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Abstract. The complexity in a biological system may be caused by both the

number of variables involved and the number of system constants that can vary.
A biological system in the subcellular level often stabilizes after a certain period

of time. Its asymptote can then be described as an equilibrium under certain

continuity assumptions. The biological quantities at the equilibrium can be
detected by experiments and they observe some mathematical equations. The

purpose of this paper is to study the equilibrium submanifold of vesicle traffick-

ing in a two-compartment system. We compute the equilibrium submanifold
under some fairly general assumption on the system constants. The disconnect-

edness of the equilibrium submanifold may have biological implications. We

show that, unlike many other systems, the equilibrium is determined largely by
system constants rather than the initial state. In particular, the equilibrium

submanifold is locally a real algebraic variety, with small generic dimension and

large degenerate dimension. Our result suggests that some biological system
may be studied by algebraic or geometric methods.

1. Introduction. It is perhaps safe to say that most biological system in the sub-
cellular level will reach an equilibrium at a certain point. In many circumstances,
the equilibrium will be a partial equilibrium in the sense that some parameters will
stabilize while the rest will evolve after time. Very often, a biological system will
involve tens or hundreds of variables. The large number of variables makes a direct
analysis on the system a very difficult task. However, in a lot of biological systems,
the outcome of the time evolution of a biological system is what really matters.
To this end, the structure of the equilibrium submanifold, particularly the zero-th
homotopy group, becomes very important.

Let B be a biological system. Let S = {s1, s2, . . . , sn} be the set of variables
that describe the biological quantities in this system. A point u ∈ Rn is called a
state if there is a biological system such that si = ui for all i ∈ [1, n]. Given an
initial state S(0), one wishes to understand all the possible state S(t) at time t. We
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call a state S(t0) an equilibrium if S(t) = constant for t ≥ t0; a partial equilibrium
if a subset P (t) satisfies P (t) = constant for t ≥ t0. In reality, a biological sys-
tem B may never reach an equilibrium in the mathematical sense. But the studies
on equilibrium in abstract terms may shed lights on the structure of the complex
biological system. If the set of equilibrium states has the structure of a manifold,
possibly with boundary, we call it the equilibrium submanifold.

A biological system can often be modeled in several different ways, depending on
the nature of the system. For example, when S(t) is multivalued, the randomness in
the system may be modeled using stochastic equations. When S(t) is single-valued
and continuous, the deterministic nature of the system may suggest a dynamical
system model (see [6], [14]). In this paper, we are interested in a nonlinear dynam-
ical system model based on the vesicle trafficking in a two-compartment system
(see [4], [11], [1]). Vesicle trafficking can also be modeled by a stochastic model
(see [10]). The main goal is to discuss the role of the equilibrium submanifold in
analyzing the nonlinear dynamical system model and the relevant biological system.

1. First of all, most of the dynamical system model in subcelluar level can only
describe a biological system locally. In other words, the model only makes
sense when the initial state is in a certain neighborhood. Outside of this
neighborhood, the model may become absurd, for example, negative quantities
may appear. This neighborhood, as we shall argue, should be a neighborhood
of the equilibrium submanifold. The model may still make sense outside of this
neighborhood mathematically, but not biologically. Finding the equilibrium
may help determine the possible initial conditions to which the dynamical
system makes sense biologically. Then one can study the properties of the
dynamic system near the equilibria.

2. In a dynamical system model, the dimension of the equilibrium submanifold is
an important invariant. It may be interpreted biologically. For example, the
equilibrium to which a system reaches, may only depend on a subset of initial
state S(0). The dimension of the equilibrium can be used to understand how
the outcome of a biological system depend on the initial state. See Theorem
5.1 and Theorem 6.2.

3. If a dynamical system is algebraic, the equilibrium submanifold will locally be
a real algebraic variety. In this case, analyzing equilibrium submanifold is an
interesting mathematical problem in its own right. In addition, a biological
dynamical system model often contain certain system constants. How the
equilibrium submanifold deforms with respect to the system constants may
have remarkable biological implications. This problem is certainly of interests
to algebraists.

4. In the model we are studying in this paper, the equilibrium submanifold may
be disconnected. This suggests that behavior of the two-compartment system
may be quite different near different equilibrium locations. Biologically, this
means that the outcome of a biological system can be very different near two
different branches of the equilibrium submanifold. See Theorem 5.2.

5. Equilibrium points are biologically important. Experimentally, the biological
quantities are most visible at the equilibrium point. From the statistical point
of view, the observability at the equilibrium can be utilized to infer the system
constants, for example, the dissociation constants in our model.
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6. The differential equations from a biological system may be linearly dependent,
or algebraically dependent. In other words, there are relationships among the
variables S(t). The relationships often comes from preservation of certain
quantities in the biological system. See the discussions in Section 3.

7. When the number of variables is large, finding an equilibrium that makes sense
biologically, can be difficult. Frequently, change of variable become necessary.
For example, the absolute amount of a certain biological ingredient may vary
greatly. Yet, its concentration may approach an equilibrium. So, instead of
analyzing dx

dt = 0, one should analyze the equation df(x)
dt = 0 where f(x) is a

smooth function of x in a certain neighborhood. See Section 4.
In this paper, we did not address the problem of stability of the equilibrium. Al-
though the stability problem can be solved theoretically ( [2], [3]), the actual com-
putation with varying system constants can be enormous. Fortunately, system
constants are often known in individual experiment. So equilibrium submanifold
can be computed numerically and stability of the equilibria can be checked numer-
ically. We intend to discuss this in a future paper. We shall finally remark that the
dynamical system we discuss in this paper are all autonomous ([2]).

2. Vesicle Trafficking and Pollen Growth. The biological system we are in-
terested in is the vesicle trafficking in yeast, animal, and plant cells (eukaryotic
cells). These cells are enclosed by the phospholipid bilayer (plasma membrane),
which allows the cells to maintain a fluid inside while they exchange gases and
small ions with the exterior. In yeast and plants, the plasma membrane is fur-
ther covered by cell wall (polysaccharides) that makes the cell structure more rigid.
Eukaryotic cells also have interior compartments that are enclosed again by the
phospholipid bilayer. Within these compartments, several molecules that need to
be physically separated from the cellular fluid (cytosol), such as phospholipids and
polysaccharides, are synthesized, stored, or degraded. Depending on conditions, the
cells quickly transport these molecules (cargoes) from one compartment to others
that include the plasma membrane. In order to transport these cargoes, extremely
small compartments (vesicles) containing the cargoes bud out from a compartment
membrane and travel around in the cytosol. When a vesicle arrives at the desti-
nation compartment, the membrane of the vesicle fuses to the membrane of the
destination compartment in order to release the cargoes into or on the compart-
ment. This transporting system is called vesicle trafficking (or vesicular traffic),
which is commonly evolved among eukaryotes ( [1]).

We are interested in vesicle trafficking in the pollen tube growth. Pollens are sperm
cells (male gamete) of seed plants and can be found in anthers in the flower. Dur-
ing pollination (sexual reproduction), pollens are transferred to a stigma of flowers
through the air. After that, pollens, which are actually single cells enclosed by
the plasma membrane and cell wall, grow a tube into the base tower of the stigma
(style) until they reach egg cells (ovules) in the bottom of the style. The length
of the tubes in some plants are about 10 mm ( [15]) though the sizes of pollens
on the stigma are typically 10 to 100 micron. It is known that the growth of the
tube (polarized growth) relies on vesicle trafficking that delivers newly synthesized
materials such as phospholipids and polysaccharides to the tip of the tube ( [13]).
The cargoes that are transported to the plasma membrane at the tip of the tube
are originally produced in the compartment known as the Golgi apparatus. They,
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however, can be transported to other compartments within the pollen tube such
as the early endosome, late endosome, and recycling endosome, depending on the
developmental signal. The goal of our research is to elucidate the mechanism of
vesicle trafficking that leads to the pollen tube growth at a systems level.

Because of advantages in genetic and molecular analysis, the detailed molecular
mechanisms of the vesicle budding and fusion have been revealed in the past years.
Biologists look at vesicle budding or fusion in vivo or in vitro in their assays. If
vesicle budding or fusion is halted when they remove a molecule(s) of interest from
their assays, biologists can conclude that the molecule(s) play an important role
in vesicle trafficking. Through these analysis, we know now that budding and fu-
sion of vesicles are mainly controlled by two different types of proteins; guanine
triphosphatases (GTPases) and soluble N-ethylmaleimide-sensitive fusion protein
attachment protein receptors (SNAREs) respectively ( [5]). During vesicle bud-
ding, GTPase on a compartment membrane recruits machinery proteins from the
cytosol, and the machinery proteins generate vesicles using the compartment mem-
brane. Meantime the cargoes in the compartment are recruited by GTPase to the
vesicles. GTPase also recruits SNAREs that localize in the compartment membrane
into the vesicle membrane. After a vesicle travels around within the cytosol, GT-
Pase and the machinery proteins that are used to generate the vesicle are released
from the vesicle to the cytosol but SNAREs and the cargoes remain on or within the
vesicle. When the vesicle is at the destination compartment, SNAREs on the vesicle
interact with SNAREs on the destination compartment and allow the vesicle fuse
using an energy generated by the SNARE-SNARE interactions. Therefore, these
molecular mechanisms explain how SNAREs and a membrane in an original com-
partment are exported to the destination compartment together with the cargoes.

Biologists, however, observe that a specific SNARE localizing in a specific compart-
ment is hardly identified in other compartments during the cargo transportations.
For instant, SNARE localizing in the Golgi apparatus of a pollen tube is hardly
identified in other compartments while the cargoes (i.e., polysaccharides) are simul-
taneously transported from the Golgi apparatus to other compartments (i.e., the
plasma membrane) so that the pollen tube can continuously grow. This observation
suggests that SNARE must be transported back to the original compartment soon
after the vesicle fuses to another compartment in vesicle trafficking. It is also true
that the delivery of materials to construct the plasma membrane simply relies on
the fusion and budding of vesicles because both vesicles and the plasma membranes
are composed of the same materials (i.e., phospholipids). However, the delivery
of materials to construct the cell wall depend on the amount of the cargoes (i.e.,
polysaccharides) that the vesicle carries as well as the rates of vesicle fusion and
budding. Hence, the pollens are thought to develop a system that balances out the
rates of the vesicle flows and the amounts of the cargoes that the vesicles carry. How
do the pollens control the delivery of the materials to the tube tip? How does a
compartment maintain its size while the membrane is spontaneously exported dur-
ing the pollen tube growth? How does a compartment maintain a specific SNARE
while it is spontaneously exported? How can we engineer a pollen that grows faster
or slower? These are questions that need to be addressed by not only looking at
the molecular mechanisms of the vesicle budding and fusion but also looking at the
system.
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A mathematical model that describes vesicle trafficking between two compartments
was constructed by Heinrich and Rapoport ( [11]). This model can be simplified
and applied to the pollen tube growth. Clearly, this two compartment system
model reaches an equilibrium when the pollen tube reaches its maturity. Finding
the equilibrium conditions help to predict the rate of the pollen tube growth in
mutant plants in which expressions of SNARE genes are suppressed in the pollens.
Moreover, computing the equilibrium status with a function of time (t) allows us
to predict the kinetics of compartment sizes and concentrations of SNAREs and
cargoes in two compartments during the pollen tube growth.

3. A Simplified Heinrich-Rapoport Model. In this section, we review the
model constructed in [11] with no cargo transportation. Denote the SNARE native
to compartment 1 by X and U . Denote the SNARE native to compartment 2 by
Y and V . There are two major processes in a vesicle trafficking system, namely the
budding of vesicles from the compartments and the fusion of the vesicles with com-
partments. The budding vesicles are either initiated by GTPase A or B. Suppose
that vesicles budded from compartment 1 is always with GTPases A and vesicles
budded from compartment 2 is always with GTPases B. The fusion processes are
mainly regulated by SNARE interactions. The interaction of SNARE X is limited
to SNARE U. Similarly, the interaction of SNARE Y is limited to SNARE V. Al-
though SNAREs X, U, Y, and V are biologically distinguishable, their functions in
our model are similar; their interactions mediate the membrane fusion between the
vesicles and the compartments.

Figure 1. A Two Compartment Vesicle Trafficking System

Let
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1. Ni be the number of vesicles originated in compartment i;
2. Si be the size of compartment i;
3. Xi be the amount of X in compartment i;
4. Ui be the amount of U in compartment i;
5. Yi be the amount of Y in compartment i;
6. Vi be the amount of V in compartment i;
7. Nxi be the amount of SNAREs X in the vesicles originated in compartment

i;
8. Nui be the amount of SNAREs U in the vesicles originated in compartment

i;
9. Nyi be the amount of SNAREs Y in the vesicles originated in compartment i;

10. Nvi be the amount of SNAREs V in the vesicles originated in compartment i;
The following are dependent variables derived from above. Let

1. xi = Xi/Si be the concentration of X in compartment i;
2. ui = Ui/Si be the concentration of U in compartment i;
3. yi = Yi/Si be the concentration of Y in compartment i;
4. vi = Vi/Si be the concentration of V in compartment i;
5. cxi = Nxi/Ni be the average concentration of X in vesicles originated in

compartment i;
6. cui = Nui/Ni be the average concentration of U in vesicles originated in

compartment i;
7. cyi = Nyi/Ni be the average concentration of Y in vesicles originated in

compartment i;
8. cvi = Nvi/Ni be the average concentration of V in vesicles originated in

compartment i.
Let kx1 be the dissociation constant of SNARE X with GTPase A, and kx2 be
the dissociation constant of SNARE X with GTPase B. In other words, Kxi is an
equilibrium constant that measures the affinity of SNARE X to vesicles budded
from compartment i. kui, kyi and kvi can be defined similarly. Define the following
8 saturation functions:

sxi =
xi/kxi

1 + xi/kxi + ui/kui + yi/kyi + vi/kvi
,

sui =
ui/kui

1 + xi/kxi + ui/kui + yi/kyi + vi/kvi
,

syi =
yi/kyi

1 + xi/kxi + ui/kui + yi/kyi + vi/kvi
,

svi =
vi/kvi

1 + xi/kxi + ui/kui + yi/kyi + vi/kvi
.

These functions are related to the amount of cargo each vesicle can carry, which in
turn, will effect the eventual size of the compartments.

We have 2 budding rates wi = wSi where w is a constant. Let κ be the fusion
rate constant.

Put SNi = (Xi, Ui, Yi, Vi) and sni = (xi, ui, yi, vi). Let ci = (cxi, cui, cyi, cvi).
Define an inner product on R4 by

〈p,q〉 = p1q2 + p2q1 + p3q4 + p4q3. (1)
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We have 2 forward fusion rates of vesicles:
1. f1 = κ(cx1u2 + cu1x2 + cy1v2 + cv1y2) = κ〈c1, sn2〉. This is the fusion rate of

vesicles originated in compartment 1 that fusion with compartment 2;
2. f2 = κ(cx2u1 + cu2x1 + cy2v1 + cv2y1) = κ〈c2, sn1〉. This is the fusion rate of

vesicles originated in compartment 2 that fusion with compartment 1.
We have 2 backward fusion rates of vesicles:

1. r1 = κ〈c1, sn1〉. This is the fusion rate of vesicles originated in compartment
1 that fusion with compartment 1;

2. r2 = κ〈c2, sn2〉. This is the fusion rate of vesicles originated in compartment
2 that fusion with compartment 2.

We can now write down the system of differential equations according to [11] (Eq.
(1)(2)):

dS1

dt
= −wS1 + r1S1N1 + f2S1N2,

dS2

dt
= −wS2 + r2S2N2 + f1S2N1

dN1

dt
= wS1 − r1S1N1 − f1S2N1,

dN2

dt
= wS2 − r2S2N2 − f2S1N2.

Theoretically, the changes of the sizes of the compartments are determined by the
outgoing flux of vesicles budded from the compartments and the incoming flux
of vesicles from back fusion and forward fusion. The changes of the number of
vesicles are determined similarly. We normalize the size of vesicles. The sizes of the
compartments S1 and S2 will now be measured in terms of the number of vesicles.
It follows that the total size of the compartments and vesicles is preserved in vesicle
trafficking. We have

S1 + S2 + N1 + N2 = constant.

Biologically, the size of vesicles may vary slightly. There are typically 2000 vesicles
in the pollen tube and the average size of a vesicle can be determined. Now the back
and forward fusions are dictated by the amount of SNAREs in the compartments
and in the vesicles. There are 8 differential equations concerning Xi, Ui, Yi, Vi, the
SNARE amounts in the respective compartment [11] (Page 5, Supplement 1):
dX1

dt
= −wS1sx1 +r1S1Nx1 +f2S1Nx2,

dX2

dt
= −wS2sx2 +r2S2Nx2 +f1S2Nx1;

(2)
dU1

dt
= −wS1su1 +r1S1Nu1 +f2S1Nu2,

dU2

dt
= −wS2su2 +r2S2Nu2 +f1S2Nu1;

(3)
dY1

dt
= −wS1sy1 + r1S1Ny1 + f2S1Ny2,

dY2

dt
= −wS2sy2 + r2S2Ny2 + f1S2Ny1;

(4)
dV1

dt
= −wS1sv1 + r1S1Nv1 + f2S1Nv2,

dV2

dt
= −wS2sv2 + r2S2Nv2 + f1S2Nv1.

(5)
There are also 8 differential equations concerning Nxi, Nui, Nyi, Nvi, the amount of
SNAREs in the vesicles outside of the compartments, [11] (Page 6, Supplement 1):
dNx1

dt
= wS1sx1 − r1S1Nx1 − f1S2Nx1,

dNx2

dt
= wS2sx2 − r2S2Nx2 − f2S1Nx2.

The other equations are similar. Among these 16 equations, we have the following
relations:

X1 + X2 + Nx1 + Nx2 = constant, U1 + U2 + Nu1 + Nu2 = constant,
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Y1 + Y2 + Ny1 + Ny2 = constant, V1 + V2 + Nv1 + Nv2 = constant.

So only 12 of them are linearly independent. Among the total of 20 equations, only
15 are linearly independent. We shall remark that, in a more complex biological
system, sorting out the linear dependence among the equations can be a tedious
task.

4. Equations on Concentrations. Let dx
dt = F(x) be a system of autonomous

differential equations. We call the system algebraic if F(x) is algebraic. Clearly, if
a system is algebraic, the equilibrium submanifold will be a real algebraic variety.

As we shall discuss in the next section, sometimes it is more desirable to work with
differential equations on concentration, rather than the absolute quantity. Recall
that

dX1

dt
= −wS1sx1 + κ〈c1, sn1〉S1Nx1 + κ〈c2, sn1〉S1Nx2,

dX2

dt
= −wS2sx2 + κ〈c2, sn2〉S2Nx2 + κ〈c1, sn2〉S2Nx1,

dNx1

dt
= wS1sx1 − κ〈c1, sn1〉S1Nx1 − κ〈c1, sn2〉S2Nx1,

dNx2

dt
= wS2sx2 − κ〈c2, sn2〉S2Nx2 − κ〈c2, sn1〉S1Nx2.

Obviously, dX1
dt + dX2

dt + dNx1
dt + dNx2

dt = 0. This is basically saying that the total
number of SNARE X is preserved. So only three equations are linearly independent.
The equations for SNAREs U, Y, V can be written similarly. Now we want to make
a simplification by considering the concentration xi and cxi:

dcx1

dt
=

dNx1
N1

dt
=

1
N1

dNx1

dt
− Nx1

N2
1

dN1

dt

=
1

N1
[wS1sx1 − κ〈c1, sn1〉S1Nx1 − κ〈c1, sn2〉S2Nx1]

− Nx1

N2
1

[wS1 − κ〈c1, sn1〉S1N1 − κ〈c1, sn2〉S2N1]

=
wS1sx1

N1
− cx1wS1

N1
=

wS1

N1
(sx1 − cx1).

(6)

We see here that the change of cx1 is related to cx1 “negatively”. This often occurs
in a biological system in terms of concentration, but not always. Similarly, we
compute

dx1

dt
=

d(X1
S1

)
dt

=
1
S1

dX1

dt
− X1

S2
1

dS1

dt

=
1
S1

[−wS1sx1 + κ〈c1, sn1〉S1Nx1 + κ〈c2, sn1〉S1Nx2]

− X1

S2
1

[−wS1 + κ〈c1, sn1〉S1N1 + κ〈c2, sn1〉S1N2]

=− wsx1 + κ〈c1, sn1〉Nx1 + κ〈c2, sn1〉Nx2

+ wx1 − x1κ〈c1, sn1〉N1 − x1κ〈c2, sn1〉N2

=w(−sx1 + x1) + κ〈c1, sn1〉(cx1 − x1)N1 + κ〈c2, sn1〉(cx2 − x1)N2

(7)
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Theorem 4.1. We have
dcxi

dt
=

wSi

Ni
(sxi − cxi),

dx1

dt
= w(−sx1 + x1) + κ〈c1, sn1〉(cx1 − x1)N1 + κ〈c2, sn1〉(cx2 − x1)N2,

dx2

dt
= w(−sx2 + x2) + κ〈c2, sn2〉(cx2 − x2)N2 + κ〈c1, sn2〉(cx1 − x2)N1

If sx1 = cx1 = x1 = x2 = cx2 = sx2, then the system reaches a partial equilibrium
on cxi and xi.

The equations we have now give us better ideas about how the rate of concen-
tration evolves.

5. Equilibrium: A symmetric model. Unless otherwise stated, we suppose that
X and U SNAREs are symmetric, because a molecular model suggests that a molar
ratio of SNARE X and U are 1 to 1 when they interact ([12]). We suppose SNAREs
Y and V are also symmetric. In other words,

xi = ui, kxi = kui; yi = vi, kyi = kvi.

We also assume that
sxi = xi/kxi; syi = yi/kyi.

Automatically, we have sxi = sui and syi = svi. Finally, we assume that all the
quantities we have are nonzero and

kx1 � kx2; ky1 � ky2. (8)

These assumptions are natural and reflect what is going on in a real vesicle traffick-
ing system.

To compute the equilibrium, set

dSi

dt
= 0;

dNi

dt
= 0;

dcxi

dt
= 0;

dcyi

dt
= 0;

dXi

dt
= 0; ;

dYi

dt
= 0.

Notice here that it’s more convenient for us to use Xi and Yi instead of xi and yi

for computational purposes. We have

r1N1 + f2N2 = w; r2N2 + f1N1 = w. (9)

wS1 = r1S1N1 + f1S2N1; wS2 = r2S2N2 + f2S1N2. (10)

cxi = sxi = xi/kxi; cyi = syi = yi/kyi. (11)

wsx1 = r1cx1N1 + f2cx2N2; wsx2 = r2cx2N2 + f1cx1N1. (12)

wsy1 = r1cy1N1 + f2cy2N2; wsy2 = r2cy2N2 + f1cy1N1. (13)

Now substituting Equations (11) into Equations (12), (13), we obtain

w
x1

kx1
= r1N1

x1

kx1
+ f2N2

x2

kx2
; w

x2

kx2
= r2N2

x2

kx2
+ f1N1

x1

kx1
(14)

w
y1

ky1
= r1N1

y1

ky1
+ f2N2

y2

ky2
; w

y2

ky2
= r2N2

y2

ky2
+ f1N1

y1

ky1
(15)

Lemma 5.1. The system reaches an equilibrium when Equations (9), (10), (11),
(14), (15) hold.
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Now there are eight variables Ni, Si, xi, yi and eight equations. These equations
are linearly dependent with the constraint:

N1 + N2 + S2 + S2 = Q (16)

x1S1 +x2S2 +
x1

kx1
N1 +

x2

kx2
N2 = Tx; y1S1 +y2S2 +

y1

ky1
N1 +

y2

ky2
N2 = Ty (17)

Here Q is the total size, Tx and Ty are the total amount of X SNAREs and Y
SNAREs.

Combining Equation (9) with Equation (14) (15), we obtain
x1

kx1
=

x2

kx2
;

y1

ky1
=

y2

ky2
. (18)

So c1 = c2. We can now eliminate Equations (14 15). Equation ( 18) immediately
implies that

r1 = f2 =
2κx2

1

kx1
+

2κy2
1

ky1
, r2 = f1 =

2κkx2x
2
1

k2
x1

+
2κky2y

2
1

k2
y1

.

By Equation (9), we must have r1 = f2 = r2 = f1 and N1 + N2 = w
r1

. Put r = r1.
Equation (10) is then equivalent to S1N2 = N1S2.

Lemma 5.2. At the equilibrium, we have

cxi = cui =
x1

kx1
=

x2

kx2
, cyi = cvi =

y1

ky1
=

y2

ky2
, (19)

ri = fi = r =
2κx2

1

kx1
+

2κy2
1

ky1
=

2κx2
2

kx2
+

2κy2
2

ky2
, (20)

N1 + N2 =
w

r
, S1 + S2 = Q− w

r
,

S1

N1
=

S2

N2
, (21)

x1S1+x2S2+
x1

kx1
N1+

x2

kx2
N2 = Tx, y1S1+y2S2+

y1

ky1
N1+

y2

ky2
N2 = Ty. (22)

Now put cx = cxi and cy = cyi. Then xi = kxicx and cyi = kyicy. By Equation
(20), we have

r = 2κkx1c
2
x + 2κky1c

2
y r = 2κkx2c

2
x + 2κky2c

2
y (23)

Viewing r as the only variable, we obtain

cx =

√
ky1 − ky2

∆
r

2κ
, cy =

√
kx2 − kx1

∆
r

2κ
. (24)

with ∆ = ky1kx2 − kx1ky2. Combining with Equation (21), we obtain

S1 = N1(
rQ

w
− 1), S2 = N2(

rQ

w
− 1), N1 + N2 =

w

r
. (25)

From Equation (22), we obtain

cxN1(
kx1rQ

w
− kx1 + 1) + cxN2(

kx2rQ

w
− kx2 + 1) = Tx (26)

cyN1(
ky1rQ

w
− ky1 + 1) + cyN2(

ky2rQ

w
− ky2 + 1) = Ty. (27)

rN1 + rN2 = w. (28)
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Theorem 5.3. At the equilibrium, r satisfies

det


r r w

(kx1rQ
w − kx1 + 1)

√
ky1−ky2

∆
r
2κ (kx2rQ

w − kx2 + 1)
√

ky1−ky2
∆

r
2κ Tx

(ky1rQ
w − ky1 + 1)

√
kx2−kx1

∆
r
2κ (ky2rQ

w − ky2 + 1)
√

kx2−kx1
∆

r
2κ Ty

 = 0

(29)
with ∆ = ky1kx2 − kx1ky2, Q the total size, Tx the total amount of X and Ty the
total amount of Y . Suppose that Equation (29) is nontrivial and has solutions.
Then cx and cy can be obtained from Equation (24); xi and yi can be obtained from
Equation (19); N1 and N2 can be then obtained from Equation (26) (27); S1 and
S2 can be obtained from Equation (25).

Proof. Notice that Equations 26 27 28 give three linear relations for N1 and N2.
These three relations must be linearly dependent. So we obtain Eq. 29. The other
assertions follow immediately.

It is important to notice that Equation (29) can be reduced into a quartic equa-
tion. Its solutions have a closed form. More precisely, let

P (r) = det


√

r
√

r w
kx1rQ

w − kx1 + 1 kx2rQ
w − kx2 + 1 Tx

√
2κ∆

ky1−ky2

ky1rQ
w − ky1 + 1 ky2rQ

w − ky2 + 1 Ty

√
2κ∆

kx2−kx1


Since kx1 � kx2, ky1 � ky2, we see that P (+∞) = −∞. By the same reason,
P (0) < 0. We know from the biological context that P (r) = 0 must have a positive
solution. So in a generic sense, P (r) = 0 must have two solutions, say r1 and r2. It
is quite mysterious how r1 and r2 are related. Biologically, one rate may indicate a
slower rate of growth, or no growth, the other rate may indicate a greater rate of
growth.
Theorem 5.4. With Tx, Ty, Q all fixed, there can be at most four equilibrium. So
under the symmetric condition and the condition that kx1 � kx2 and ky1 � ky2,
the equilibrium submanifold has at most dimension 3.

So what is remarkable here is that the equilibrium of our biological system de-
pends largely on the dissociation constants kxi, kyi, fusion rate κ, budding constant
w and the total size Q, the total amount of X SNAREs Tx and the total amount of
Y SNAREs Ty, barely on the size of the compartments we start with. It does not
depend on the initial balance of SNAREs. This seems to confirm some observations
made in [11].

We shall make a remark concerning the nonsymmetric case for SNAREs. Numerical
computation under the non-symmetrical situation suggests that the system reach
to different equilibrium (data not shown in the manuscript). A biological example
for the non-symmetric case can be seen when a person uses botulinum A (Botox), a
cosmetic drug to reduce the contractions of the facial muscles that cause persistent
frown lines (facial wrinkles). This drug specifically degrades a SNARE protein in
neuron cells in animals, resulting the inhibition of the transport of neurotransmit-
ter (cargo) ( [9]). An example in plants, organisms of our interest, can be seen in
a mutant of a specific SNARE gene. This mutation impairs the defense mecha-
nism against a plant pathogen, most likely due to the inhibition of the transport of
anti-pathogen molecules (cargo) in plants ( [7]). Therefore, we speculate that the
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mathematical proof for the non-symmetrical case would quantitatively elucidate
the importance of the balance in the SNARE expressions in cells of interest in the
future.

6. The Degenerate case: kx1 = kx2; ky1 = ky2. Suppose that kx1 = kx2 and
ky1 = ky2. Then ∆ = 0. So Theorem 5.3 is no longer valid. We can still find
equilibrium in this degenerate case. But the equilibrium will depend on the initial
size of the compartments. Surprisingly, there are at most four classes of them.

Put kxi = kx and kyi = ky. By Lemma 5.2, we have

x1 = x2 = kxcx1 = kxcx2, y1 = y2 = kycy1 = kycy2 (30)

Put x = xi, y = yi, cx = cxi and cy = cyi. By Equation (20), we have

r = 2κkxc2
x + 2κkyc2

y. (31)

By Equation (22), we have

kxcx(Q− w

r
) + cx

w

r
= Tx kycy(Q− w

r
) + cy

w

r
= Ty. (32)

Theorem 6.1. If kx1 = kx2 and ky1 = ky2, a partial equilibrium is reached when:

r

2κ
= kx(

rTx

rkxQ− wkx + w
)2 + ky(

rTy

kyQr − wky + w
)2 (33)

cxi =
rTx

rkxQ− wkx + w
, cyi =

rTy

kyQr − wky + w
. (34)

and xi = cxikx, yi = cyiky. Within this partial equilibrium,

S1(t) =
S1(0)(−w + rQ) exp(−w + rQ)t

r(S1(0) + S2(0))(exp(−w + rQ)t− 1)− w + rQ
, (35)

S2(t) =
S2(0)(−w + rQ) exp(−w + rQ)t

r(S1(0) + S2(0))(exp(−w + rQ)t− 1)− w + rQ
. (36)

So the equilibrium in this situation does depend on the initial size of S1 and S2.

This is to be compared with Theorem 5.4 where the equilibrium does not depend
on the initial size of S1 and S2.

Proof. Equation (33, 34) follows from Equation (31, 32). Now we can go back and
consider the following equations:

dS1

dt
= (−w + rN1 + rN2)S1,

dS2

dt
= (−w + rN1 + rN2)S2;

dN1

dt
= wS1 − rS1N1 − rS2N1;

dN2

dt
= wS2 − rS2N2 − rS1N2.

Let Q = N1 +N2 +S1 +S2. Then N1 +N2 = Q−S1−S2. We are mainly concerned
about Si. Let S = S1 + S2 and D = S1 − S2. Notice that

dS

dt
=

d(S1 + S2)
dt

= (−w + rQ− rS)S; (37)

dD

dt
=

d(S1 − S2)
dt

= (−w + rQ− rS)D. (38)

We can now solve the first equation. It is a logistic differential equation.
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Lemma 6.2. The solution to dS
dt = (−w + rQ− rS)S with initial condition S(0) is

S(t) =
(−w + rQ) exp(−w + rQ)t

r exp(−w + rQ)t− r + −w+rQ
S(0)

.

The proof is omitted here. Equation (38) can now be written as
d lnD

dt
= (−w + rQ)− rS. (39)

Integrating both sides, we obtain

lnD(t) =
∫

(−w+rQ)−rSdt = (−w+rQ)t−ln(exp(−w+rQ)t−1+
−w + rQ

rS(0)
)+C

(40)
So we obtain

D(t) =
(exp(−w + rQ)t)(expC)

exp(−w + Q)t− 1 + −w+rQ
rS(0)

.

Let t = 0. We have D(0) = rS(0) exp C
−w+rQ . So expC = D(0)(−w+rQ)

rS(0) . Hence

D(t) =
D(0)(−w + rQ) exp(−w + rQ)t

rS(0) exp(−w + Q)t− rS(0) + (−w + rQ)
.

We obtain Equation (35, 36). In particular, as t →∞,

S1(t) →
−w + rQ

r

S1(0)
S1(0) + S2(0)

, S2(t) →
−w + rQ

r

S2(0)
S1(0) + S2(0)

.

So after the concentration rates stabilize, the compartment sizes S1 and S2 approach
the equilibrium −w+rQ

r
S1(0)

S1(0)+S2(0)
and −w+rQ

r
S2(0)

S1(0)+S2(0)
respectively.

Notice that Equation 33 can be reduced to a quartic equation. So r can again
have at most 4 different values.

Theorem 6.3. Suppose that kx1 = kx2 and ky1 = ky2. With Tx, Ty, Q and S1(0)
S2(0)

fixed, under the symmetric conditions, there can be at most 4 equilibrium points.
The equilibrium submanifold is at most 4 dimensional.

Notice that the equilibrium does not depend on the initial compartment size Si,
but only the ratio of initial Si. We shall remark that the degenerate case is included
here only for theoretical purposes. For biological implications of the nondegenerate
case, please see [8].
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