained in U , we fix a
sequence of smooth functions ϕN,U1,U supported in U and identically one on U1

such that there exist constants CI > 0 for every multi-index I satisfying

sup
Y ∈log(U)

|XI+JϕN,U1,U (expY )| ≤ C |J|+1
I (N + 1)|J| if |J | ≤ N.

As remarked above, the existence of such sequences is shown on pages 25-26, 282
of [26].

Next, we prove Proposition 6.1.

Proof. As in the statement of Proposition 6.1, fix a unitary representation (π, V )
of a reductive Lie group G of Harish-Chandra class that is weakly contained in the
regular representation. Choose ξ /∈ AC(O - suppπ). We must show that for every
u, v ∈ V , there exists an open set ξ ∈W ⊂ ig∗ and a constant C > 0 such that∣∣∣∣∫

G

(π(g)u, v)ϕN,U1,U (g)etη(log g)dg

∣∣∣∣ ≤ CN+1(N + 1)N t−N

for every η ∈W and t > 0.

For each σ ∈ Ĝtemp., we abuse notation and write (σ, Vσ) for a representative
of this equivalence class of irreducible tempered representations. We have a direct
integral decomposition

V ∼=
∫

suppπ

(Vσ ⊗Mσ)dµπ(σ).

For each σ ∈ suppπ, Mσ is a multiplicity space on which G acts trivially.
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Now, if u = (uσ) and v = (vσ) in our direct integral decompositions, then we
have

(π(g)u, v) =

∫
σ∈suppπ

(σ(g)uσ, vσ)dµπ(σ).

Thus our integral becomes∣∣∣∣∫
G

(π(g)u, v)ϕN,U1,U (g)etη(log g)dg

∣∣∣∣
=

∣∣∣∣∫
G

ϕN,U1,U (g)etη(log g)

∫
σ∈suppπ

(σ(g)uσ, vσ)dµπ(σ)dg

∣∣∣∣
=

∣∣∣∣∫
σ∈suppπ

∫
G

ϕN,U1,U (g)etη(log g)(σ(g)uσ, vσ)dgdµπ(σ)

∣∣∣∣
=

∣∣∣∣∫
σ∈suppπ

(σ(ϕN,U1,Ue
tη(log))uσ, vσ)µπ(σ)

∣∣∣∣
≤
∫
σ∈suppπ

∣∣∣σ(ϕN,U1,Ue
tη(log))uσ

∣∣∣ · |vσ| dµπ(σ)

≤
(∫

σ∈suppπ

∣∣∣σ(ϕN,U1,Ue
tη(log))

∣∣∣2
HS
· |uσ|2 dµπ(σ)

)1/2(∫
σ∈suppπ

|vσ|2dµπ(σ)

)1/2

.

Here |·|HS denotes the Hilbert-Schmidt norm of an operator on Vσ. Moreover, we
are abusing notation and writing σ(ϕN,U1,U ) for the action of ϕN,U1,U on Vσ ⊗Mσ

as well as Vσ. The second integral is a constant. Therefore, we may focus on the
first integral.

Next, we use a calculation of Howe (see page 128 of [28]). For σ ∈ Ĝtemp, we
have ∫

G

ϕN,U1,U (g−1)eη(log)〈Θσ, lg[ϕN,U1,Ue
η(log)]〉dg = |σ(ϕN,U1,Ue

η(log))|2HS .

Integrating both sides over σ ∈ suppπ with respect to |uσ|2dµπ(σ) yields∫
G

ϕN,U1,U (g−1)eη(log)〈
∫
σ∈suppπ

Θσ|uσ|2dµπ(σ), lg[ϕN,U1,Ue
η(log)]〉dg

=

∫
σ∈suppπ

|σ(ϕN,U1,Ue
η(log))|2HS |uσ|2dµπ(σ).

We observe that getting the proper bounds for the right hand side is what we need
in order to prove our Proposition. We will obtain them by bounding the left hand
side utilizing Lemma 6.2 together with the remarks afterwards.

Choose an open set 0 ∈ Ṽ ⊂ g such that exp: Ṽ → exp(Ṽ ) is a bianalytic

isomorphism onto its image. We apply Lemma 6.2 with V = g, Ṽ as above,

ψ : Ṽ × g→ g

by (Y,X) 7→ log(expY expX), a = j
1/2
G , and

u =

∫
σ∈suppπ

θσ|uσ|2dµπ(σ).

Moreover, we use the above remark that (0, ξ) /∈ SS0(u). Then Lemma 6.2 assures

us of the existence of open sets 0 ∈ log(U1) ⊂ log(U) ⊂ log(Ũ) ⊂ Ṽ such that the
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closure of log(U1) is contained in the interior of log(U) together with an open set
ξ ∈W ⊂ ig∗ and a constant C > 0 such that∣∣∣∣∫

σ∈suppπ

(∫
g

j
1/2
G (X)θσ(expY expX)(exp∗ ϕN,U1,U )(X)etη(X)dX

)
|uσ|2dµπ(σ)

∣∣∣∣
≤ CN+1(N + 1)N t−N

whenever η ∈W , Y ∈ log(Ũ), and t > 0.

Pulling back to the group, we obtain∣∣∣∣∫
σ∈suppπ

(∫
G

Θσ(gh)ϕN,U1,U (h)etη(log(h))dh

)
|uσ|2dµπ(σ)

∣∣∣∣
≤ C(C(N + 1))N t−N

whenever g ∈ Ũ , η ∈ W , and t > 0. Substituting and changing the order of
integration yields∣∣∣∣〈∫

σ∈suppπ

Θσ|uσ|2dµπ(σ), lg

[
ϕN,U1,U (h)etη(log(h))

]
〉
∣∣∣∣

≤ CN+1(N + 1)N t−N

whenever g ∈ Ũ , η ∈W , and t > 0. Finally, if we integrate over g in a precompact
set with respect to a smooth density multiplied by a bounded function, this will
simply multiply the bound by a constant, which we may incorporate into C. Thus,
we obtain∣∣∣∣∫

G

ϕN,U1,U (g−1)eη(log)〈
∫
σ∈suppπ

Θσ|uσ|2µπ(σ), lg[ϕN,U1,Ue
η(log)]〉dg

∣∣∣∣
≤ CN+1(N + 1)N t−N

for η ∈W and t > 0. Tracing back through our calculations, we see that we obtain∣∣∣∣∫
G

(π(g)u, v)ϕN,U1,U (g)etη(log g)dg

∣∣∣∣ ≤ C(N+1)/2(N + 1)N/2t−N/2

for η ∈ W and t > 0. We simply replace N by 2N and note that the sequence
ϕ2N,U1,U still satisfies the necessary conditions needed for Definition 2.3. Then we
obtain ∣∣∣∣∫

G

(π(g)u, v)ϕ2N,U1,U (g)etη(log g)dg

∣∣∣∣ ≤ (C ′)N+1(N + 1)N t−N

for η ∈W and t > 0. Proposition 6.1 and Theorem 1.2 now follow. �

7. Examples and Applications

In this section, we will give examples of our results in the case G = SL(2,R).
Then we will briefly mention applications to branching problems and harmonic
analysis questions.

We consider the special case of the group G = SL(2,R). We identify g = sl(2,R)
with R3 via

(x, y, z) 7→
(

x y − z
y + z −x

)
.
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In addition, we identify g ∼= g∗ using the trace form,

X 7→ (Y 7→ Tr(XY )).

Dividing by i, we obtain a (non-canonical) isomorphism ig∗ ∼= R3 which is useful for
drawing pictures. The coadjoint orbits of SL(2,R) come in several classes. First,
we have the hyperbolic orbits,

Oν = {(x, y, z)| x2 + y2 − z2 = ν2}
for ν > 0. Next, we have two classes of elliptic orbits,

O+
n = {(x, y, z)| z2 − x2 − y2 = n2, z > 0},

O−n = {(x, y, z)| z2 − x2 − y2 = n2, z < 0}
for any real number n > 0. Then we have the two large pieces of the nilpotent cone

N+ = {(x, y, z)| x2 + y2 = z2, z > 0},

N− = {(x, y, z)| x2 + y2 = z2, z < 0}.
And finally we have the zero orbit, {0}.

The irreducible, unitary representations of SL(2,R) also come in several classes.
First, we have the spherical unitary principal series σ(1, ν) for ν ≥ 0 as well as the
non-spherical unitary principal series σ(−1, ν) for ν > 0. Next, we have the holo-
morphic discrete series representations σ+

n and the antiholomorphic discrete series
representations σ−n for n ∈ N. Here we have parametrized the discrete series by
infinitesimal character. In addition, the terms ‘holomorphic’ and ‘antiholomorphic’
come from the standard holomorphic structure on the upper half plane and the
standard identification of SL(2,R)/ SO(2,R) with the upper half plane. Finally, we
have the limits of discrete series, σ+ and σ−.

Of course, there is also the trivial representation of SL(2,R) as well as the com-
plementary series, but these representations are not tempered; hence, we will not
consider them in this paper.

Now, the representations σ(1, ν) and σ(−1, ν) are associated to the orbit Oν
for ν > 0, and the representation σ(1, 0) is associated to the nilpotent cone N =
N+ ∪N− ∪{0}. The representation σ+

n (respectively σ−n ) is associated to the orbit
O+
n (respectively O−n ). And the representation σ+ (respectively π−) is associated

to the orbit N+ (respectively N−).
Next, we utilize Theorem 1.2 to compute the wave front sets of some represen-

tations. One notes

WF(σ+
n ) = AC(O+

n ) = N+,

WF(σ−n ) = AC(O−n ) = N−,
WF(σ(1, ν)) = WF(σ(−1, ν)) = AC(Oν) = N

for ν > 0. In addition,

WF(σ(1, 0)) = AC(N ) = N ,
WF(σ+) = AC(O+) = N+,

WF(σ−) = AC(O−) = N−.
Of course, all of these computations of wave front sets of irreducible, unitary rep-

resentations have been well-known for sometime because of the work of Barbasch-
Vogan [1] and Rossmann [51]. What is new in this paper is our ability to compute
wave front sets of representations that are far from irreducible.
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Suppose A ⊂ SL(2,R) is the set of diagonal matrices. Utilizing Theorem 1.1, we
observe

WF(L2(SL(2,R)/A)) ⊃ Ad∗(G) · i(g/a)∗ = ig∗.

Therefore, WF(L2(SL(2,R)/A)) = isl(2,R)∗. Similarly, if Γ ⊂ SL(2,R) is a discrete
subgroup, then

WF(L2(SL(2,R)/Γ)) = ig∗.

Of course, one could deduce these first two facts from Theorem 1.2 together with
the well-known decomposition of L2(G/A) and the existence of sufficiently many
Poincare series and Eisenstein series for Γ. However, the authors like that we are
able to compute these wave front sets without knowledge of these decompositions.

Next, we utilize Theorem 1.2. Let ig∗hyp denote the set of hyperbolic elements in

ig∗. Identifying ig∗ with R3 as above, we have

ig∗hyp = {(x, y, z)| x2 + y2 − z2 > 0}.

Let ig∗ell denote the set of elliptic elements in ig∗. Break this set up into two by

(ig∗ell)
+ = {(x, y, z)| z2 − x2 − y2 > 0, z > 0},

(ig∗ell)
− = {(x, y, z)| z2 − x2 − y2 > 0, z < 0}.

If K = SO(2,R), then we have

WF
(
L2(G/K)

)
= WF

(∫
ν>0

σ(1, ν)

)
= AC

(⋃
ν>0

Oν

)
= ig∗hyp.

Similarly, we have

WF

(∫
ν>0

σ(−1, ν)

)
= ig∗hyp.

In addition, we have

WF

(⊕
n>0

σ+
n

)
= AC

(⋃
n>0

O+
n

)
= (ig∗ell)

+,

WF

(⊕
n>0

σ−n

)
= AC

(⋃
n>0

O−n

)
= (ig∗ell)

−.

Next, we say a few words about branching problems. We recall the statement of
Corollary 1.4.

Suppose G is a reductive Lie group of Harish-Chandra class, suppose H ⊂ G is
a closed reductive subgroup of Harish-Chandra class, and suppose π is a discrete
series representation of G. Let g (resp. h) denote the Lie algebra of G (resp. H),
and let q : ig∗ → ih∗ be the pullback of the inclusion. Then

AC(O - supp(π|H)) ⊃ q(WF(π)).

This Corollary follows directly from Theorem 1.2, Proposition 1.5 of [28], and
the fact that the restriction of a discrete series to a reductive subgroup is weakly
contained in the regular representation (see for instance Theorem 3 of [45], though
this is neither the first nor the easiest proof of this fact).

We show how to utilize this Corollary in a simple example. First, letG = SU(2, 1)
and let H = SO(2, 1)e ∼= SL(2,R) be the identity component of the subgroup of G
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consisting of real matrices. If π is a quaternionic discrete series of G, then one can
show

WF(π) = NG
where NG is the nilpotent cone in ig∗. One checks via a simple linear algebra
calculation that q(NG) = ih∗. Thus, we obtain

AC(O - supp(π|H)) = ih∗.

We note that this can only happen if

• π|H contains an integral of spherical or non-spherical unitary principal se-
ries with unbounded support.
• π|H contains infinitely many distinct holomorphic discrete series.
• π|H contains infinitely many distinct antiholomorphic discrete series.

The authors believe that the last two facts are non-trivial. For comparison,
one can see utilizing arguments in [43] that whenever π is a holomorphic discrete
series of G, the restriction π|H contains at most finitely many holomorphic and
antiholomorphic discrete series representations.

Next, we recall the statement of Corollary 1.5. Suppose G is a reductive Lie
group of Harish-Chandra class, H ⊂ G is a reductive subgroup of Harish-Chandra
class, and π is a discrete series representation of G. Let g (resp. h) denote the Lie
algebra of G (resp. H), and let q : ig∗ → ih∗ be the pullback of the inclusion. If
π|H is a Hilbert space direct sum of irreducible representations of H, then

q(WF(π)) ⊂ ih∗ell.

Here ih∗ell ⊂ ih∗ denotes the subset of elliptic elements.
This statement follows from Corollary 1.4 together with the fact that only dis-

crete series of H can occur discretely in π|H when π is a discrete series of G (this
can be deduced from Theorem 3 of [45]) and the fact that discrete series correspond
to elliptic caodjoint orbits [47].

To illustrate Corollary 1.5, we consider tensor products of discrete series repre-
sentations of SL(2,R). This particular example has been well understood for a long
time (see [46]). We use it because it is simple and it illustrates our ideas well.

The exterior tensor product σ+
n �σ+

m (resp. σ−n �σ−m) corresponds to the product
of orbits O+

n × O+
m (resp. O−n × O−m) as a representation of SL(2,R) × SL(2,R).

The projection

i sl(2,R)∗ ⊕ i sl(2,R)∗ → i sl(2,R)∗

is given by the sum (ξ, η) 7→ ξ + η. One checks that

O+
n +O+

m ⊂ (ig∗ell)
+, O−n +O−m ⊂ (ig∗ell)

−.

In fact, σ+
n ⊗ σ+

m is a discrete sum of holomorphic discrete series and σ−n ⊗ σ−m is a
discrete sum of antiholomorphic discrete series (see Theorem 1 and Example 5 of
[46]). Therefore, the Corollary told us that these sums of orbits would be contained
in the elliptic set.

On the other hand, the exterior tensor product σ+
n � σ−m corresponds to the

product of orbits O+
n × O−m. Their sum contains the set of hyperbolic elements

ig∗hyp. Utilizing the contrapositive of Corollary 1.5, we deduce that σ+
n ⊗ σ−m is not

a discrete sum of irreducible representations. In fact, utilizing Corollary 1.4, one
deduces that it must contain an unbounded integral of unitary principal series. One
checks that this is the case (see Theorem 2 and Example 5 of [46]).
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Next, we consider applications to harmonic analysis questions. Recall Corollary
1.3. If L2(G/H) is weakly contained in the regular representation, then

AC(O - suppL2(G/H)) ⊃ Ad∗(G) · i(g/h)∗.

We need several remarks on how to use this result. First, it will be helpful to
introduce the following notation. If h ⊂ g is a Cartan subalgebra and π is a
representation of G that is weakly contained in the regular representation, then we
define

ih∗ - suppπ =
⋃

σ∈suppπ

(Oσ ∩ ih∗) ⊂ ih∗

We note that only irreducible, tempered representations with regular infinitesimal
character contribute to ih∗ - suppπ ∩ (ih∗)′, where (ih∗)′ denotes the set of regular
elements in ih∗. Further, any irreducible, tempered representation with regular
infinitesimal character contributes exactly one orbit of a real Weyl group in ih∗ for
a Cartan subalgebra h ⊂ g, unique up to conjugacy by G.

We deduce from the above discussion that for π weakly contained in the regular
representation

AC(O - suppπ) ∩ (ih∗)′ ⊂ AC(ih∗ - suppπ) ⊂ AC(O - suppπ) ∩ ih∗.
In particular, if AC(O - suppπ) = ig∗, then

AC(ih∗ - suppπ) = ih∗

for every Cartan subalgebra h ⊂ g. The authors feel that this is ample justification
for saying that suppπ is asymptotically identical to suppL2(G) if

AC(O - suppπ) = ig∗.

Second, we recall the recent work of Benoist and Kobayashi [2]. Suppose G is a
real, reductive algebraic group, and suppose H ⊂ G is a real, reductive algebraic
subgroup. Let g (resp. h) denote the Lie algebras of G (resp. H). Let a ⊂ h
be a maximal split abelian subspace, and recall that we have Lie algebra maps
a → End(h) and a → End(g) given by the adjoint actions. If Y ∈ a, define h+,Y

(resp. g+,Y ) to be the sum of the positive eigenspaces for the adjoint action of Y
on h (resp. g), and define

ρh(Y ) = Trh+,Y
(Y ), ρg(Y ) = Trg+,Y

(Y ).

In Theorem 4.1 of [2], Benoist and Kobayashi show that L2(G/H) is weakly con-
tained in the regular representation of G if and only if

2ρh(Y ) ≤ ρg(Y ) for every Y ∈ a.

Now, suppose H ⊂ G are real, reductive algebraic groups satisfying the above
condition. Then Corollary 1.3 implies

AC(O - suppL2(G/H)) ⊃ Ad∗(G) · i(g/h)∗.

We note that the right hand side is quite computable. Let q be the orthogonal
complement of h with respect to a nondegenerate, invariant form (the Killing form
will due if G is simple). After dividing by i and identifying g∗ with g via this form,
we need only ask “which elements of g are conjugate to elements of q” in order
to compute the right hand side of the above expression. In particular, the right
hand side is ig∗ if and only if q contains representatives of every conjugacy class of
Cartan subalgebra in g.
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Benoist and Kobayashi give large families of examples of pairs H ⊂ G satisfying
their condition in Example 5.6 and Example 5.10 of [2]. We will focus on Example
5.6. We see that if G = SO(p, q) and H =

∏r
i=1 SO(pi, qi) with p =

∑r
i=1 pi,

q =
∑r
i=1 qi, and 2(pi + qi) ≤ p+ q+ 2 whenever piqi 6= 0, then L2(G/H) is weakly

contained in the regular representation. To the best of the authors’ knowledge,
Plancherel formulas are not known for the vast majority of these cases. One checks
using parametrizations of conjugacy classes of Cartan subalgebras (see [40], [54])
and an explicit description of q, that if in addition, 2pi ≤ p+1,2qi ≤ q+1 for every
i and p+ q > 2, then

ig∗ = Ad∗(G) · i(g/h)∗.

Utilizing Corollary 1.3, we deduce suppL2(G/H) is asymptotically equivalent to
suppL2(G). In particular, suppose p and q are not both odd and F is one of the(
p+q
p

)
families of discrete series of G = SO(p, q). Under these assumptions, if h0 is

a compact Cartan subalgebra of g, then we observe

AC(ih∗0 - suppL2(G/H)) = ih∗0.

In particular, we deduce that for every family F of discrete series of G,

HomG(σ, L2(G/H)) 6= {0}
for infinitely many different σ ∈ F . A particularly nice example is when G =
SO(4n, 2) and H = SO(n, 1)× SO(n, 1)× SO(2n). In this case, one deduces

HomG(σ, L2(G/H)) 6= {0}
for infinitely many distinct (possibly vector valued) holomorphic discrete series σ
of G. We note that when n = 1, this statement can be deduce from Theorem 7.5
on page 126 of Kobayashi’s paper [38].
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