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Abstract

In this paper, we give a proof of the Gan-Gross-Prasad conjecture for the discrete series of U(p, q).
There are three themes in this paper: branching laws of a small Aq(λ), branching laws of discrete
series and inductive construction of discrete series. These themes are linked together by a reciprocity
law and the notion of invariant tensor product.

Introduction

In [GP], Gross and Prasad formulated a number of conjectures regarding the restrictions of generic
representations of the special orthogonal groups over a local field. These conjectures related the
restriction problem to local root numbers. In [GGP], Gan, Gross and Prasad extended these local
conjectures to all classical groups. These local conjectures are known as the local Gan-Gross-Prasad
(GGP) conjectures, or Gross-Prasad conjectures. Among the GGP conjectures, there was a very
specific and interesting conjecture about the branching law of the discrete series representations for
the real groups. Recently, there has been rapid development concerning the local GGP conjectures
over the non-Archimedean fields starting with the work of Waldspurger ([W]). As we understand,
all cases of the non-Archimedean local conjectures are close to being completely proved, with some
standard assumptions. For the Archimedean fields, Gross and Wallach gave a proof of the Gross-
Prasad conjecture for a class of small discrete series representation of SO(2n+ 1). Since then there
has not been much progress towards the Gan-Gross-Prasad conjecture over the real numbers. The
purpose of this paper is to give a proof of the GGP conjecture for the discrete series representations of
U(p, q). We shall also mention the recent work of Zhang that dealt with the global Gan-Gross-Prasad
conjecture for the unitary group ([Zhang]).

Discrete series of U(p, q) are parametrized by Harish-Chandra parameters. Following [GP], let (χ, z)
be a Harish-Chandra parameter for U(p, q) where χ ∈ Rp+q is a sequence of distinct integers or half
integers and z ∈ {±1}p+q is a sequence of + and − corresponding to each entry in χ. Here the total
number of +’s must be p and the total number of −’s must be q. One may also interpret z as a
(p, q)-partition of χ. Let D(η, t) be a discrete series representation of U(p − 1, q). The Gan-Gross-
Prasad conjecture gave a precise description of those D(η, t) that appear as subrepresentations of
D(χ, z)|U(p−1,q). In addition, the multiplicity of these D(η, t) must be all one. Since the discrete
spectrum of D(χ, z)|U(p−1,q) only involves the discrete series, GGP conjecture produces a complete

∗Key word: unitary groups, discrete series, Gross-Prasad conjecture, Howe’s correspondence, branching laws, discrete
spectrum, Harish-Chandra parameter, representation with non-zero cohomology.
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description of the discrete spectrum of D(χ, z)|U(p−1,q). The recent work of Sun and Zhu settled the
multiplicity one part generally for all irreducible unitary representations of U(p, q) ([SZ]).

To be more precise, GGP conjecture predicts that D(η, t) appears in D(χ, z)|U(p−1,q) if and only
if (η, t) and (χ, z) interlace each other in a very specific way. To describe this interlacing relation, let
us recall the branching law for the compact group U(p). Let Vλ be an irreducible representation of
U(p) with highest weight λ and Vµ be an irreducible representation of U(p− 1) with highest weight
µ. Suppose that λ and µ are both arranged in descending order. Then Vµ appears in the branching
law of the restriction of Vλ if and only if λ and µ satisfy the Cauchy interlacing relation:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λp−1 ≥ µp−1 ≥ λp.

This interlacing relation, expressed in terms of Harish-Chandra parameters, becomes a strict inter-
lacing relation:

χ1 > η1 > χ2 > η2 > . . . > χp−1 > ηp−1 > χp.

The interlacing relation predicted by GGP conjecture is a natural generalization of the Cauchy
interlacing relation.

Definition 1 We say that two Harish-Chandra parameters (χ, z) and (η, t), of U(p, q) and U(p−1, q)
respectively, satisfy the Gan-Gross-Prasad or simply the Gross-Prasad interlacing relation, if one can
line up χ and η in the descending ordering such that the corresponding sequence of signs from z and
t only has the following eight adjacent pairs

(⊕+), (+⊕), (−	), (	−), (+−), (−+), (⊕	), (	⊕).

Here ⊕ and 	 represent +1 and −1 in t, and + and − represent +1 and −1 in z. We call such a
sign sequence the (interlacing) sign pattern of (χ, z) and (η, t).

Clearly, when there is neither − nor 	, this interlacing relation is exactly the classical Cauchy
interlacing relation. The local GGP conjecture can then be reformulated as follows:

Conjecture 1 ( [GP], [GGP]) D(η, t) appears as a subrepresentation of D(χ, z)|U(p−1,q) if and
only if (χ, z) and (η, t) satisfy the GGP interlacing relation.

We shall make a few remarks here.

1. In the literature, except in [GW], the GGP conjectures are stated in terms of equivariant
homomorphisms of smooth representations ([GP], [GGP]). For discrete series, our version is
equivalent to the smooth version.

2. Originally, Gross and Prasad stated their conjecture (Conjecture 12.27 [GP]) for the orthogonal
groups in terms of noncompactness of certain root basis associated with the Harish-Chandra
parameters, not in terms of the interlacing relation. Our formulation turns out to be equivalent
to theirs. We can see the equivalence of these two versions as follows. For unitary groups,
following [GP], consider the group U(p, q,Q1) × U(p − 1, q, Q2) embedded in U(p + q, q + p −
1, Q1 − Q2) where Q1, Q2 are the quadratic forms defining U(p, q) and U(p − 1, q). Then the
Harish-Chandra parameter (χ ⊕ η, z ⊕ t) defines a (positive) root basis of U(p + q, q + p − 1).
Conjecture 12.27 says that D(η, t) appears as a subrepresentation of D(χ, z)|U(p−1,q) if and
only if this root basis consists of only noncompact roots in U(p + q, q + p − 1). Clearly, the
noncompact roots from U(p, q) and U(p− 1, q) correspond exactly to adjacent signs

(+−), (−+), (⊕	), (	⊕),

the other noncompact roots from U(p+ q, q + p− 1) correspond exactly to adjacent sign

(⊕+), (+⊕), (−	), (	−).
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3. In the framework of Langlands classification, the discrete series are grouped together in L-

packets. For the discrete series of U(p, q), each L-packet contains exact (p+q)!
p!q! discrete series

representations. What GGP conjecture predicts and implies is that at most one representation
in each L-packet of U(p− 1, q) can occur as a subrepresentation in a fixed D(χ, z). In addition,
each D(η, t) can only appear as a subrepresentation in at most one discrete series representation
in each L-packet of U(p, q). In some sense, discrete series representations in the same L-packet
naturally repel each other! This is quite remarkable. This phenomena seems to persist for
tempered L-packets, as predicted by the GGP multiplicity one conjecture.

The main result in this paper confirms the Gan-Gross-Prasad conjecture for the discrete series.

Theorem 0.1 The discrete spectrum of D(χ, z)|U(p−1,q):

D(χ, z)|disU(p−1,q) = ⊕̂(η,t)D(η, t)

where the direct sum is taking over all those Harish-Chandra parameters (η, t) such that (χ, z) and
(η, t) satisfy the GGP interlacing relation.

Recently, Beuzart-Plessis seems to have proved the GGP multiplicity one conjecture for tempered
L-packets ([BP]). In our context, his result says that for a fixed (χ, η), there exists a unique (z, t)
such that D(η, t) is a subrepresentation of D(χ, z) for a suitable pair of unitary groups. In com-
parison, our result not only implies the multiplicity one conjecture, but also pins down exactly the
(z, t) parameter, namely (χ, z) and (η, t) must satisfy the GGP interlacing relation. Beuzart-Plessis’s
method is quite different from ours, as we do not use the trace formula in our paper. We now describe
very briefly the main ideas of this paper.

Recall that discrete series representations, at least for classical groups, belong to a larger class of
unitary representations, known as representations with nonzero cohomology. Representations with
nonzero cohomology are very important in the theory of automorphic forms. They contribute to the
cohomolgy of Shimura varieties. In [VZ], Vogan and Zuckerman gave a characterization of repre-
sentations with nonzero cohomology. These representations can be constructed using Zuckerman’s
derived functor (see for example, [KV]), as Aq(λ)’s. Therefore, they are also known as Aq(λ). The
branching law of Aq(λ) becomes important, partly because of its implications in the theory of au-
tomorphic forms. This is, perhaps, one of the motivations of the GGP conjectures. In any case, we
shall refer the reader to the recent survey article by Kobayashi for the branching laws of Aq(λ)([Ko2]).

One focus of this paper is indeed the branching law of some small Aq(λ). Let U(n, n) be the isometry
group of a Hermitian form with signature (n, n) on C2n. Let us consider Aq(λ) of U(n, n) where q
has the real Levi factor U(r, s) × U(s, r) with r + s = n and λ is weakly dominant with respect to
q. We denote them by Ar,s;s,r(k1, k2) with k1 ≥ k2 normalized parameter (see 2.3 [PT]). As we will
show later in this paper, many branching laws of more general Aq(λ) are extrinsically connected with
the branching laws of Ar,s;s,r(k1, k2).

Let us decompose C2n into a direct sum of two orthogonal subspaces such that the Hermitian
forms restricted to these two subspaces are all nondegenerate. Let G1 × G2 be the subgroup of
U(n, n) that preserves this decomposition. We call such a group diagonally embedded in U(n, n).
Let U(p, q)×U(q, p) with p+q = n be a subgroup diagonally embedded in U(n, n). The first theorem
we proved is about the branching law of Ar,s;s,r(k1, k2)|U(p,q)×U(q,p). We state the case for p+q even,
when k1, k2 are integers. For p+ q odd, see Prop 7.1.

Theorem 0.2 Let p+ q = r + s = n be an even positive integer. Let k1 ≥ k2 be integers. Then the
discrete spectrum of Ar,s;s,r(k1, k2)|U(p,q)×U(q,p) is the direct sum of

[D(η,−t′)∗ ⊗ detk2 ] � [D(η, t)⊗ detk1 ]
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where

#{ηi > 0 | ti = 1}+ #{ηi < 0 | ti = −1} = r, (1)

#{ηi > 0 | ti = −1}+ #{ηi < 0 | ti = 1} = s, (2)

#{ηi ∈ (k2 − k1, 0) | ti = 1} = #{ηi ∈ (k2 − k1, 0) | ti = −1}, (3)

t′i =

{
ti if ηi /∈ (k2 − k1, 0)
−ti if ηi ∈ (k2 − k1, 0).

(4)

Here π∗ stands for the contragredient representation of π, ηi will all be half integers.

This theorem is proved by connecting these Aq(λ) with Howe’s correspondence ([Howe]) through a
theorem due to A. Paul and P. Trapa ([PT]). The main technique is applying various properties
of invariant tensor products defined in Section 1. The description of Howe’s correspondence in the
equal rank case, due to Li and Paul, is crucial here ([Li1], [P1]).

Let U(p − 1, q) × U(q + 1, p) be another diagonally embedded subgroup of U(n, n). Using simi-
lar ideas, we establish a second branching law:

Ar,s;s,r(k1, k2)|disU(p−1,q)×U(q+1,p) ⊇ ⊕D(χ′, z′) �D(χ, z),

Here (χ, z) satisfies a set of equations similar to Theorem. 0.2, and (χ′, z′) corresponds to (χ, z) in a
definite way. Some limit of discrete series of U(q + 1, p) will appear in the discrete spectrum. Hence
we use ⊇ to indicate this fact. See section 5 for the details.

With the discrete spectrum of these two branching laws in hand, it is not hard to prove that every
discrete series representation will appear in some Ar,s;s,r(k1, k2). See Thm. 4.2 and Cor. 5.1. We
need the following lemma of reciprocity to link these two branching laws together.

Lemma 0.1 (Reciprocity) Let H1 and H2 be two separable locally compact Hausdorff topological
group, and let π be a unitary representation of H1 ×H2. Then for all irreducible unitary represen-
tations σ1 of H1 and σ2 of H2, there are canonical isometric isomorphisms

HomH1
(σ1,HomH2

(σ2, π)) ∼= HomH1×H2
(σ1⊗̂σ2, π) ∼= HomH2

(σ2,HomH1
(σ1, π))

of Hilbert spaces. Here HomHi
refers to continuous Hi-equivariant operators for Hilbert spaces.

We would like to thank the second referee for suggesting this form of reciprocity.

Now consider
G = U(p+ q, p+ q); π = Ar,s;s,r(k1, k2);

H2 = U(q, p) ⊆ G2 = U(q + 1, p)
l l

G1 = U(p, q) ⊇ H1 = U(p− 1, q)

where G1 ×H2 and G2 ×H1 are diagonally embedded in U(p+ q, p+ q). By the two branching laws
and reciprocity, we will have

Hom U(p−1,q)(D(χ′, z′), D(η′,−t′)∗ ⊗ detk2)

=Hom U(p−1,q)(D(χ′, z′),Hom U(q,p)(D(η, t)⊗ detk1 , π))

=Hom U(q,p)(D(η, t)⊗ detk1 ,Hom U(p−1,q)(D(χ′, z′), π))

=Hom U(q,p)(D(η, t)⊗ detk1 , D(χ, z))

(5)
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This will allow us to establish branching laws of discrete series inductively. Now every discrete series
will appear as a subrepresentation of some Ar,s;s,r(k1, k2). Hence all discrete series representations
will be covered in the induction process. In addition, only discrete series representations can appear
in the discrete spectrum of D(χ, z)|U(q,p) (see Theorem 2.2). Hence we will be able to give a complete

description of D(χ, z)|disU(q,p) inductively. The rest of the proof involves some detailed numerical and
combinatorial analysis on sequences and sign patterns. Surprisingly, the multiplicity one theorem
comes for free from the induction process.

We shall point out a remarkable feature of our proof. Unlike the proof of GGP conjectures for the
non-Archimedean local field, our proof given here is extrinsic by nature, namely, the discrete series
representation of U(p, q) is studied while being embedded as a subrepresentation of Ar,s;s,r(k1, k2).
In other words, we use the symmetries “outside”the group U(p, q) to establish our result. In the ab-
sence of an intrinsic proof, we may ask, to what extent, we can understand a representation through
extrinsic methods. Clearly, there is Howe’s theory of dual reductive pair which can be regarded as an
extrinsic studies of representations ([Howe]). The question is then, whether there are representations
other than the Weil representation crucial in the extrinsic studies of representations. Undoubtedly,
the Aq(λ) in the “middle dimension ”will deserve serious consideration. Roughly these are the Aq(λ)’s
associated with various complex Siegel parabolic subalgebra q or its analogies. For GL(2n,R), these
Aq(λ) are known as the Speh representations. In the case of U(n, n), all of them can be obtained by
Howe’s correspondence up to a central character. We take full advantage of this connection in our
analysis of these Aq(λ)’s. However, for other groups, one cannot obtain all these middle dimensional
Aq(λ) through theta lifting of one dimensional representations. Hence, different ideas will be needed
to study the branching law of the Aq(λ) in middle dimension. For symplectic groups or orthogonal
groups, we expect the GGP conjectures can be proved once these branching laws are established. We
make some conjectures in this context in Section 8.

Finally, we would like to thank Prof. Gross for encouraging us to work on the Gan-Gross-Prasad
conjecture and thank Wee-Teck Gan for updating us the current status in the real cases and p-adic
cases. We also want to thank the referees for their very detailed comments and suggestions.

0.1 Conventions

All the Hilbert spaces and topological groups in this paper are assumed to be separable. All groups are
assumed to be locally compact, Hausdorff, topological group. Unless otherwise stated, the statements
we underline in this paper will be assumed through out the rest of this paper. We call a number half
integer if and only if it is an integer plus 1

2 . The constant C is used as a positive symbolic constant.

1 Invariant Tensor Products

In this section, we shall formulate the concept of invariant tensor product. Our motivation of defin-
ing invariant tensor product comes from developing the analytic theory of Howe’s correspondence
([Li][He00]) and constructing unipotent representations ([Hen] [HA]). In this paper, we shall study
the invariant tensor product associated with smooth representations equipped with invariant Hermi-
tian forms. This is slightly different from the view point of [Hen] and [HA].

Let V be a linear vector space over C. Define the complex vector space V c by letting V = V c as a real
vector space and the complex multiplication λv ∈ V c to be λv in V . Let G be a group. Let (π, V ) be a
linear representation ofG over C. Here a linear representation refers to a representation of an abstract
group, without any consideration of the topology. Define the representation (πc, V c) by πc(g) = π(g).
If G is a topological group and (π, V ) is a unitary representation, then (πc, V c) ∼= (π∗, V ∗) by Riesz
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representation theorem. Here (π∗, V ∗) is the (unitary) contragredient representation of (π, V ).

Definition 2 (Invariant Tensor Product) Let G be a locally compact topological group and dg
be a left invariant Haar measure. Let (π,Hπ) and (π1, Hπ1

) be two unitary representations of G. Let
V and V1 be two dense subspaces of Hπ and Hπ1

. Assume that ∀ u, v ∈ V, u1, v1 ∈ V1,∫
G

(π(g)v, u)(π1(g)v1, u1)dg

converges absolutely. Define the averaging operator

A : V ⊗ V1 → Hom (V c ⊗ V c1 ,C)

by

A(v ⊗ v1)(u⊗ u1) =

∫
G

(
(π ⊗ π1)(g)(v ⊗ v1), (u⊗ u1)

)
dg (6)

=

∫
G

(π(g)v, u)(π1(g)v1, u1)dg (7)

and extending this by linearality to V ⊗ V1. Here Hom refers to algebraic homomorphisms. Define
the invariant tensor product V ⊗G V1 to be the image A(V ⊗ V1). Whenever we use the notation
V ⊗G V1, we assume V ⊗G V1 is well-defined, that is, the integral ( 6) converges absolutely for all
u, v ∈ V, u1, v1 ∈ V1. Denote A(v ⊗ v1) by v ⊗G v1.

Remark 1.1 For G compact, various forms of the space V ⊗GV1 have long been used implicitly in the
literature. For example, when G is compact and V irreducible ( necessarily finite dimensional), the
space Hπ⊗GHπ1 is always well-defined. We have Hπ⊗GHπ1 = HomG(Hcπ,Hπ1). Hence Hπ⊗GHπ1

can be used to compute the multiplicity of Hcπ in Hπ1 . When G is noncompact, then V ⊗G V1 is still
related to a certain multiplicity space in a very delicate manner. For G a classical group, V ⊗G V1
appeared implicitly in [Li], in the theory of doubling zeta integrals of Piatetski-Shapiro and Rallis,
and in other texts.

Remark 1.2 It is clear from our definition that we can always assume that V and V1 are G-stable
without loss of any generalities. Indeed, let GV be the linear vector space spanned by π(g)v(v ∈ V ).
If V ⊗G V1 is well-defined, then GV ⊗G GV1 will also be well-defined and vice versa.

Definition 3 (Hermitian form) In addition, suppose that G is unimodular. Then

(v ⊗G v1)(u⊗ u1) = (u⊗G u1)(v ⊗ v1) =

∫
G

(π(g)v, u)(π1(g)v1, u1)dg.

Define

(v ⊗G v1, u⊗G u1)G =

∫
G

(π(g)v, u)(π1(g)v1, u1)dg.

This form defines a non-degenerate pairing between V ⊗G V1 and V c ⊗G V c1 . It yields a Hermitian
form on V ⊗G V1.

1.1 Basic Properties and Equivalence of Representations

Given two linear representations V and W of G, if V and W are equivalent as linear representations
of G, we write V ∼= W or V ∼=G W . If G is trivial, V ∼= W simply means that V is isomorphic to W .
Invariant tensor products have the following properties.
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Lemma 1.1 Let H, H1 and H2 be unitary representations of G. Let V , V1 and V2 be dense subspaces
of H, H1 and H2 respectively. Then

1. (commutativity) V ⊗G V1 ∼= V1 ⊗G V.
2. (associativity I) V ⊗G (V1 ⊗ V2) ∼= (V ⊗ V1)⊗G V2.

3. (associativity II) If G acts trivially on V2, then V ⊗G (V1 ⊗ V2) ∼= (V ⊗G V1)⊗ V2.

4. Regarding ( , )G as a Hermitian form on V ⊗ V1, let R be the radical of this form. Then
ker(A) = R and V ⊗G V1 ∼= V ⊗ V1/R.

5. Suppose that V and V1 are G-invariant subspaces of Hπ and Hπ1
respectively. Then V c and

V c1 will be G-invariant subspaces of Hcπ and Hcπ1
respectively. We have

V ⊗G V1 ⊆ HomG(V c ⊗ V c1 ,C).

The equivalences here are all canonical linear isomorphisms without consideration of topology. Defin-
ing topology is a little bit subtle. We shall confine ourselves to the case where the Hermitian structure
is positive definite. Then the topology can be defined in terms of the Hermitian structure.

Let (π1, V1) and (π2, V2) be two continuous representations of G on two pre-Hilbert spaces such
that the group actions preserve the pre-Hilbert structures respectively. Then (πi, Vi) completes to a
unitary representation (πi,Hi). We say that (π1, V1) is equivalent to (π2, V2) if (π1,H1) is equivalent
to (π2,H2). By abusing notation, we denote this by V1 ∼= V2 or π1 ∼= π2. To specify the group G, we
may write V1 ∼=G V2 or π1 ∼=G π2. This notation applies to all continuous representations equipped
with G-invariant inner products.

Definition 4 Let V and V1 be two G-representations equipped with nondegenerate G-invariant inner
product such that the group actions are continuous. Definitions 2 and 3 apply.

Throughout this paper, we mostly work in the category of smooth representations. It is more con-
venient to apply this definition. Of course when we complete V and V1 to unitary representations,
this new definition coincides with Definitions 2 and 3.

1.2 Constructing Representations

Definition 5 Let G1 and G2 be two groups. Let (π,Hπ) be a unitary representation of G1×G2 and
(π1,Hπ1

) be a unitary representation of G1. Let V be a dense G2-invariant subspace of Hπ. Let V1
be a dense subspace of Hπ1

. If V ⊗G1
V1 is well-defined, we define:

(π ⊗G1
π1)(g2)(u⊗G1

u1) = π(g2)u⊗G1
u1 (X2 ∈ g2, u ∈ V, u1 ∈ V1).

Then (π ⊗G1 π1, V ⊗G1 V1) is a linear representation of G2.

We shall remark that if V in Lemma 1.1 has a H action that commutes with the G action, then all
equivalences in Lemma 1.1 hold as equivalences of linear H-representations.

Notice that π(g2) acts on V c ⊗ V c1 via V c. It induces a contragredient action on Hom (V c ⊗ V c1 ,C).
We can also view the action of (π⊗G1

π1)(g2) as this contragredient action restricted to the subspace
V ⊗G1

V1.

Lemma 1.2 Suppose that G1 is unimodular. Then the Hermitian form ( , )G1
on V ⊗G1

V1 is
G2-invariant.
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Proof: Let u, v ∈ V ;u1, v1 ∈ V1 and g2 ∈ G2. Write σ = π ⊗G1
π1. Then

(σ(g2)(u⊗G1
u1), v ⊗G1

v1)G1

=

∫
G1

(π(g1)π(g2)u, v)(π1(g1)u1, v1)dg1

=

∫
G1

(π(g1)u, π(g−12 )v)(π1(g1)u1, v1)dg1

=(u⊗G1
u1, π(g−12 )v ⊗G1

v1)G1

=(u⊗G1 u1, σ(g−12 )(v ⊗G1 v1))G1 .

(8)

So ( , )G1
is G2-invariant. We have thus shown that (, )G1

on V ⊗G1
V1 is an invariant Hermitian

form with respect to (π ⊗G1
π1)(G2). �

When the Hermitian form ( , )G1 on V ⊗G1 V1 is positive definite, we equip V ⊗G1 V1 with the
pre-Hilbert space structure defined by ( , )G1 .

1.3 Associativity

The main theorem proved in this section is as follows.

Theorem 1.1 (Associativity) In the setting of Definition 5, suppose that G1 and G2 are both
unimodular. Let (π2,H2) be a unitary representation of G2 with a dense subspace V2 such that

1. V2 ⊗G2
V is well-defined.

2. the functions

(π2(g2)u2, v2)(π(g1g2)u, v)(π1(g1)u1, v1) (u2, v2 ∈ V2;u, v ∈ V ;u1, v1 ∈ V1)

are all in L1(G1G2).

Suppose that for i = 1, 2, the Hermitian form on Vi ⊗Gi
V is positive definite and the linear repre-

sentation πi ⊗Gi
π completes to a unitary representation. Then

(V2 ⊗G2
V )⊗G1

V1 ∼= V2 ⊗G2
(V ⊗G1

V1).

Proof: First of all, we have

V2 ⊗G2
(V ⊗G1

V1) ⊆ Hom (V c2 ⊗ (V ⊗G1
V1)c,C) ∼= Hom (V c2 ⊗ (V c ⊗G1

V c1 ),C)

(V2 ⊗G2
V )⊗G1

V1 ⊆ Hom ((V2 ⊗G2
V )c ⊗ V c1 ,C) ∼= Hom ((V c2 ⊗G2

V c)⊗ V c1 ,C).

Recall the averaging operators

A2 : V c2 ⊗ V c → V c2 ⊗G2
V c, A1 : V c ⊗ V c1 → V c ⊗G1

V c1 .

are surjective. We identify φ ∈ V2 ⊗G2 (V ⊗G1 V1) with the element φ̃ in Hom (V c2 ⊗ V c ⊗ V c1 ,C) as
follows:

V c2 ⊗ V c ⊗ V c1 V c2 ⊗ (V ⊗G1 V1)c

C.

A1

φ̃

φ

Similarly we identify ψ ∈ (V2 ⊗G2
V ) ⊗G1

V1 with the element ψ̃ in Hom (V c2 ⊗ V c ⊗ V c1 ,C). By
Fubini’s theorem, for any vi, ui ∈ Vi and v, u ∈ V , we have

˜[v2 ⊗G2 (v ⊗G1 v1)](u2, u, u1) = ˜[(v2 ⊗G2 v)⊗G1 v1](u2, u, u1)
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=

∫
G1×G2

(π2(g2)v2, u2)(π(g1g2)v, u)(π1(g1)v1, u1)dg1dg2.

We see that (V2 ⊗G2
V ) ⊗G1

V1 and V2 ⊗G2
(V ⊗G1

V1) can be identified as the same subspace of
Hom (V c2 ⊗ V c ⊗ V c1 ,C). The associativity follows immediately. �

2 Discrete Spectrum and Square Integrable Representations

Let G be a locally compact topological group with a left invariant Haar measure dg. Let Ĝ be the
space of equivalence classes of irreducible unitary representations of G equipped with the Fell topol-
ogy. From now on suppose that G is CCR or equivalently liminaire ([WA] [Di]). Then for any uni-

tary representation (π,Hπ), there exists a Borel measure dπ on Ĝ, and a Hilbert space Mπ(σ) for
each σ defined almost everywhere with respect to dπ, such that

Hπ ∼=
∫
σ∈Ĝ
Hσ⊗̂Mπ(σ)dπ(σ).

Here G acts trivially on Mπ(σ). If dπ(σ) > 0, then σ appears as a subrepresentation of π. We say
that σ is in the discrete spectrum of π. We may simply write σ ∈ π. In this situation, Mπ(σ) is
well-defined. We write Hπ(σ) to be the closure of the direct sum of all subrepresentations of π equiv-
alent to σ. Then Hπ(σ) ∼=G Hσ⊗̂Mπ(σ). We call Hπ(σ) the σ-isotypic subspace of Hπ. We call the
Hilbert space Mπ(σ) the multiplicity space. The dimension of Mπ(σ) is called the multiplicity of σ in
π, often denoted by mπ(σ) or m(π, σ). Notice that σ-isotypic subspace Hπ(σ) is only well-defined for
σ in the discrete spectrum of π. We define (πdis,Hdisπ ) to be the closure of the direct sum of allHπ(σ).

Suppose from now on that G is unimodular. Then L2(G) has a left regular G-action and a right

regular G-action. These two actions commute. So L2(G) is a unitary representation of G×G. There
is the abstract Plancherel theorem proved by I. Segal.

Theorem 2.1 (Segal) Let G be a locally compact unimodular CCR topological group. Then there
exists a Borel measure dµ on Ĝ such that L2(G) decomposes as∫

σ∈Ĝ
Hσ⊗̂Hσ∗dµ(σ)

and for any f ∈ L2(G) ∩ L1(G), we have

(f, f) =

∫
Ĝ

Tr(σ(f)∗σ(f))dµ(σ).

dµ is call the Plancherel measure. The discrete spectrum of L2(G) are often called discrete series
representations.

2.1 Square Integral Representations

We call a unitary representation (π,Hπ) square integrable or L2 if there is a dense subspace V in Hπ
such that all matrix coefficients

g → (π(g)v1, v2) (v1, v2 ∈ V )

are in L2(G). Here we do not assume π is irreducible. However if π is irreducible, then all matrix
coefficients will be in L2(G). The (equivalence classes of) irreducible square integrable representations
are precisely those appearing in the discrete spectrum of L2(G) ([Di]).
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Theorem 2.2 Let (π,Hπ) be a square integrable representation of G. If σ ∈ Ĝ appears in the
discrete spectrum of π, then σ is square integrable.

Therefore only discrete series can appear in the discrete spectrum of a square integrable representa-
tion. This result is known to expert, at least for real reductive groups. I have not been able to find
any proofs or references in the literature. Because of the importance of this theorem in this paper, I
will supply a proof here. The main ingredients come from [Li1].

Lemma 2.1 (Mackey’s Schur Lemma) Let G be a locally compact topological group. Let (π,Hπ)
and (τ,Hτ ) be two unitary representations of G. Let T be a closed G-equivariant ( unbounded)
operator defined on a dense subspace V of Hπ, i.e., T : V → Hτ . Then there is a G-equivariant
isometry between (kerT )⊥ and cl(Im(T )).

Here kerT is closed and the image of T may not be closed; cl(Im(T )) is the closure of the image of
T in Hτ . This version of Mackey’s Schur lemma is quoted from [FD].

Proof of Theorem 2.2: Suppose that the linear subspace V is dense in Hπ such that the matrix
coefficients for V are all in L2(G). Without loss of generality, suppose that V is G-stable. Fix v ∈ V .
Consider

jv : V → L2(G)

defined by
jv(u)(g) = (u, π(g)v), (u ∈ V ).

It is easy to verify that jv(π(h)u)(g) = jv(u)(h−1g) for any h ∈ G. So jv intertwines the action of
π and the left regular action. Furthermore jv is closable (see Page 717 [Li1]). Let j0v be the closure
of jv. If u ∈ Dom(j0v) then there exists a sequence {ui} ⊆ Dom(jv) such that ui → u in Hπ and
jv(ui)(g)→ j0v(u)(g) in L2(G).

Let u ∈ ker(j0v). Then j0v(u)(g) = (u, π(g)v) ≡ 0. Hence

ker(jv
0) ⊆ {u ∈ Hπ | (u, π(g)v) = 0 ∀ g}.

It follows that
ker(jv

0)⊥ ⊇ span{π(g)v : g ∈ G}.

Therefore ker(jv
0)⊥ contains (the closure of) the cyclic space generated by v. By Mackey’s Schur

lemma, ker(jv
0)⊥ ∼= cl(Im(jv

0)). Since cl(Im(j0v)) ⊆ L2(G), σ ∈ ker(j0v)⊥ implies that σ ∈ L2(G).
We conclude that if σ ∈ cl(span(π(g)v | g ∈ G)), then σ ∈ L2(G).

Now suppose that σ ∈ π. Then there exists a v ∈ V such that the orthogonal projection of Hπ(σ)
onto the cl(span(π(g)v | g ∈ G)) is not zero. Otherwise, Hπ(σ) will be orthogonal to V , hence
zero. In any case, we will have σ ∈ cl(span(π(g)v | g ∈ G)) for some v. Hence σ is a discrete series
representation. �

There are often continuous spectrum in π. Our definition of σ ∈ π does not cover the continu-
ous spectrum. We may use the notion that σ ∈wk π if σ, as an irreducible unitary representation, is
weakly contained in π. Then both continuous and discrete spectrum are counted for. In this paper,
we will not discuss σ ∈wk π. If we were to discuss the continuous spectrum of the restriction of the
discrete series, then we will need to use the notion of weak containment.

2.2 Multiplicity Spaces

Let π be a square integrable representation of G. Let σ ∈ π. Then σ is a discrete series representation.
We are interested in the multiplicity space Mπ(σ).
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Theorem 2.3 Let π be a square integrable representation of G with respect a dense subspace V . Let
σ be an irreducible square integrable representation of G. Let W be any G-invariant subspace of Hσc .
Then V ⊗GW is well-defined and the associated Hermitian form is positive definite.

1. Mπ(σ) ∼= cl(V ⊗GW ),

2. Hπ(σ) 6= 0 if and only if V ⊗GW 6= 0.

3. Hπ(σ) ∼=G Hσ⊗̂ cl(V ⊗GW ),

4. Hdisπ ∼=G ⊕̂σ L2Hσ⊗̂cl(V ⊗GW ).

In particular, all statements hold if W = Hσc or W = H∞σc .

Proof: Recall that σc is defined on Hcσ with the same group action as σ. The matrix coefficients of
σc are exactly the conjugates of the matrix coefficients of σ.

1. Suppose that Mπ(σ) = 0. Then Hπ(σ) = 0. We must have V ⊗G W = 0. The contrapositive
statement of this is proved as Lemma 2.2 (b) in [Li1] (Pg. 917). We have one direction of (2)
and (1)(3)(4) all follow from this in the case Mπ(σ) = 0.

2. Suppose that Mπ(σ) 6= 0. Let {e1, e2, . . .} be an orthonormal basis of Mπ(σ). Let Pσ be the
canonical projection from Hπ onto Hπ(σ). Let P iσ be the canonical map Hπ → Hσ given by
first projecting Hπ onto Hσ ⊗ Cei, the i-th copy of Hσ and then identifying it with Hσ. For
any u ∈ V and x ∈W , define

j(u⊗ x) =
∑
i

(P iσ(u), x)ei.

This is a well-defined map from V ⊗W into Mπ(σ). Since {ei} is an orthonormal basis, for any
v ∈ V , y ∈W ,

(j(u⊗ x), j(v ⊗ y)) = (
∑
i

(P iσ(u), x)ei,
∑
i

(P iσ(v), y)ei) =
∑
i

(P iσ(u), x)(P iσ(v), y).

On the other hand, we have

(u⊗G x, v ⊗G y) =

∫
G

(π(g)u, v)(σc(g)x, y)dg

=

∫
G

(π(g)u, v)(σ(g)x, y)dg

=

∫
G

(π(g)Pσ(u), Pσ(v))(σ(g)x, y)dg

=

∫
G

∑
i

(σ(g)P iσ(u), P iσ(v))(σ(g)x, y)dg

=
∑
i

∫
G

(σ(g)P iσ(u), P iσ(v))(σ(g)x, y)dg

=
1

dσ

∑
i

(P iσ(u), x)(P iσ(v), y).

(9)

The third equation follows from the fact that all matrix coefficients of Hσ⊗̂Mπ(σ) are square
integrable. Changing order of

∫
and

∑
is valid because

∑
i(σ(g)P iσ(u), P iσ(v)) converges to

(π(g)Pσ(u), Pσ(v)) in L2(G). Here dσ is the formal degree of σ.

We see that (j(u ⊗ x), j(v ⊗ y)) = dσ(u ⊗G x, v ⊗G y). By multilinear algebra, j induces a
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map from V ⊗GW into Mπ(σ) and the kernel of this map is {0}. It follows that the Hermitian
form associated with V ⊗GW is positive definite.

Now we want to show that j(V⊗W ) is dense inMπ(σ). By definition, j(u⊗x) =
∑
i(P

i
σ(u), x)ei =∑

i(u, (P
i
σ)∗x)ei. Here (P iσ)∗ is the adjoint of P iσ and it maps vectors in Hcσ to Hcπ. Suppose

that there is
∑
i aiei ∈Mπ(σ) perpendicular to all j(V ⊗W ). Then

0 = (j(u⊗ x),
∑
i

aiei) =
∑
i

(u, (P iσ)∗x)ai = (u,
∑
i

ai(P
i
σ)∗x)

for all u ∈ V and x ∈ W . Since V is dense in Hπ,
∑
i ai(P

i
σ)∗x = 0. Now for a fixed nonzero

x ∈W ⊆ Hσc , {(P iσ)∗x} is an orthogonal set in Hπ(σ). So ai ≡ 0. It follows that the image of
j(V ⊗W ) is dense in Mπ(σ). (1) is proved. Furthermore V ⊗GW 6= {0}. The other direction
of (2) is proved. (3) and (4) follow immediately.

�

Corollary 2.1 Under the same hypothesis as Theorem 2.3, we have

V ⊗GW ∼= V ⊗G H∞σc
∼= V ⊗G Hσc .

Remark 2.1 Following the convention in 1.1, the equivalence here means the closures of the invari-
ant tensor products are equivalent:

cl(V ⊗GW ) ∼= cl(V ⊗G H∞σc) ∼= cl(V ⊗G Hσc).

Indeed, the closure of the invariant tensor product V ⊗GW is independent of the choices of the dense
subspace W of the irreducible unitary representation σc. All the invariant tensor product we will be
dealing with will have this property. This validates the use of ∼= to mean equivalences at the closure
level throughout this paper.

3 Howe’s Correspondence and Aq(λ)

Let (G,G′) be a real reductive dual pair in a real symplectic group Sp ([Howe]). Let S̃p be the
metaplectic covering of Sp and {1, ε} the preimage of the identity. Let G̃ and G̃′ be the preimage
of G and G′ respectively. Let ω be the oscillator representation of S̃p with a lowest weight vector.
Let R(G̃, ω) and R(G̃′, ω) be the equivalence classes of irreducible admissible representations of G̃
and G̃′ occurring as quotients of ω∞. Howe proved that there is a one-to-one correspondence be-
tween R(G̃, ω) and R(G̃′, ω) ([Howe]). This correspondence is called Howe’s correspondence. Howe’s
correspondence has been shown to possess nice properties related to parabolic induction ([Ku]), co-
homological induction ([Li1]) and unitarity ([Li], [Heu]).

It is easy to see that all representations in R(G̃, ω) have the property that π(ε) = −1. Represen-
tations with this property are called genuine representations, in the sense that they do not descend
into representations of G.

3.1 Howe’s Correspondence for U(p, q)

Howe’s correspondence for U(p, q) was studied in [P1] [P2]. In the equal rank case, A. Paul gave an
explicit description of Howe’s correspondence in terms of Langlands parameters. In particular, in
this case, discrete series representations correspond to discrete series representations. Here we follow
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loosely the notation from [PT].

Consider the dual pair (U(p, q), U(r, s)). It can be constructed as a subgroup of Sp2(p+q)(r+s)(R) as
follows. Let V = M(p+ q, r + s,C) be the real vector space of p+ q by r + s complex matrices. For
X,Y ∈ V , define a real symplectic form

〈X,Y 〉 = =
(

(Tr

(
Ip 0
0 −Iq

)
X

(
Ir 0
0 −Is

)
Y t
)
.

Let U(p, q) and U(r, s) be the groups preserving the Hermitian forms defined by(
Ip 0
0 −Iq

) (
Ir 0
0 −Is

)
respectively. Let U(p, q) act on V from left and U(r, s) act on V from right. Then (U(p, q), U(r, s))
becomes a dual reductive pair in Sp(V ). Under the metaplectic covering of Sp(V ), the preimages are

Ũ(p, q) = {(λ, g) | g ∈ U(p, q), λ ∈ C, λ2 = det(g)r−s},

Ũ(r, s) = {(λ, g) | g ∈ U(r, s), λ ∈ C, λ2 = det(g)p−q}.

Following [PT], we denote these two groups by U(p, q)
√
detr−s

and U(r, s)
√
detp−q

. In particular, when

r− s is odd, U(p, q)
√
detr−s

is connected and will be a double covering of U(p, q); when r− s is even,

U(p, q)
√
detr−s

is disconnected and will be simply U(p, q)×{1, ε}. Hence U(p, q)
√
detr−s

only depends
on the parity of r−s. Since we will study Howe’s correspondence across different U(r, s)’s, we denote

U(p, q)
√
detr−s

by U(p, q)o if r − s is odd and by U(p, q)e is r − s is even.

For r−s even, genuine irreducible representations of U(p, q)
√
detr−s

are of the form π⊗ sgn with π an
irreducible representations of U(p, q) and sgn the sign representation of {1, ε} ∼= Z2. We parametrize
the genuine irreducible representations of U(p, q)e by the irreducible representations of U(p, q). For

r − s odd, a genuine representation of U(p, q)
√
detr−s

can always be obtained from a representation

of U(p, q) by tensoring with det
1
2 :

det
1
2 (λ, g) = λ(det g)−

r−s
2 + 1

2 ( ∀ (λ, g) ∈ U(p, q)
√
detr−s

).

Nevertheless, we parametrize the genuine representations, for example the discrete series, exactly the
same way as other connected reductive groups. The infinitesimal character of genuine irreducible
representation of U(p, q)o will differ from those of U(p, q) by a shift of a half integer.

Let us denote Howe’s correspondence from R(Ũ(p, q), ω) to R(Ũ(r, s), ω) by θ(p, q; r, s). It often
suffices to use θ(r, s)(π) since the group Ũ(p, q) can often be read from the representation π itself.
This seems to be the convention adopted by several authors. However, since we will be dealing with
several dual pairs at the same time, it is necessary to use θ(p, q; r, s). If π /∈ R(Ũ(p, q), ω), then we
write θ(p, q; r, s)(π) = 0. We will also use ω(p, q; r, s) to denote the oscillator representation ω when
the dual pair (U(p, q), U(r, s)) is considered.

3.2 Discrete Series representations

Let T be the maximal torus diagonally embedded in G = U(p, q) or G = U(p, q)o. Let gC be the
complex Lie algebra of G. Let h = it. Identify h with Rp+q. Fix once for all a positive root system
for (gC, h) such that the dominant Weyl chamber is parametrized by

a1 ≥ a2 ≥ . . . ≥ . . . ≥ ap+q.
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Let ρ be the half sum of the positive roots. Then

ρ = (
p+ q − 1

2
,
p+ q − 3

2
, . . . ,−p+ q − 3

2
,−p+ q − 1

2
).

The (equivalence classes of) discrete series representations of U(p, q) are parametrized by the following
data

1. λ = (λ1 > λ2 . . . > λp+q) ∈ ρ+ Zp+q,
2. a partition of λ into λ+ ∈ Rp and λ− ∈ Rq.

Genuine discrete series representations of U(p, q)o can then be parametrized by

1. λ = (λ1 > λ2 . . . > λp+q) ∈ ρ+ Zp+q + 1
2 ,

2. a partition of λ into λ+ ∈ Rp and λ− ∈ Rq.
Here c denotes the constant vector (c, c, . . . c).

We call (λ+, λ−) the Harish-Chandra parameter. For the time being, we allow λ+ and λ− to be
in any order. They become unique up to the action of the Weyl group of the maximal compact
group of G. We can take λ to be the infinitesimal character. The L-packets are parametrized by λ
and representations in the L-packet are parametrized by the partition. We denote the discrete series
representation with Harish-Chandra parameter (λ+, λ−) by D(λ+, λ−).

For any λ±, let λ±+ be the positive portion and λ±− be the negative portion. Then λ± = (λ±+, λ
±
−) if

0 does not appear in λ±; λ± = (λ±+, 0, λ
±
−) if 0 appears in λ±. Notice 0 can only appear in λ once.

It is easy to see that

D(λ+, λ−)∗ ∼= D(−λ+,−λ−), D(λ+, λ−)⊗ detk ∼= D(λ+ + k, λ− + k).

3.3 Discrete Series and Howe’s Correspondence

We shall now summarize some results of J.-S. Li in [Li1] and A. Paul in [P1] [P2] concerning discrete
series representations of U(p, q) under Howe’s correspondence in the equal rank case.

Theorem 3.1 (Li, Paul) Suppose that r + s = p + q. Then Howe’s correspondence maps discrete

series to discrete series or zero. Let σ be a discrete series representation of G = U(p, q)
√
detr−s

.
Then ω(p, q; r, s)∞⊗GH∞σ is well-defined and is infinitesimally equivalent to θ(p, q; r, s)(σc). Howe’s
correspondence for discrete series is given by

θ(p, q; r, s)(D((λ++, λ
+
−), (λ−+, λ

−
−))) = D((λ++, λ

−
−), (λ−+, λ

+
−)),

where λ’s are all half integers and

#(λ++) + #(λ+−) = p, #(λ−+) + #(λ−−) = q,

#(λ++) + #(λ−−) = r, #(λ−+) + #(λ+−) = s.

No other discrete series occur in R(U(p, q)
√
detr−s

, ω) or R(U(r, s)
√
detp−q

, ω).

The equations regarding the cardinality are not necessary and they are dictated by the size of the
maximal compact groups. We attach these equations here out of abundant caution. The correspon-
dence was established by Li and the exhaustion was given by Paul.

We remark that for p + q even, a Harish-Chandra parameter for G = U(p, q)e consists of half-
integers since ρ consists of half integers; for p + q odd, a Harish-Chandra parameter for U(p, q)o
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consists of half integers due to the covering. We also remark that the closure of ω(p, q; r, s)∞⊗GH∞σc

is the multiplicity space of σ. Hence σ � θ(p, q; r, s)(σ) is in the discrete spectrum of ω|Ũ(p,q)×Ũ(r,s).

Consider the spectrum of ω|Ũ(p,q)×Ũ(r,s). Assume that p+ q ≤ r+ s. Then ω|Ũ(p,q) is L2. Li showed

that if a discrete series representation π of Ũ(p, q) appears in the discrete spectrum of ω|Ũ(p,q), then

it will appear in Howe’s correspondence. Equivalently, if a discrete series π of Ũ(p, q) does not appear
in Howe’s correspondence, then π does not appears in the discrete spectrum of ω|Ũ(p,q). By Theorems
3.1 and 2.3, we have the following

Corollary 3.1 (Discrete Spectrum of ω(p, q; r, s), equal rank case) Suppose p+q = r+s. The
discrete spectrum,

ω|dis
Ũ(p,q)

= ω|dis
Ũ(p,q)×Ũ(r,s)

= ω|dis
Ũ(r,s)

∼= ⊕̂[σ � θ(p, q; r, s)(σ)]

where σ and θ(p, q; r, s)(σ) are given by the recipe in Theorem 3.1.

Theorem 3.2 (Li, Paul) Suppose that r + s = p + q + 1. Then Howe’s correspondence maps
discrete series of the larger group Ũ(r, s) to discrete series of the smaller group Ũ(p, q) or zero. In
this situation, the correspondence is given by

θ(p, q; r, s)(D((λ++, λ
+
−), (λ−+, λ

−
−))) = D((λ++, 0, λ

−
−), (λ−+, λ

+
−)),

where λ’s are all nonzero integers and

#(λ++) + #(λ+−) = p, #(λ−+) + #(λ−−) = q,

#(λ++) + #(λ−−) + 1 = r, #(λ−+) + #(λ+−) = s;

or
θ(p, q; r, s)(D((λ++, λ

+
−), (λ−+, λ

−
−))) = D((λ++, λ

−
−), (λ−+, 0, λ

+
−)),

where λ’s are all nonzero integers and

#(λ++) + #(λ+−) = p, #(λ−+) + #(λ−−) = q,

#(λ++) + #(λ−−) = r, #(λ−+) + #(λ+−) + 1 = s.

The discrete series on the right hand side of the equations are all the discrete series occurring

in R(U(r, s)
√
detp−q

, ω). Furthermore, when σ is in the discrete series of G = U(p, q)
√
detr−s

,
ω(p, q; r, s)∞ ⊗G H∞σ is well-defined and is infinitesimally equivalent to θ(p, q; r, s)(σc).

Generally speaking, in the case r + s = p+ q + 1, Howe’s correspondence does not map the discrete
series of the smaller group Ũ(p, q) exclusively to discrete series of the larger group Ũ(r, s). There

are some discrete series representations occurring in R(U(p, q)
√
detr−s

, ω) and θ(p, q; r, s) maps these

representations to limits of discrete series of U(r, s)
√
detp−q

. The details are completely worked out
by A. Paul. Since the statement in Theorem 3.2 is sufficient for the purpose of this paper, we will

not give the complete statement of the correspondence for all discrete series in R(U(p, q)
√
detr−s

, ω).

The reader should notice that the discrete series in R(U(r, s)
√
detp−q

, ω) must have a zero in their
Harish-Chandra parameters.

Corollary 3.2 (Discrete Spectrum of ω(p, q; r, s): r + s = p+ q + 1 ) Suppose r+s = p+q+1.
The discrete spectrum,

ω|dis
Ũ(p,q)

= ω|dis
Ũ(p,q)×Ũ(r,s)

= ω|dis
Ũ(r,s)
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contains both
D((λ++, λ

+
−), (λ−+, λ

−
−)) �D((λ++, 0, λ

−
−), (λ−+, λ

+
−))

and
D((λ++, λ

+
−), (λ−+, λ

−
−)) �D((λ++, λ

−
−), (λ−+, 0, λ

+
−)),

given by the recipes in Theorem 3.2. These representations exhaust all discrete series representations
of Ũ(r, s) occurring in the discrete spectrum.

Generally speaking, in the case p+ q+ 1 = r+ s, there are non-discrete series representations in the
discrete spectrum of ω|Ũ(r,s). The complete discrete spectrum can be written down based on [P2].

We observe that ω|Ũ(r,s) is no longer L2, but only almost L2. Theorem 2.2 does not apply here.

Hence there may be limits of the discrete series representations occurring in ω|dis
Ũ(r,s)

. But we will

only deal with the discrete series representations in ω|dis
Ũ(r,s)

.

3.4 Aq(λ) and θ(χ)

Aq(λ) is a very important class of representations in the theory of harmonic analysis and automor-
phic forms. For example, Aq(λ) contributes to the cohomology of Shimura varieties. The discrete
series representations are all Aq(λ)’s with q the Borel subalgebra of gC. We shall refer the readers
to the paper by Vogan and Zuckermann [VZ] and Vogan [V] for the properties of Aq(λ), and the
Knapp-Vogan book [KV] for a systematic construction of these representations. For the application
to automorphic forms, we shall refer the readers to Borel-Wallach’s book [BW]. In this section, we
shall focus on a class of small Aq(λ) when q is maximal parabolic. The branching laws of these Aq(λ)
will lead us to a proof of GGP conjecture for U(p, q).

We shall follow the notation from [PT]. Let G = U(r + s, r + s)
√
detr−s

. Let L be the corre-
sponding covering of the subgroup U(r, s) × U(s, r) diagonally embedded in U(r + s, r + s). Fix a
standard compact Cartan t in u(r, s)⊕ u(s, r). Fix a standard positive root system in ∆(gC, it), i.e.,
the positive roots are {ei − ej | i < j}. Let q be the parabolic subalgebra spanned by root vectors

from u(r, s)C, u(s, r)C and positive root vectors. Let λk1,k2 be the detŨ(r,s)
k1detŨ(s,r)

k2 character
of L. Here k1, k2 are integers or half integers and k1 ≥ k2. By the process known as cohomological
induction or Zuckerman’s derived functor construction, we obtain Aq(λ) ( see for example [KV]). We
denote this Aq(λk1,k2) by Ar,s;s,r(k1, k2).

Generally speaking, the branching law of Aq(λ) is difficult, due to the lack of a geometric real-
ization. Even in the discrete series case where Aq(λ) have various geometric realizations (see for
example [Sch]) and the reference therein), the branching law remains a difficult problem. One im-
portant case is the GGP conjecture treated in this paper. Another important case is the branching
law of the discrete series restricted to a maximal compact subgroup K. The Blattner’s formula,
proved by Heckt and Schmid, computes the multiplicity of K-types in a discrete series. Yet due
to the complexity of the Blattner’s formula, it is not completely known when the multiplicity is
nonzero. Hence even D(λ)|K is not completely known. One important result about the branching
law of Aq(λ) is due to T. Kobayashi. Roughly, Kobayashi determined which of Aq(λ) decomposes
discretely when restricted to a symmetric subgroup ([Ko]). In this situation, Aq(λ) decomposes on
the Harish-Chandra module level.

In general, A(r, s; s, r)(k1, k2)|Ũ(p,q) will have continuous spectrum. Hence Kobayashi’s result does

not apply here. Despite of all these difficulties, A(r, s; s, r)(k1, k2)|Ũ(p,q) can be computed by relating

it to Howe’s correspondence. We recall the main result of Paul and Trapa in [PT] (Page 144, Theorem
4.1).
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Theorem 3.3 Let k be an integer. If k ≥ 0 then θ(r, s; r + s, r + s)(detk) ∼= Ar,s;s,r(k, 0); if k ≤ 0

then θ(r, s; r + s, r + s)(detk) ∼= Ar,s;s,r(0, k).

We shall remind the reader that Ar,s;s,r(k+n, n) differs from Ar,s;s,r(k, 0) by a twist of the character
detn. Furthermore, by a result of Li ([Li]),

θ(r, s; r + s, r + s)(detk) ∼= ω(r + s, r + s; r, s)∞ ⊗U(r,s)e det−k.

So we obtain
Ar,s;s,r(k, 0) ∼= ω(r + s, r + s; r, s)∞ ⊗U(r,s)e det−k (k ≥ 0),

Ar,s;s,r(0,−k) ∼= ω(r + s, r + s; r, s)∞ ⊗U(r,s)e detk (k ≥ 0).

Indeed, the right hand sides are exactly the spaces of smooth vectors. In the next two sections, we
shall derive the branching laws for Ar,s;s,r(k1, k2) based on these invariant tensor products.

4 The First Branching Law of Ar,s;s,r(k1, k2)

We fix p, q, r, s. Throughout this section assume p + q = r + s. Let U(p, q) × U(q, p) be diagonally

embedded in U(p + q, p + q). Let Ũ(p + q, p + q) be U(p + q, p + q)
√
detr−s

. So Ũ(p, q) will be just

U(p, q)
√
detr−s

. We consider Ar,s;s,r(k1, k2)|Ũ(p,q). In this section, we may simply write A(k1, k2)

for Ar,s;s,r(k1, k2). By the remark following Theorem 3.3, it suffices to discuss the branching law
for A(0,−k)(k ≥ 0). We know that A(k1, k2)|Ũ(p,q) are square integrable, by employing the matrix
coefficients estimate based on the Langland parameter. By Theorem 2.2, only discrete series can
appear in the discrete spectrum of A(k1, k2)|Ũ(p,q). Therefore discrete spectrum of A(k1, k2)|Ũ(p,q)

can be obtained by studying H∞σc ⊗Ũ(p,q) A(k1, k2)∞ for each discrete series representation σ.

Suppose k ≥ 0. Notice that ω(r + s, r + s; r, s)∞ ⊗U(r,s)e detk is the space of smooth vectors in
A(0,−k). It suffices to compute

H∞σc ⊗Ũ(p,q) [ω(r + s, r + s; r, s)∞ ⊗U(r,s)e detk].

In order to apply the associativity of invariant tensor products (Theorem 1.1), we must give an
estimate about the decaying of matrix coefficients of ω(r + s, r + s; r, s)∞|Ũ(p,q)×Ũ(r,s). We can then

obtain a direct estimate on certain smooth matrix coefficients of A(0, k) which will be weaker than the
estimate from the Langlands parameters, but sufficient for the purpose of this paper. Consequently,
H∞σc⊗Ũ(p,q)A(k1, k2)∞ can be expressed as a composition of Howe’s correspondences, which can then

be computed in terms of the Harish-Chandra parameter. The ideas here are similar to [Heq].

4.1 Matrix coefficient Estimates: General Case

Let G be a real reductive group with compact center. Fix a Cartan involution Θ on G. Let K be
the maximal compact subgroup fixed by Θ. Denote the Cartan involution on g also by Θ. Let p
be the −1 eigenspace of Θ. Then g = k ⊕ p. Fix a maximal commutative subalgebra a of p. Let A
be the the analytic subgroup generated by a. Fix a Weyl chamber A+ in A. Then G has a Cartan
decomposition of the form KA+K. For the noncompact unitary groups, A+ component of g will be
unique. Write the A+-component of g ∈ G as expH(g) with H(g) ∈ a+. The invariant measure of
G can be expressed as ∆(H)dKdHdK. The function ∆(H) has the exponential growth with expo-
nent 2ρ(G). Here 2ρ(G) is the sum of all positive restricted roots corresponding to the Weyl chamber
a+. For a function f to be integrable, it suffices that f(g) “decays” faster than exp−2ρ(G)(H(g)).
For a a function f to be square integrable, it suffices that f(g) “decays” faster than exp−ρ(G)(H(g)).
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Consider now the oscillator representation ω of S̃p2N (R). Choose

a = {H = diag(H1, H2, . . . HN ,−H1,−H2, . . . ,−HN ) | Hi ∈ R}

and a+ = {H | H1 ≥ H2 ≥ H3 . . . ≥ HN ≥ 0}. Then A+ consists of

diag(a1, a2, . . . aN , a
−1
1 , a−12 , . . . a−1N ) a1 ≥ a2 ≥ . . . aN ≥ 1.

For simplicity, we write g ∼= diag(a±11 , a±12 , . . . a±1N ) if g = k diag(a±11 , a±12 , . . . a±1N )k′ with k, k′ ∈ K.

It is well-known that the smooth matrix coefficients of ω satisfy

f(g) ≤ C
N∏
i=1

(ai + a−1i )−
1
2 .

See for example the proof of Theorem 3.3 [He00] Pg. 264. Here C is a constant that depends on
f . Now the dual reductive pair (U(m,n), U(r, s)) is embedded in Sp2(m+n)(r+s)(R). Suppose that

m ≥ n and r ≥ s. Let g1 ∈ Ũ(m,n) and g2 ∈ Ũ(r, s). Let

g1 ∼= diag(a±11 , a±12 , . . . a±1n ,

m−n︷ ︸︸ ︷
1, . . . , 1), g2 ∼= diag(b±11 , b±12 , . . . b±1s ,

r−s︷ ︸︸ ︷
1, . . . , 1).

In S̃p2(m+n)(r+s)(R),

g1g2 ∼= diag({a±1i b±1j }i∈[1,n],j∈[1,s], {a
±1
i b±1j }i∈[1,n],j∈[1,s],

2r−2s︷ ︸︸ ︷
{a±1i }i∈[1,n], . . . , {a

±1
i }i∈[1,n],

2m−2n︷ ︸︸ ︷
{b±1j }j∈[1,s], . . . , {b

±1
j }j∈[1,s],

2(m−n)(r−s)︷ ︸︸ ︷
1, . . . , 1 ).

Then smooth matrix coefficients of ω(m,n; r, s) restricted onto Ũ(m,n)× Ũ(r, s) is bounded by

|f(g1g2)| ≤ C[

n∏
i=1

s∏
j=1

(aibj + a−1i b−1j )−1(aib
−1
j + a−1i bj)

−1][

n∏
i=1

(ai + a−1i )−1]r−s[

s∏
j=1

(bj + b−1j )−1]m−n.

We summarize our result in the following lemma.

Lemma 4.1 Suppose m ≥ n and r ≥ s. Let f be a smooth matrix coefficient of ω(m,n; r, s). Let
g1 ∈ Ũ(m,n) and g2 ∈ Ũ(r, s). Then

f(g1g2) ≤ C[

n∏
i=1

s∏
j=1

(a2i + b2j + a−2i + b−2j )−1][

n∏
i=1

(ai + a−1i )]−r+s[

s∏
j=1

(bj + b−1j )]−m+n.

4.2 Matrix Coefficients of ω(n, n; r, s)

Let m = n = r + s. Let p + q = n and U(p, q) × U(q, p) be diagonally embedded in U(n, n). Let
g1 ∈ Ũ(p, q). For the purpose of matrix coefficients estimation, we assume p ≥ q and r ≥ s. This
will cause no loss of generality. Then as an element in U(n, n),

g1 ∼= diag(a±11 , a±12 , . . . a±1q ,

2p︷ ︸︸ ︷
1, 1, . . . 1).
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We have for any g2 ∈ Ũ(r, s),

f(g1g2) ≤ C

 q∏
i=1

s∏
j=1

(a2i + b2j + a−2i + b−2j )−1

 s∏
j=1

(b2j + b−2j + 2)

−p [ q∏
i=1

(ai + a−1i )

]−r+s
. (10)

When q = 0, g1 is in a compact group. We have

f(g1g2) ≤ C

 s∏
j=1

(b2j + b−2j + 2)

−n .
Theorem 4.1 Suppose p + q = r + s = n. Let f be a matrix coefficient of smooth vectors for
ω(n, n; r, s). Let g1 ∈ Ũ(p, q) ⊆ Ũ(n, n) and g2 ∈ Ũ(r, s). Let v(g1) be a L2-function on Ũ(p, q).
Then |v(g1)f(g1g2)| ∈ L1(Ũ(p, q)× Ũ(r, s)).

Proof: Without loss of generality, assume p ≥ q and r ≥ s. This will cause no problem with the

estimates of matrix coefficients. Let g1 ∼= diag(a±11 , a±12 , . . . , a±1q ,

p−q︷ ︸︸ ︷
1, . . . 1) with a1 ≥ a2 ≥ . . . ≥ aq ≥

1. Notice ∆(g1) ≤ CΠq
i=1a

2p+2q−4i+2
i . The exponents here come from

2ρ(Ũ(p, q)) = (2p+ 2q − 2, 2p+ 2q − 6, . . . , 2p− 2q + 2).

Let g2 ∼= diag(b±11 , b±12 , . . . , b±1s ,

r−s︷ ︸︸ ︷
1, . . . , 1) with b1 ≥ b2 ≥ . . . ≥ bs ≥ 1. Notice that ∆(g2) ≤

CΠs
j=1b

2r+2s−4j+2
j . The exponents here come from

2ρ(Ũ(r, s)) = (2r + 2s− 2, 2r + 2s− 6, . . . , 2r − 2s+ 2).

Observe that for any α ∈ [0, 1],

(a2i + a−2i + b2j + b−2j )−1 ≤ (ai + a−1i )−2α(bj + b−1j )−2+2α.

We have three cases.

1. Suppose that q ≥ s ≥ 1. Then we have

q∏
i=1

(a2i + b21 + a−2i + b−21 )−1 ≤ (a1 + a−11 )−2+
1
2 (b1 + b−11 )−2q+2− 1

2 ,

q∏
i=1

(a2i + b22 + a−2i + b−22 )−1 ≤ (a2 + a−12 )−2+
1
2 (a1 + a−11 )−2(b2 + b−12 )−2q+4− 1

2 ,

. . . . . . . . . . . . . . . . . .
q∏
i=1

(a2i +b2s+a−2i +b−2s )−1 ≤ (as+a−1s )−2+
1
2 (as−1 +a−1s−1)−2 . . . (a1 +a−11 )−2(bs+b−1s )−2q+2s− 1

2 .

Multiplying them, we obtain

q∏
i=1

s∏
j=1

(a2i + b2j + a−2i + b−2j )−1 ≤
s∏
i=1

(ai + a−1i )−2s+2i−2+ 1
2

s∏
j=1

(bj + b−1j )−2q+2j− 1
2 .

Combined with Equation 10, we have

|f(g1g2)| ≤ C
s∏
i=1

(ai + a−1i )2i−2+
1
2−r−s

s∏
j=1

(bj + b−1j )−2p−2q+2j− 1
2

q∏
i=s+1

(ai + a−1i )−r+s.
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Since p+ q = r + s and

s∏
j=1

(bj + b−1j )−2r−2s+2j− 1
2 ∈ L1(Ũ(r, s),∆(b)db dk1 dk

′
1),

s∏
i=1

(ai + a−1i )2i−2+
1
2−p−q

q∏
i=s+1

(ai + a−1i )−r+s ∈ L2(Ũ(p, q),∆(a)da dk2 dk
′
2),

it follows that |v(g1)f(g1g2)| ∈ L1(Ũ(p, q)× Ũ(r, s)).

2. Suppose that s ≥ q ≥ 1. Similarly, we have

s∏
j=1

(a21 + b2j + a−21 + b−2j )−1 ≤ (a1 + a−11 )−2s+
1
2 (b1 + b−11 )−

1
2 ,

s∏
j=1

(a22 + b2j + a−22 + b−2j )−1 ≤ (a2 + a−12 )−2s+2+ 1
2 (b2 + b−12 )−

1
2 (b1 + b−11 )−2,

. . . . . . . . . . . . . . . . . .
s∏
j=1

(a2q + b2j +a−2q + b−2j )−1 ≤ (aq +a−1q )−2s+2q−2+ 1
2 (bq + b−1q )−

1
2 (bq−1 + b−1q−1)−2 . . . (b1 + b−11 )−2.

Multiplying them, we obtain

q∏
i=1

s∏
j=1

(a2i + b2j + a−2i + b−2j )−1 ≤
q∏
i=1

(ai + a−1i )−2s+2i−2+ 1
2

q∏
j=1

(bj + b−1j )−2q+2j− 1
2 .

Combined with Equation 10, we have

|f(g1g2)| ≤ C
q∏
i=1

(ai + a−1i )2i−2+
1
2−r−s

q∏
j=1

(bj + b−1j )−2p−2q+2j− 1
2

s∏
j=q+1

(bj + b−1j )−2p.

Since p+ q = r + s and

q∏
i=1

(ai + a−1i )2i−2+
1
2−p−q ∈ L2(Ũ(p, q),∆(a)da dk2 dk

′
2),

q∏
j=1

(bj + b−1j )−2r−2s+2j− 1
2

s∏
j=q+1

(bj + b−1j )−2p ∈ L1(Ũ(r, s),∆(b)db dk1 dk
′
1),

we see that |v(g1)f(g1g2)| ∈ L1(Ũ(p, q)× Ũ(r, s)).

3. If s = 0 or q = 0, our assertion becomes obvious by Equation 10.

�

Our proof shows for vectors in the smooth representation ω∞(n, n; r, s) ⊗Ũ(r,s) detk of Ũ(n, n), the

matrix coefficients restricted to Ũ(p, q) will be bounded by

C

q∏
i=1

(ai + a−1i )2i−2+
1
2−p−q ∈ L2(Ũ(p, q),∆(a)da dk2 dk

′
2).

Corollary 4.1 If p + q = r + s, both Ar,s;s,r(k1, k2)|Ũ(p,q) and Ar,s;s,r(k1, k2)|Ũ(p−1,q)(p ≥ 1) are
square integrable representations.
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4.3 Associativity and discrete spectrum of A(0,−k)
Let σ be a discrete series representation of Ũ(p, q). By Lemma 1.1, Theorem 1.1 and Theorem 2.3,
we compute the multiplicity space

MA(0,−k)(σ)

=H∞σc ⊗Ũ(p,q) [ω(p+ q, p+ q; r, s)∞ ⊗Ũ(r,s) detk]

∼=H∞σc ⊗Ũ(p,q) [(ω(p, q; r, s)∞ ⊗ ω(q, p; r, s)∞)⊗Ũ(r,s) detk]

∼=[H∞σc ⊗Ũ(p,q) (ω(p, q; r, s)∞ ⊗ ω(q, p; r, s)∞)]⊗Ũ(r,s) detk

∼=[(H∞σc ⊗Ũ(p,q) ω(p, q; r, s)∞)⊗ ω(q, p; r, s)∞]⊗Ũ(r,s) detk

∼=[(H∞σc ⊗Ũ(p,q) ω(p, q; r, s)∞)⊗ detk]⊗Ũ(r,s) ω(q, p; r, s)∞

∼=[θ(p, q; r, s)(σ)∞ ⊗ detk]⊗Ũ(r,s) ω(q, p; r, s)∞

∼=θ(r, s; q, p)([θ(p, q; r, s)(σ)⊗ detk]c).

(11)

The last two equivalences follow from Theorem 3.1. All the equivalences shall be interpreted as
equivalence of the completions as irreducible unitary representations, following the convention set in
1.1. By Theorem 2.3, we have

Lemma 4.2 σ ∈ Ar,s;s,r(0,−k)|Ũ(p,q) if and only if θ(r, s; q, p)([θ(p, q; r, s)(σ)⊗ detk]∗) 6= 0.

Recall that the Harish-Chandra parameters for U(p, q)e (p+ q even) and U(p, q)o (p+ q odd) are half
integers. Assume that θ(p, q; r, s)(σ) = D(λ+, λ−). Then σ = D((λ++, λ

−
−), (λ−+, λ

+
−)) and we must

have
#(λ+) = r, #(λ−) = s, #(λ++) + #(λ−−) = p, #(λ+−) + #(λ−+) = q.

Clearly, θ(p, q; r, s)(σ)⊗ detk = D(λ+ + k, λ− + k). Hence

[θ(p, q; r, s)(σ)⊗ detk]c = D(−(λ+ + k),−(λ− + k)).

By Theorem 3.1, θ(r, s; q, p)([θ(p, q; r, s)(σ)⊗ detk]c) 6= 0 if and only if

#((λ+ + k)−) + #((λ− + k)+) = q, #((λ+ + k)+) + #((λ− + k)−) = p.

Comparing with #(λ+−) + #(λ−+) = q and #(λ++) + #(λ−−) = p, it is sufficient and necessary that

#(λ+ ∩ [−k, 0]) = #(λ− ∩ [−k, 0]).

Then we have

θ(r, s; q, p)([θ(p, q; r, s)(σ)⊗detk]c) = D((−([λ+ +k]−),−([λ−+k]+)), (−([λ−+k]−),−([λ+ +k]+))).

We have proved

Theorem 4.2 Suppose that r + s = p+ q and k ≥ 0. The discrete spectrum

Ar,s;s,r(0,−k)|dis
Ũ(p,q)

= Ar,s;s,r(0,−k)|dis
Ũ(p,q)×Ũ(q,p)

= Ar,s;s,r(0,−k)|dis
Ũ(q,p)

is the direct sum of

D((λ++, λ
−
−), (λ−+, λ

+
−)) �D(([λ+ + k]−, [λ

− + k]+), ([λ− + k]−, [λ
+ + k]+))∗

where the entries of (λ+, λ−) are all half integers and satisfy the following equations

#(λ+) = r, #(λ−) = s, #(λ++) + #(λ−−) = p, #(λ+−) + #(λ−+) = q,

#(λ+ ∩ [−k, 0]) = #(λ− ∩ [−k, 0]).
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As to the continuous spectrum, the situation is similar to the symmetric space case. That is,
the continuous spectrum will comes from induced representations of the discrete series that ap-
pear in the discrete spectrum of a smaller A(0,−k). A somewhat easier approach is to prove
Lemma 4.2 for σ ∈wk Ar,s;s,r(0,−k)|Ũ(p,q). Recall that the continuous spectrum is only defined
almost everywhere. Therefore, up to a measure zero set, one can obtain the complete spectrum of
Ar,s;s,r(0,−k)|Ũ(p,q)×Ũ(q,p) this way. However, the whole support of Ar,s;s,r(0,−k)|Ũ(p,q)×Ũ(q,p) is
more delicate and requires more caution. We will not discuss it in this paper.

5 The Second Branching Law

We still fix p+ q = r + s. Assume p ≥ 1 and k ≥ 1. Let U(p− 1, q)× U(q + 1, p) be diagonally em-
bedded in U(p + q, p + q). We consider A(0,−k)|Ũ(p−1,q)×Ũ(q+1,p). By Cor 4.1, A(0,−k)|Ũ(p−1,q) is

square integrable. Thus only discrete series can occur in A(0,−k)|dis
Ũ(p−1,q). Let σ be a discrete series

representation of Ũ(p− 1, q). The entries of the Harish-Chandra parameters involved here will all be
integers. Recall from Theorem 2.3, the multiplicity space

MA(0,−k)(σ) ∼= H∞σc ⊗Ũ(p−1,q) A(0,−k)∞.

Clearly

H∞σc ⊗Ũ(p−1,q) A(0,−k)∞ ∼= H∞σc ⊗Ũ(p−1,q) [(ω(p− 1, q; r, s)∞ ⊗ ω(q + 1, p; r, s)∞)⊗Ũ(r,s) detk].

By essentially the same estimate in Theorem 4.1, we can apply the law of associativity:

H∞σc ⊗Ũ(p−1,q) A(0,−k)∞ ∼= [(H∞σc ⊗Ũ(p−1,q) ω(p− 1, q; r, s)∞)⊗ ω(q + 1, p; r, s)∞]⊗Ũ(r,s) detk.

By associativity and commutativity, we have

H∞σc ⊗Ũ(p−1,q) A(0,−k)∞ ∼=[(H∞σc ⊗Ũ(p−1,q) ω(p− 1, q; r, s)∞)⊗ detk]⊗Ũ(r,s) ω(q + 1, p; r, s)∞.

∼=[θ(p− 1, q; r, s)(σ)∞ ⊗ detk]⊗Ũ(r,s) ω(q + 1, p; r, s)∞

∼=θ(r, s; q + 1, p)([θ(p− 1, q; r, s)(σ)⊗ detk]c).

(12)

For technical reasons, we need to assume that the Harish-Chandra parameter of σ does not have any
zeros. Then H∞σc ⊗Ũ(p−1,q) A(k1, k2)∞ is a discrete series of Ũ(q + 1, p). Our equations are valid due
to Theorem 3.2.

Proposition 5.1 Suppose that σ is a discrete series representation of Ũ(p − 1, q) and its Harish-
Chandra parameter does not contain any zeros. σ ∈ A(0,−k)|Ũ(p−1,q) if and only if the multiplicity
space

MA(0,−k)(σ) ∼= θ(r, s; q + 1, p)([θ(p− 1, q; r, s)(σ)⊗ detk]c) 6= 0.

In this situation, this multiplicity space is an irreducible tempered representation of Ũ(q + 1, p).

Proof: The irreducibility ofMA(0,−k)(σ) follows from Howe’s theorem. The temperedness ofMA(0,−k)(σ)

follows from a theorem of Paul (Prop. 1.4 [P2]). This also proves that A(0,−k)|dis
Ũ(p−1,q)×Ũ(q+1,p)

has

multiplicity one. �

This proposition gives us the complete description of the discrete spectrum ofA(0,−k)|Ũ(p−1,q)×Ũ(q+1,p)

in terms of Howe’s correspondence. Similar statements are true for all other subgroups that are di-
agonally embedded in U(n, n). Since the main focus here is GGP conjecture and the discrete series,
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we assume:

the multiplicity space MA(0,−k)(σ) is equivalent to a discrete series representation of Ũ(q + 1, p).

This assumption excludes those σ in the discrete series of Ũ(p − 1, q) with MA(0,−k)(σ) a limit

discrete series of Ũ(q + 1, p).

It follows form Theorem 3.2 that θ(p− 1, q; r, s)(σ) is a discrete series and

1. either θ(p− 1, q; r, s)(σ) = D((µ+, 0), µ−)

2. or θ(p− 1, q; r, s)(σ) = D(µ+, (µ−, 0)).

In both cases σ = D((µ+
+, µ

−
−), (µ−+, µ

+
−)) and all entries of µ±± are nonzero. But the cardinalities of

µ±± will be different. These two cases are mutually exclusive.

5.1 Computation on Harish-Chandra Parameters: Case I

Suppose that θ(p− 1, q; r, s)(σ) = D((µ+, 0), µ−). Then

[θ(p− 1, q; r, s)(σ)⊗ detk]c = D((−µ+ − k,−k), (−µ− − k)).

Lemma 5.1 Let σ = D((µ+
+, µ

−
−), (µ−+, µ

+
−)) with µ±± all integers. Assume that

#(µ+
+)+#(µ+

−)+1 = r, #(µ−+)+#(µ−−) = s, #(µ+
+)+#(µ−−) = p−1, #(µ−+)+#(µ+

−) = q

and none of the entries of µ equals 0 or −k. Then MA(0,−k)(σ) equals

1.
D((−[(µ+ + k, k)−], 0,−[(µ− + k)+]), (−[(µ− + k)−],−[(µ+ + k, k)+]))

when #(µ+ ∩ (−k, 0)) = #(µ− ∩ (−k, 0));

2.
D((−[(µ+ + k, k)−],−[(µ− + k)+]), (−[(µ− + k)−], 0,−[(µ+ + k, k)+]))

when 1 + #(µ+ ∩ (−k, 0)) = #(µ− ∩ (−k, 0));

3. zero otherwise.

Proof: By Theorem 3.2 and Prop. 5.1, (1) holds iff

#((µ+ + k, k)−) + #((µ− + k)+) = q, #((µ− + k)−) + #((µ+ + k, k)+) = p.

By comparing with #(µ+
+) + #(µ−−) = p− 1 and #(µ−+) + #(µ+

−) = q, (1) holds iff #(µ+ ∩ (−k, 0)) =
#(µ− ∩ (−k, 0)).

Similarly, (2) holds iff

#((µ+ + k, k)−) + #((µ− + k)+) = q + 1, #((µ− + k)−) + #((µ+ + k, k)+) = p− 1.

if and only if 1 + #(µ+ ∩ (−k, 0)) = #(µ− ∩ (−k, 0)).

By Theorem 3.2, (3) also holds. �
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5.2 Computation on Harish-Chandra Parameters: Case II

Suppose that θ(p− 1, q; r, s)(σ) = D(µ+, (µ−, 0)). Then

[θ(p− 1, q; r, s)(σ)⊗ detk]c = D(−(µ+ + k),−(µ− + k, k)).

Lemma 5.2 Let σ = D((µ+
+, µ

−
−), (µ−+, µ

+
−)) with µ±± all integers. Assume that

#(µ+
+)+#(µ+

−) = r, #(µ−+)+#(µ−−)+1 = s, #(µ+
+)+#(µ−−) = p−1, #(µ−+)+#(µ+

−) = q

and none of the entries of µ equals 0 or −k. We have MA(0,−k)(σ) equals

1.
D((−[(µ+ + k)−], 0,−[(µ− + k, k)+]), (−[(µ− + k, k)−],−[(µ+ + k)+]))

when #(µ+ ∩ (−k, 0)) = 1 + #(µ− ∩ (−k, 0));

2.
D((−[(µ+ + k)−],−[(µ− + k, k)+]), (−[(µ− + k, k)−], 0,−[(µ+ + k)+]))

when #(µ+ ∩ (−k, 0)) = #(µ− ∩ (−k, 0));

3. zero otherwise.

5.3 Discrete Spectrum of A(0,−k)|Ũ(p−1,q)

Let σ be a discrete series representation of Ũ(p − 1, q). Recall that σ �MA(0,−k)(σ) will be in the
discrete spectrum of A(0,−k)|Ũ(p−1,q) if and only if MA(0,−k)(σ) is nonvanishing.

Theorem 5.1 Let σ �MA(0,−k)(σ) be in the discrete spectrum of Ar,s;s,r(0,−k)|Ũ(p−1,q)×Ũ(q+1,p).

Suppose that MA(0,−k)(σ) is a discrete series representation of Ũ(q+ 1, p). Then σ and MA(0,−k)(σ)
must be given by the recipe in Lemma 5.1 or Lemma 5.2.

Proof: By Prop. 5.1, MA(0,−k)(σ) = θ(r, s; q + 1, p)([θ(p − 1, q; r, s)(σ) ⊗ detk]c). By Theorem 3.2,

since θ(r, s; q+ 1, p)([θ(p− 1, q; r, s)(σ)⊗ detk]c) is a discrete series representation, θ(p− 1, q; r, s)(σ)
must be a discrete series representation and σ must also be a discrete series representation. In
addition, the Harish-Chandra parameters of σ and θ(p − 1, q; r, s)(σ) ⊗ detk cannot contain any
zero. Let σ = D((µ+

+, µ
−
−), (µ−+, µ

+
−)). Then θ(p − 1, q; r, s)(σ) ⊗ detk = D(µ+ + k, (µ− + k, k)) or

D((µ+ +k, k), µ−+k). Hence none of the entries of µ± can be equal to −k. The equalities in Lemma
5.1 and Lemma 5.2 are guaranteed by θ(r, s; q+ 1, p)([θ(p− 1, q; r, s)(σ)⊗ detk]c) 6= 0. Our assertion
then follows. �

Now we are interested in some special discrete series representation MA(0,−k)(σ), namely those whose
Harish-Chandra parameters do not contain any integers in (−k, 0). By Prop. 5.1 and Theorem 3.2,
we must have

#(µ+ ∩ [−k, 0]) = #(µ− ∩ [−k, 0]) = 0.

Combining with Lemma 5.1 and Lemma 5.2, we obtain

Corollary 5.1 Suppose that MA(0,−k)(σ) is a discrete series representation of Ũ(q + 1, p) such that

its Harish-Chandra parameter does not have any entries in (−k, 0). Then σ = D((µ+
+, µ

−
−), (µ−+, µ

+
−))

with the

#(µ+
+) + #(µ−−) = p− 1, #(µ−+) + #(µ+

−) = q, #(µ+
− ∩ [−k, 0]) = #(µ−− ∩ [−k, 0]) = 0.

In addition either we have

MA(0,−k)(σ) = D((µ+
−,−k, µ−+), (µ−−, 0, µ

+
+))∗ ⊗ det−k
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with #(µ+
+) + #(µ+

−) = r − 1 and #(µ−+) + #(µ−−) = s; or

MA(0,−k)(σ) = D((µ+
−, 0, µ

−
+), (µ−−,−k, µ+

+))∗ ⊗ det−k

with #(µ+
+) + #(µ+

−) = r and #(µ−+) + #(µ−−) = s − 1. Conversely, if one of these two situations
occurs, then σ �MA(0,−k)(σ) ∈ A(0,−k)|Ũ(p−1,q)×Ũ(q+1,p).

Now let χ+ = (µ+
+, µ

−
−) and χ− = (µ−+, µ

+
−). Then σ = D(χ+, χ−) and

#(χ+ ∩ [−k, 0]) = #(χ− ∩ [−k, 0]).

We have either
MA(0,−k)(σ) = D((χ−,−k), (χ+, 0))∗ ⊗ det−k; (13)

or
MA(0,−k)(σ) = D((χ−, 0), (χ+,−k))∗ ⊗ det−k. (14)

Clearly, up to a detm-character, every discrete series representation of Ũ(q + 1, p) appears as the
multiplicity space MA(0,−k)(σ) for some σ. This will provide us the basis for proving the GGP
conjecture inductively and for constructing discrete series representation inductively.

6 The Law of Reciprocity and GGP Interlacing Relation

Recall from introduction that if π is a unitary representation of H1 × H2 and σi ∈ Ĥi, we have a
canonical isometry:

HomH1
(σ1,Mπ(σ2)) ∼= HomH2

(σ2,Mπ(σ1)).

Suppose that we have the following situation:

H1 ⊆ G1

l l
G2 ⊇ H2.

1. (G1, H2) is a commuting pair of subgroups of G;

2. (G2, H1) is a commuting pair of subgroups of G;

3. H1 is a subgroup of G1 and H2 is a subgroup of G2.

Loosely, this situation is similar to the see-saw dual pairs.

Let π be a unitary representation of G. Suppose that Gi and Hi are CCR. Then Mπ(σ1) is a
unitary representation of G2 and Mπ(σ2) is a unitary representation of G1. We have σ1 ∈Mπ(σ2)|H1

if and only if σ2 ∈Mπ(σ1)|H2 . In addition,

m(Mπ(σ2)|H1
, σ1) = m(Mπ(σ1)|H2

, σ2).

Theorem 6.1 (Reciprocity) Let τ1 ∈ π|G1
and σ1 ∈ Ĥ1. Suppose that Mπ(τ1) is an irreducible

unitary representation of H2 and the related isotypic subspaces

Hπ(τ1) = Hπ(Mπ(τ1)) = τ1⊗̂Mπ(τ1).

Then σ1 ∈ τ1|H1
if and only if Mπ(τ1) ∈Mπ(σ1)|H2

. In addition,

m(τ1|H1
, σ1) = m(Mπ(σ1)|H2

,Mπ(τ1)).

Proof: Take σ2 = Mπ(τ1). Then Mπ(σ2) ∼= τ1. Our assertion follows immediately.
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6.1 Reciprocity for A(0,−k)
Now we specialize in the following setting:

G = Ũ(p+ q, p+ q); π = Ar,s;s,r(0,−k);

G1 = Ũ(p, q); H2 = Ũ(q, p); G2 = Ũ(q + 1, p); H1 = Ũ(p− 1, q).

We have seen that all conditions in the reciprocity theorem are satisfied. We obtain

Corollary 6.1 [Reciprocity for A(0,−k)] Suppose that k ≥ 1. Let τ1 ∈ A(0,−k)|Ũ(p,q) and let

σ1 ∈ A(0,−k)|Ũ(p−1,q). We have σ1 ∈ τ1|Ũ(p−1,q) if and only if

MA(0,−k)(τ1) ∈MA(0,−k)(σ1)|Ũ(q,p).

If σ2 /∈ A(0,−k)|Ũ(q,p), then σ2 /∈MA(0,−k)(σ1)|Ũ(q,p). Finally

m(MA(0,−k)(σ1)|Ũ(q,p),MA(0,−k)(τ1)) = m(τ1|Ũ(p−1,q), σ1).

6.2 Harish-Chandra Parameters and GGP Interlacing Relation

Recall that we define our Harish-Chandra parameter for Ũ(p, q) to be (λ+, λ−) with λ+ ∈ Rp and
λ− ∈ Rq. The numerical sequence λ then parametrizes the L-packets for the discrete series. It is
essentially the infinitesimal character. To work with the their conjecture, we adopt the notation of
Gan-Gross-Prasad by taking

(χ, z), (χ ∈ Rp+q, z ∈ { ± 1}p+q)

as the Harish-Chandra parameter. Then χ+ will be the subsequence with zi = 1 and χ− will be the
subsequence with zi = −1. We may now write D(χ, z) for the discrete series corresponding to the
Harish-Chandra parameter (χ, z). We call z the sign sequence.

From now on, we require χ to be in descending ordering.

Definition 6 Given (χ, z) and (η, t), we mark z by a sequence of + and − and mark t by a sequence
of ⊕ and 	. We line up (the union of) χ and η in a descending ordering. The corresponding sequence
of signs extracted from z and t will be called an (interlacing) sign pattern of (χ, z) and (η, t). We
say that (χ, z) and (η, t) satisfy GGP interlacing relation if an interlacing sign pattern of (χ, z) and
(η, t) contains only the following eight consecutive subsequences of size two

(⊕+), (+⊕), (−	), (	−), (+−), (−+), (⊕	), (	⊕).

In the case that all entries of χ and η are distinct, there will be only one unique sign pattern. Hence
there will be no ambiguity to speak of the (interlacing) sign pattern in this situation. Otherwise,
there are ways to line up χ and η in descending ordering. Hence there will be different possible sign
patterns. If one of these sign pattern meets the requirement of Def. 6, then we say that (χ, z) and
(η, t) satisfy GGP interlacing relation. Our definition is slightly different from the one stated in [GP]
[GGP]. We modify it to make the proof of GGP conjecture easier to read.

In the case there are no negative signs 	 and −, only (+⊕) or (⊕+) are allowed. Then GGP
interlacing relation is the Cauchy interlacing relation:

χ1 ≥ η1 ≥ χ2 ≥ η2 ≥ χ3 . . .

or
η1 ≥ χ1 ≥ η2 ≥ χ2 ≥ η2 . . . .
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If #(χ)−#(η) = ±1, the interlacing relations become unique.

We make the following observation.

Lemma 6.1 Suppose that (χ, z) and (η, t) satisfy the GGP interlacing relation. If their sign pattern
has any of the following adjacent pairs

(+⊕), (⊕+), (−	), (	−),

then by deleting one such pair from the sign pattern and the corresponding entries in χ and η, the
new pair (χ0, z0) and (η0, t0) still satisfy the GGP interlacing relation.

We now state the GGP conjecture that is a reformulation of the original local GGP conjecture (See
Ch 17 and 20 of [GGP], or [GP]). In the introduction, we remark that our reformulation is equivalent
what is stated as Conjecture 12.27 in [GP] for unitary groups.

Gan-Gross-Prasad Conjecture: Let D(χ, z) be a discrete series representation of U(q, p) and
D(η, t) be a discrete series representation of U(q − 1, p). Then D(η, t) ∈ D(χ, z)|U(q−1,p) if and only
if (η, t) and (χ, z) satisfy the GGP interlacing relation and each of these D(η, t) has multiplicity one.

As we have seen, only discrete series can appear in the square integrable representationD(χ, z)|U(q−1,p).
Hence GGP conjecture gives a complete description of the discrete spectrum of D(χ, z)|U(q−1,p). We
shall remark that the multiplicity one theorem has already been proved in [SZ] for all irreducible
unitary representations of U(q, p). In this paper, we shall establish the multiplicity one part of the
GGP conjecture inductively using the reciprocity theorem. This is different from the proof of Sun
and Zhu in nature.

The GGP conjecture for (U(q, p), U(q, p − 1)) can be stated in exactly the same way. We observe
that if D(χ, z) is a discrete series of U(p, q), then D(χ,−z) is a discrete series of U(q, p). If we
identify U(q, p) with U(p, q) by identifying the Hermitian form for U(q, p) with the negative of the
Hermitian form for U(p, q), then D(χ,−z) will be equivalent to D(χ, z). The GGP conjecture for
(U(q, p), U(q, p− 1)) is equivalent to the GGP conjecture for (U(p, q), U(p− 1, q)).

As we have seen, the Harish-Chandra parameters will be either half-integral or integral for the
unitary group U(q, p) depending on the parity of p + q. In addition, all entries of Harish-Chandra
parameters are distinct. Hence for the GGP conjecture, all the entries of χ and η will be distinct.
There is thus no ambiguities how the two Harish-Chandra parameters should line up in descending
ordering. We can then speak of the sign pattern for (χ, z) and (η, t).

Lemma 6.2 If the Harish-Chandra parameters (χ, z) and (η, t) in the GGP conjecture satisfy the
GGP interlacing relation, the sign pattern must start with either with + for (χ1,+1) or 	 for (η1,−1).

Proof: This Lemma is obviously true for p = 0 or q = 1. Applying induction on p and q, our assertion
is then a consequence of Lemma 6.1. �

This lemma is not generally true for all GGP interlacing relations. The key fact we use is that
(χ, z) comes from U(q, p) and (η, t) comes from U(q − 1, p). This lemma will be crucial in our proof
of the GGP conjecture, yet not so obvious from the definition of the GGP interlacing relation.

7 Proof of Gan-Gross-Prasad Conjecture for U(p, q)

We need the following lemma to prepare for our proof.
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Lemma 7.1 Let H be a subgroup of G. Let σ ∈ Ĥ and π ∈ Ĝ. Then σ ∈ π|H if and only if
σ∗ ∈ π∗|H .

Clearly, σ ∈ π|H if and only if σc ∈ πc|H . This lemma follow easily from the fact that σ∗ ∼= σc and
π∗ ∼= πc.

Lemma 7.2 Let H be a subgroup of G. Let σ ∈ Ĥ and π ∈ Ĝ. Let χ be a unitary character of G.
Then σ ∈ π|H if and only if σ ⊗ [χ|H ] ∈ [π ⊗ χ]|H .

We shall also need a restatement of Theorem 4.2 in terms of (χ, z). Here we switch p with q.

Proposition 7.1 Let p+ q = r + s = n. Then the discrete spectrum of Ar,s;s,r(0,−k)|Ũ(p,q)Ũ(q,p) is
the direct sum of

[D(η,−t′)∗ ⊗ det−k] �D(η, t)

where

#{ηi > 0 | ti = 1}+ #{ηi < 0 | ti = −1} = r, (15)

#{ηi > 0 | ti = −1}+ #{ηi < 0 | ti = 1} = s, (16)

#{ηi ∈ (−k, 0) | ti = 1} = #{ηi ∈ (−k, 0) | ti = −1}, (17)

t′i =

{
ti if ηi /∈ (−k, 0)
−ti if ηi ∈ (−k, 0).

(18)

All entries in η are half integers.

Proof: For ηi /∈ (−k, 0), ηi + k remains either positive or negative as ηi. By the operation of duality
between U(p, q) and U(q, p), the corresponding ti changes sign. For ηi ∈ (−k, 0), ηi + k takes the
opposite sign of ηi as a half integer. By the operation of duality between U(p, q) and U(q, p), the
corresponding ti does not changes sign. �

Many important theorems in the representation theory of semisimple Lie groups are proved by in-
duction. Our situation is not any different. We start our induction on n = p+ q.

Proof of the Gan-Gross-Prasad Conjecture: When n = 2, we have either G = U(1, 1) or
G = U(2). In these cases, it is well-known that the GGP conjecture is true.

Let us assume that the GGP conjecture is true for any U(p, q) with p + q = n. Either we will
have G = U(0, n + 1), G = U(n + 1, 0) or G = U(q + 1, p) for q ≥ 0 and p ≥ 1. The irreducible
representations of U(n + 1) are parametrized by the highest weights. The branching law has been
known to obey the Cauchy interlacing relation and the multiplicity one theorem. In other words,
σµ ∈ πλ|U(n) if and only if µ and λ satisfy the Cauchy interlacing relation. In this case, the interlacing
relation allows equalities. For compact groups, the Harish-Chandra parameter is the infinitesimal
character. It can be obtained from the highest weight by adding the half sum of positive roots of the
group. It is not hard to see that σ ∈ π|U(n) if and only if the Harish-Chandra parameters of π and
σ satisfy the (strict) Cauchy interlacing relation. As we remarked earlier, when G is compact, the
GGP interlacing relation is the Cauchy interlacing relation. Hence the GGP conjecture is true for
U(0, n+ 1) and U(n+ 1, 0).

Now consider U(q + 1, p). Here q ≥ 0 and p ≥ 1. We would like to prove the GGP conjecture for
U(q + 1, p). Let (χ, z) be the Harish-Chandra parameter of a discrete series representation of U(q +
1, p). Obviously #(zi = 1) = q + 1 and #(zi = −1) = p. Both of these numbers are greater or equal
to 1. Consider the sign pattern of (χ, z). Let the first sign change happen between χl and χl+1.
In other words l is the smallest number such that zlzl+1 = −1. Let k = χl − χl+1. Then k ≥ 1 is an
integer. Consider now D(χ, z) ⊗ det−χl . In order to do this, we may need to go to the covering of
U(q + 1, p).
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1. If p + q + 1 is even, then p + q is odd. Then Harish-Chandra parameters for U(q + 1, p) have

half integral entries. In this case, we will go to the covering U(q + 1, p)
√
detp+q

.

2. If p + q + 1 is odd, then p + q is even. The Harish-Chandra parameters for U(q + 1, p) have

integral entries. In this case, we may still go to the covering U(q + 1, p)
√
detp+q

which splits.

In any case, this setup is compatible with the double covering involved in Howe’s correspondence.

Due to Lemma 7.2, without loss of generalities, we assume that π = D(χ, z) is a discrete series

representation of U(q + 1, p)
√
detp+q

with

χ1 > χ2 > . . . > χl(= 0) > χl+1(= −k) > χl+2 > . . . > χp+q+1.

Let π′ = D(χ′, z′) where χ′ and z′ are obtained by deleting both the l-th entries and the l + 1-th

entries of χ and z. Then π′ is a discrete series representation of U(q, p− 1)
√
detp+q

. Now we choose
our (r, s) in the following way:

1. Case (a): If zl = 1 and zl+1 = −1, let

s =#{χ′i < 0 | z′i = 1},
r = #{χ′i > 0 | z′i = 1}+#{χ′i < 0 | z′i = −1}+ 1 = l + #{χ′i < 0 | z′i = −1}.

(19)

Then we have

#{χ′i < 0 | z′i = −1} = r − l = p− 1, (20)

#{χ′i < 0 | z′i = 1} = s, (21)

#{χ′i > 0 | z′i = 1} = q − s = l − 1. (22)

2. Case (b): If zl = −1 and zl+1 = 1, let

r =#{χ′i < 0 | z′i = −1},
s = #{χ′i < 0 | z′i = 1}+ 1+#{χ′i > 0 | z′i = −1} = #{χ′i < 0 | z′i = 1}+ l.

(23)

Then we have

#{χ′i < 0 | z′i = −1} = r, (24)

#{χ′i < 0 | z′i = 1} = s− l = q, (25)

#{χ′i > 0 | z′i = −1} = l − 1 = p− 1− r. (26)

In both cases p+ q = r + s. Denote Ar,s;s,r(0,−k) by A(0,−k). By Cor 5.1, we have

[D(χ′,−z′)∗ ⊗ det−k] �D(χ, z) ∈ A(0,−k)|Ũ(p−1,q)Ũ(q+1,p).

We apply our Cor. 6.1, Equations 13 and 14, Prop. 7.1. Then D(η, t) ∈ D(χ, z)|Ũ(q,p) if and only if
the following are true

1. D(η, t) ∈ A(0,−k)|Ũ(q,p). This is equivalent to equalities in Prop 7.1. Let d = #{ηi > 0 | ti =

−1}. Then #{ηi < 0 | ti = −1} = p− d and

#{ηi < 0 | ti = 1} = s− d, #{ηi > 0 | ti = 1} = q − s+ d;

#{ηi ∈ (−k, 0) | ti = 1} = #{ηi ∈ (−k, 0) | ti = −1}.

All the counting numbers here must be nonnegative and ηi’s are half integers.
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2. D(χ′,−z′)∗ ⊗ det−k ∈ D(η,−t′)∗ ⊗ det−k|Ũ(p−1,q) which is equivalent to

D(χ′,−z′) ∈ D(η,−t′)|Ũ(p−1,q).

Here t′ is defined as in Prop. 7.1.

Suppose that D(η, t) ∈ D(χ, z)|Ũ(q,p). Then D(χ′,−z′) ∈ D(η,−t′)|Ũ(p−1,q). By the induction hy-

pothesis, (η,−t′) and (χ′,−z′) must satisfy the GGP interlacing relation. Again we use ⊕, 	 for the
sign patterns of η, and +, − for the sign patterns of χ and χ′. By Lemma 6.2, the sign pattern of
(η,−t′) and (χ′,−z′) must start with ⊕ for (η1,+1) or − for (χ′1,−1). Here −t′ has one more +1
than −z′. It follows that (η, t′) and (χ′, z′) also satisfy the GGP interlacing relation and the sign
pattern must start with either 	 for (η1,−1) or + for (χ′1,+1).

Suppose that l > 1. Then χ′i = χi(i ≤ l − 1). Consider the sign pattern of (η, t′) and (χ′, z′)
before χl = 0. Here χl is not in the sequence.

1. Case (a): If zi = z′i = 1(i < l), there are l − 1 (+)’s, q − s + d = l − 1 + d (⊕)’s and d (	)’s,
before χl = 0. Since we start with either 	 or +, by the GGP interlacing relation, the ending
sign before χl = 0 must be ⊕. So the sign sequence between 0 and −k will be

0̂	⊕	⊕ . . .	⊕−̂k

extracted from (η, t′) alone. This sequence could be empty. The first sign after χl+1 = −k
should be either + or 	.

In any case, go back to the sign pattern of the (χ, z) and (η, t) sequence. The last sign before
χl = 0 will again be ⊕. After this, the sign pattern will go as follows

+⊕	⊕	 . . .⊕	− .

Here + comes from χl = 0, − comes from χl+1 = −k, what are between come from flipping
the signs from t′ to t. The sign pattern after χl+1 = −k comes from the sign pattern of (η, t′)
and (χ′, z′) after −k. It will start with either + or 	. Now we have seen that (χ, z) and (η, t)
satisfy the GGP interlacing relation.

2. If zi = z′i = −1(i < l), there are l − 1 (−)’s, q − s + d = −l + d (⊕)’s and d (	)’s, before
xl = 0. Here obviously d ≥ l. Since we must start with 	 (no + here) , by the GGP interlacing
relation, the ending sign before χl = 0 must be 	. Hence the sign sequence between 0 and −k
will be

0̂⊕	⊕	 . . .⊕	−̂k

extracted from (η, t′) alone. This sequence could be empty. The first sign after χl+1 = −k
should be either − or ⊕.

In any case, go back to the sign pattern of the (χ, z) and (η, t) sequence. The last sign before
χl = 0 will again be 	. After this, the sign pattern will go as follows

−	⊕	⊕ . . .	⊕+ .

Here − comes from χl = 0, + comes from χl+1 = −k, what are between come from the flipping
the signs from t′ to t. The signs after χl+1 = −k come from (η, t′) and (χ′, z′) after −k. It will
start with either − or ⊕. Now we have seen that (χ, z) and (η, t) satisfy the GGP interlacing
relation.

Suppose that l = 1. Then χ′i < −k for all i. We again consider the sign pattern of (η, t′) and (χ′, z′).
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1. Case (a): z1 = 1 and z2 = −1. Then by Equation 19

s = #{χ′i < 0 | z′i = 1} = q, r = #{χ′i < 0 | z′i = −1}+ 1 = p− 1 + 1 = p.

As for (η, t′), we have

d = #{ηi > 0 | ti = −1}, #{ηi > 0 | ti = 1} = q − s+ d = d.

Hence there are d (⊕)’s, d (	)’s and no (+)’s, no (−)’s before χ1 = 0. Then sign pattern of
(χ′, z′) and (η, t′) must start with 	 and goes as follows

2d︷ ︸︸ ︷
	⊕	⊕ . . .	⊕ 0̂

#{0>ηi>−k}︷ ︸︸ ︷
	⊕	⊕ . . .	⊕−̂k

then 	 or + immediately after that. In any case, if we insert + into the position of 0̂, insert
− into the position of −̂k and switch the signs between from t′ to t, then we see that the sign
pattern of (χ, z) and (η, t) must be

2d︷ ︸︸ ︷
	⊕	⊕ . . .	⊕+

#{0>ηi>−k}︷ ︸︸ ︷
⊕	⊕	 . . .⊕	−,

followed by either 	 or + and the rest of the sign pattern of (χ′, z′) and (η, t′) after −k. Hence
(χ, z) and (η, t) satisfy the GGP interlacing relation. Notice that if d = 0 or #{0 > ηi > −k} =
0, our argument is still valid.

2. Case (b): z1 = −1 and z2 = 1. Then by Equation 23 we have

r = #{χ′j < 0 | z′i = −1} = p− 1, s = #{χ′i < 0 | z′i = 1}+ 1 = q + 1.

As for (η, t′), we have

d = #{ηi > 0 | ti = −1}, #{ηi > 0 | ti = 1} = q − s+ d = d− 1.

We must have d ≥ 1. Then sign pattern of (χ′, z′) and (η, t′) must start with 	 and goes as
follows

	
2d−2︷ ︸︸ ︷

⊕	⊕	 . . .⊕	 0̂

#{0>ηi>−k}︷ ︸︸ ︷
⊕	⊕	 . . .⊕	−̂k,

then ⊕ or − immediately after that. If we insert − into the position of 0̂, insert + into the
position of −̂k and switch the signs between from t′ to t, then we see that the sign pattern of
(χ, z) and (η, t) must go as follows

	
2d−2︷ ︸︸ ︷

⊕	⊕	 . . .⊕	−
#{0>ηi>−k}︷ ︸︸ ︷

	⊕	⊕ . . .	⊕+

followed by either ⊕ or − and the rest of the sign pattern of (χ′, z′) and (η, t′) after −k. Hence
(χ, z) and (η, t) satisfy the GGP interlacing relation. Notice that if d = 1 or #{0 > ηi > −k} =
0, our argument is still valid.

Conversely, if (χ, z) and (η, t) satisfy the GGP interlacing relation, we can go backwards and show
that (χ′, z′) and (η, t′) satisfy the GGP interlacing relation and D(η, t) ∈ A(0,−k)|Ũ(q,p). Hence

D(η, t) ∈ D(χ, z)|Ũ(q,p).

The multiplicity one part of the conjecture follows from the induction process and the reciprocity
theorem. �

We shall make one remark concerning the proof. One can start the proof based on Theorem 5.1,
rather than Cor. 5.1. But the proof will be a lot messier. Cor 5.1 allows us to make the χ-part of
the interlacing relation rather clean. Thus the proof is mostly concerned with sorting out the η-part.
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8 Inductive Construction of Aq(λ) and Branching Laws

We can now extract the following theorem from the proof of GGP. It is simply the combination of
Cor 5.1 with Thm. 2.3.

Proposition 8.1 Let π = D(χ, z) is a discrete series representation of U(q + 1, p)
√
detp+q

with
integral χ :

χ1 > χ2 > . . . > χl(= 0) > χl+1(= −k) > χl+2 > . . . > χp+q+1.

Let π′ = D(χ′, z′) where χ′ and z′ are obtained by deleting both the l-th entries and the l + 1-th
entries of χ and z. Then

D(χ, z) ∼= Ar,s;s,r(0,−k)∞ ⊗Ũ(p−1,q) [D(χ′,−z′)⊗ detk],

where r, s are given by Equation 19 and Equation 23.

By twisting D(χ, z),Ar,s;s,r(0,−k) and D(χ′,−z′) by certain det characters simultaneously, we obtain

Theorem 8.1 All discrete series representations of U(p, q) can be constructed inductively by in-
variant tensor products with various Ar,s;s,r(k1, k2) from an irreducible unitary representation of a
compact group U(|p− q|).
It is perhaps a good place to start discussing inductive construction of discrete series for other groups.
The important Aq(λ) are the “middle dimensional ”ones. For the group Mp2n(R), there are Aq(λ)

with Levi group Ũ(p, q) : (p + q = n) and λ being a character of Ũ(p, q). We may write them as
Ap,q(k). Depending on whether k is an integer or half integer and whether n is even or odd, one
obtain a unitary representation of either Sp2n(R) or Mp2n(R). For the group O∗(2n), again there
are Aq(λ) with Levi group U(p, q) : (p + q = n) and λ being a character of U(p, q). We may write
them as Ap,q(k). Then we can state the following conjecture.

Conjecture 2 All discrete series representation of Mp2n(R) can be constructed inductively by in-
variant tensor product

Hσ ⊗Mp2n−2(R) Ap,q(k)∞

for some k and p, q with p+ q = 2n− 1, where σ is a discrete series representation of Mp2n−2(R) .
All discrete series representation of O∗(2n) can be constructed inductively by invariant tensor product

Hσ ⊗O∗(2n−2) Ap,q(k)∞

for some k and p, q with p+ q = 2n− 1 where σ is a discrete series representation of O∗(2n− 2) .

For the group Sp(p, q) and O(2p, 2q), we may consider Aq(λ) with the Levi factor U(p, q). Inductive
construction of discrete series in these situations are much more delicate and require a lot more work.
Nevertheless, all these middle dimensional Aq(λ)’s are expected to have similar properties as in the
U(p, q)-case. More specifically, let (G(V1), G(V2)) be diagonally embedded in G(V1 ⊕ V2). Consider
Ap,q(k) of G(V1 ⊕ V2). Then the discrete spectrum of Ap,q(k)|G(V1)G(V2) is expected to have multi-
plicity one and satisfy the hypothesis of the reciprocity theorem.

Problem: Determine the discrete spectrum of Ap,q(k)|G(V1)×G(V2).

By solving this problem and modifying our approach, one may be able to prove the local GGP
conjecture for some other real groups inductively. Currently, the main obstacle towards generalizing
our approach to other groups is that one can only obtain the unipotent Ap,q(k) through theta lifting
of one dimensional representations. For other Ap,q(k), a geometric or analytic realization is required
before any branching law can be established. We shall mention the recent work by Savin that treats
the branching law of Aq(λ)|Sp2(R)×SP2(R) for Sp4(R). See the appendix in [GG].

Finally, the inductive construction is expected to be potentially more general.
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Conjecture 3 All Aq(λ)’s for U(p, q), Mp2n(R) and O∗(2n) can be constructed inductively from
an irreducible finite dimensional unitary representation by invariant tensor products with various
Ap,q(λ).

The reader should perhaps consult our other papers [Hen] [HA] to see how invariant tensor product
can be used to construct unipotent representations.
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