Quantum Induction

Hongyu He Department of Mathematics & Statistics, Georgia State University *†

International Congress of Mathematician, Beijing, August 26, 2002

1 Introduction

Let G be a semisimple Lie group. Let P be a parabolic subgroup. Let MAN be the Langlands decomposition of P. Let τ be an irreducible unitary representation of M. Let \mathfrak{a} be the Lie algebra of A. Let λ be in the real dual of \mathfrak{a} . Let ρ be the half sum of the positive restricted roots in $\Sigma(\mathfrak{g},\mathfrak{a})$. Then

$$U(P, \tau, \lambda) = Ind_{MAN}^G \tau \otimes \exp(-\rho + i\lambda)$$

is unitary. This is the unitary parabolic induction. For "generic" λ , $U(P, \tau, \lambda)$ is irreducible.

Question: Can unitary parabolic induction produce all irreducible unitary representations?

Answer: No. There are various reasons.

1. Even for $G = SL(2,\mathbb{R})$, there are discrete series and two limit representations, and complementary series representations besides the trivial representation. There are systematic ways of constructing discrete series and complentary series.

^{*}email:matjnl@livingstone.cs.gsu.edu

[†]AMS Subject Primary 22E45, 22E46

- 2. For $G = Mp_{2n}(\mathbb{R})$, the double covering of $Sp_{2n}(\mathbb{R})$, there is the Segal-Shale-Weil representation, also called the oscillator representation, the metaplectic representation. They can not be obtained from the above constructions except perhaps n = 1 or 2.
- 3. In general, for classical groups of type I, there are irreducible unitary representations of low rank in the sense of Howe. This class of representations includes most representations constructed by Kashiwara-Vergne, Howe, Li, Sahi, Tan, Binegar-Zierau, Brylinski-Kostant, Huang, Zhu (see [KV], [Ho84], [Sahi], [BZ], [HT], [BK], [ZH], [HL] and the references within them). Low rank irreducible unitary representations are classified completely by Jian-Shu Li ([Li89]).
- 4. There are irreducible unitary representations not on any of the lists above, as conjectured by Barbasch-Vogan and Arthur.

Our motivation is to systematically construct some of these representations in 4).

Remark: The equivalence classes of irreducible unitary representations of $GL(n,\mathbb{R})$, $GL(n,\mathbb{C})$ and $GL(n,\mathbb{H})$ are classified by D. Vogan. The equivalence classes of irreducible unitary representations of $O(n,\mathbb{C})$ and $Sp(n,\mathbb{C})$ are classified by D. Barbasch. We shall therefore focus on the rest of the classical groups.

2 Main Results

In this talk, for simplicity, I will consider $G = Mp_{2m+2n}(\mathbb{R})$. Let (p,q) be such that $p+q \leq m+n$. Consider the dual pair (O(p,q),G). Let $\mathcal{E}(p,q)$ be the theta lift of trivial representation of O(p,q). If p+q odd, then $\mathcal{E}(p,q)$ is a genuine irreducible unitary representation of G. If p+q even, then $\mathcal{E}(p,q)$ is an irreducible unitary representation of $Sp_{2n+2m}(\mathbb{R})$. These representations are studied by Howe, Li, Huang-Li and others. Fix a maximal compact subgroup K in $Mp_{2n+2m}(\mathbb{R})$.

Let
$$K_1 = K \cap Mp_{2m}(\mathbb{R})$$
 and $K_2 = K \cap Mp_{2n}(\mathbb{R})$.

Definition 1 Let π be an irreducible unitarizable $(K_1, \mathfrak{sp}_{2\mathfrak{m}}(\mathbb{R}))$ -module. Let E(p,q) be the $(K, \mathfrak{sp}_{2\mathfrak{n}+2\mathfrak{m}})$ -module of $\mathcal{E}(p,q)$. Formally define a Hermitian form (,) on $E(p,q)\otimes \pi$ by integrating the matrix coefficients of E(p,q) against the matrix coefficients of π :

$$(\phi \otimes u, \psi \otimes v) = \int_{Mp_{2m}(\mathbb{R})} (\mathcal{E}(p,q)(g)\phi, \psi)(\pi(g)u, v)dg.$$

Suppose that (,) converges. Define $Q(2m; p, q; 2n)(\pi)$ to be $E(p, q) \otimes \pi$ modulo the radical of (,). Then $Q(2m; p, q; 2n)(\pi)$ is a $(K_2, \mathfrak{sp}_{2n})$ -module.

Theorem 1 (Main Theorem: Unitarity and Irreducibility, [Heq]) Suppose $2n - p - q \ge p + q - 2m - 2$ and $m . Suppose <math>\pi$ is a unitary representation such that every leading coefficient v satisfies

$$\Re(v) \leq (\frac{p+q}{2} - 2m - 1, \frac{p+q}{2} - 2m, \dots, \frac{p+q}{2} - m - 2).$$

If (,) does not vanish, then $Q(2m; p, q; 2n)(\pi)$ is irreducible and unitary.

Main idea of the Proof: Under our hypothesis $Q(2m; p, q; 2n) = \theta(p, q; 2n)\theta(2m; p, q)$ (see [Heq] and [Heu]).

Similar to parabolic induced representation $Ind_P^G \tau \otimes \exp(-\rho + i\lambda)$ whose vectors are in

$$Hom_P(C_c^{\infty}(G), \tau \otimes \exp(-\rho + i\lambda)),$$

quantum induced $Q(2m; p, q; 2n)(\pi)$ lies in

$$Hom_{K_1,\mathfrak{s}p_{2m}}(E(p,q),\pi).$$

However, $Ind_P^G \tau \otimes \exp(-\rho + i\lambda)$ has a nice geometric description. It consists of sections of some homogeneous vector bundle over G/P. In contrast, quantum induction does not possess this kind of classical interpretation except for the limit case p + q = n + m + 1.

Theorem 2 (Quantum Induction and Parabolic Induction, [1])

$$Ind_{MSp_{2m}(\mathbb{R})GL_{n-m}N}^{Mp_{2n}(\mathbb{R})}\pi\otimes\chi^{\alpha}=\oplus_{p+q=m+n+1,\ p-q\equiv\alpha\pmod{4}}\mathcal{Q}(2m;p,q;2n)(\pi).$$

This theorem is proved by using a theorem of Kudla-Rallis which is more explicitly given in [LZ].

Theorem 3 (Infinitesimal Character) Under the same hypothesis as in the Main Theorem, suppose $Q(*)(\pi) \neq 0$.

If p + q is even, then

$$\mathcal{I}(Q(2m; p, q; 2n)(\pi)) = \mathcal{I}(\pi) \oplus (\frac{p+q}{2} - m - 1, \frac{p+q}{2} - m - 2, \dots, 0)$$

$$\oplus (n - \frac{p+q}{2}, n - \frac{p+q}{2} - 1, \dots, 1)$$
(1)

If p + q is odd, then

$$\mathcal{I}(Q(2m; p, q; 2n)(\pi)) = \mathcal{I}(\pi) \oplus (\frac{p+q}{2} - m - 1, \frac{p+q}{2} - m - 2, \dots, \frac{1}{2})$$

$$\oplus (n - \frac{p+q}{2}, n - \frac{p+q}{2} - 1, \dots, \frac{1}{2})$$
(2)

This is proved in [Heq] using a theorem of Przebinda regarding the daulity correspondence of infinitesimal characters [PR96], see also [Li99]. This theorem is consistent with the behavior of infinitesimal characters under parabolic induction. Recall that for parabolic induction the infinitesimal character

$$\mathcal{I}(U(P, \tau, \lambda)) = \mathcal{I}(\tau) \oplus i\lambda.$$

(see Theorem 8.22 of [KN], for example).

3 Some Problems

Conjecture 1 The Main Theorem and the theorem concerning infinitesimal character hold without the assumption on the leading exponents of π .

Our definition of quantum induction is analytic. Motivated by the work of Howe [Ho89], one may attempt to give a purely algebraic definition.

Conjecture 2 Let $\mathcal{R}(Mp_{2m}(\mathbb{R}), Mp_{2n}(\mathbb{R}))$ be the irreducible $(\mathfrak{s}p_{2m} \oplus \mathfrak{s}p_{2n}, K_1K_2)$ modules occurring as a quotient in E(p,q). Let $\mathcal{R}(Mp_{2m}(\mathbb{R}))$ be the irreducible $(\mathfrak{s}p_{2m}, K_1)$ -modules occurring as a quotient in E(p,q). Let $\mathcal{R}(Mp_{2n}(\mathbb{R}))$ be the irreducible $(\mathfrak{s}p_{2n}, K_2)$ -modules occurring as a quotient in E(p,q).

Then $\mathcal{R}(Mp_{2m}(\mathbb{R}), Mp_{2n}(\mathbb{R}))$ gives a one-to-one correspondence between $\mathcal{R}(Mp_{2m}(\mathbb{R}))$ and $\mathcal{R}(Mp_{2n}(\mathbb{R}))$.

This one-to-one correspondence, if proved, can be regarded as the algebraic version of $\mathcal{Q}(2m; p, q; 2n)$.

References

- [Ar83] J. Arthur, "On some Problems suggested by the trace formula", Leture Notes in Mathematics, Vol 1041, Springer, 1984, (1-50).
- [BZ] B. Binegar and R. Zierau, "Unitarization of a Singular Representation of $SO_e(p,q)$ ", Commun. Math. Phys. (Vol. 138), 1991, (245-258).
- [BK] R. Brylinski and B. Kostant, "Minimal Representations, geometric quantization, and unitarity", *Proc. Natl. Acad. Sci. USA* (Vol. 91), 1994, (6026-6029).
- [Ho84] R. Howe, "Small Unitary Representations of Classical Groups" Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984), (121-150), Math. Sci. Res. Inst. Publ., 6, Springer, 1987.
- [Ho89] R. Howe, "Transcending Classical Invariant Theory" Journal of American Mathematical Society (v2), 1989 (535-552).
- [HT] R. Howe and Eng-Chye Tan, "Homogeneous Functions on Light Cones: The Infinitesimal Structure of Some Degenerate Principal Series Representations", *Bull. Amer. Math. Soc.* (Vol. 28, Num. 1), 1993, (1-74).
- [He00] Hongyu He, "Theta Correspondence I-Semistable Range: Construction and Irreducibility", Communications in Contemporary Mathematics (Vol 2), 2000, (255-283).
- [Heu] Hongyu He, "Unitary Representations and Theta Correspondence for Classical Groups of Type I", to appear in *Journal of Functional Analysis*, 2002.
- [Heq] Hongyu He, "Theta Correspondence and Quantum Induction", submitted to *Invent. Math.*, 2002.
 - [1] Hongyu He, "Unipotent Representations and Quantum Induction", submitted to Annals of Math., (2002).

- [HL] Jing-Song Huang, Jian-Shu Li, "Unipotent Representations Attached to Spherical Nilpotent Orbits" American Journal of Mathematics (vol. 121), 1999, (497-517).
- [KN] A. Knapp, Representation Theory on Semisimple Groups: An Overview Based on Examples Princeton University Press, 1986.
- [KV] M. Kashiwara, M. Vergne, "On the Segal-Shale-Weil Representations and Harmonic Polynomials", *Invent. Math.* (44), 1978, (1-47).
- [KR] Stephen Kudla and Stephen Rallis, "Degenerate Principal Series and Invariant Distribution", Israel Journal of Mathematics, (Vol. 69, No. 1), 1990, (25-45).
- [LZ] S. T. Lee, C-B. Zhu, "Degenerate Principal Series and Local Theta Correspondence II", *Israel Journal of Mathematics*, 100, 1997, (29-59).
- [Li89] Jian-Shu Li, "On The Classification of irreducible low rank unitary representations of classical groups", *Compositio Mathematica*, (Vol 71), 1989, (29-48).
- [LI89] J-S. Li, "Singular Unitary Representation of Classical Groups" *Inventiones Mathematicae* (V. 97),1989 (237-255).
- [Li99] "The correspondences of infinitesimal characters for reductive dual pairs in simple Lie group", *Duke Journal of Mathematics*, 1999, no. 2, (347–377).
- [PR96] Tomasz Przebinda, "The Duality Correspondence of Infinitesimal Characters" Colloq. Math. (v 70), 1996 (93-102).
- [Sahi] S. Sahi, "Explicit Hilbert spaces for certain unipotent representations", *Invent. Math.*, (Vol. 110), 1992, (409–418).
- [VO86] D. Vogan, "Representations of Reductive Lie Groups" *Proceedings* of the International Congress of Mathematicians Vol. 1, 2 (Berkeley, Calif.), 1986, (245-266).

- [VO94] D. Vogan, "The Orbit Method and Unitary Representations for Reductive Lie Groups" Algebraic and Analytic Methods in Representation Theory, 1994, (243-339).
- [ZH] Chen-Bo Zhu, Huang-Jing Song, "On Certain Small Representations of Indefinite Orthogonal Groups" Representation Theory (Vol. 1), 1997, (190-206).