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Abstract

In this paper, we define invariant tensor product and study invariant tensor products as-
sociated with discrete series representations. Let G(V1) × G(V2) be a pair of classical groups
diagonally embedded in G(V1 ⊕ V2). Suppose that dimV1 < dimV2. Let π be a discrete series
representation of G(V1 ⊕ V2). We prove that the functor π ⊗G(V1) ∗ maps unitary representa-
tions of G(V1) to unitary representations of G(V2). Here we enlarge the definition of unitary
representations by including the zero dimensional “representation ”.

1 Invariant Tensor Products

Various forms of invariant tensor products appeared in the literature implicitly, for example, in
Schur’s orthogonality for finite groups ([Se]). In many cases, they are employed to study the
space HomG(π1, π2) where one of the representations π1 and π2 is irreducible. In this paper, we
formulate the concept of invariant tensor product uniformly. We also study the invariant tensor
functor associated with discrete series representations for classical groups. For motivations and
applications, see [Li1], [He00], [GGP].

Definition 1 Let G be a locally compact topological group and dg be a left invariant Haar
measure. Let (π,Hπ) and (π1, Hπ1

) be two unitary representations of G. Let V and V1 be two
dense subspaces of Hπ and Hπ1

. Formally, define the averaging operator

L : V ⊗ V1 → (V ⊗ V1)∗R

as follows, ∀ u, v ∈ V, u1, v1 ∈ V1,

L(v ⊗ v1)(u⊗ u1) =

∫
G

(
(π ⊗ π1)(g)(v ⊗ v1), (u⊗ u1)

)
dg (1)

=

∫
G

(π(g)v, u)(π1(g)v1, u1)dg. (2)

Suppose that L is well-defined. The image of L will be called the invariant tensor product.
It will be denoted by V ⊗G V1. Whenever we use the notation V ⊗G V1, we assume V ⊗G V1 is
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well-defined, that is, the integral ( 1) converges for all u, v ∈ V, u1, v1 ∈ V1. Denote L(v ⊗ v1)
by v ⊗G v1. Define

(v ⊗G v1, u⊗G u1)G =

∫
G

(π(g)v, u)(π1(g)v1, u1)dg.

For any unitary representation (π,H) of G, let (πc,Hc) be the same unitary representation of
G equipped with the conjugate linear multiplication. If V is a subspace of H, let V c be the
corresponding subspace of Hc.

Lemma 1.1 Let G be a unimodular group. Suppose that V ⊗G V1 is well-defined. Then the
form ( , )G is a well-defined Hermitian form on V ⊗G V1.

The main result proved in this paper is as follows.

Theorem 1.1 Let G(m + n) be a classical group of type I with m > n. Let (G(n), G(m)) be
diagonally embedded in G (see Def. 2). Suppose that (π,Hπ) is a discrete series representation
of G(m + n) and (π1,H1) is a unitary representation of G(n). Let H∞π be the space of smooth
vectors in Hπ. Then H∞π ⊗G(n)H1 is well-defined. Suppose that H∞π ⊗G(n)H1 6= 0. Then ( , )G(n)

is positive definite. Furthermore, (H∞π ⊗G(n)H1, ( , )G(n)) completes to a unitary representation
of G(m).

2 Example: π1 Irreducible

Example I: Let G be a compact group. Let (π,Hπ) and (π1, Hπ1
) be two unitary representa-

tions of G. Then Hπ ⊗G Hπ1
is always well-defined. Suppose that π1 is irreducible. Then the

dimension of Hπ ⊗G Hπ1 is the the multiplicty of π∗1 occuring in Hπ.

Example II: Let G be a real reductive group. Let π and π1 be two discrete series represen-
tations. Then Hπ ⊗G Hπ1

is always well-defined. It is one dimensional if and only if π1 ∼= π∗.
Otherwise, it is zero dimensional.

Theorem 2.1 Let π1 be an irreducible unitary representation of G. Suppose that V1 and V
are both closed under the action of G. Suppose that V1 ⊗G V is well-defined. Then L induces
an injection from V1 ⊗G V to HomG(Vc,Vh

1), the space of G-equivariant homomorphisms from
V c to the Hermitian dual V h1 .

Proof: For each v1 ∈ V1, v, u ∈ V , define L(v1 ⊗ v)(u) ∈ V h1 as follows:

∀u1 ∈ V1, L(v1 ⊗ v)(u)(u1) = (v1 ⊗ v, u1 ⊗ u)G.

We have for every λ ∈ C,

L(λv1 ⊗ v)(u)(u1) = λL(v1 ⊗ v)(u)(u1);

L(v1 ⊗ λv)(u)(u1) = λL(v1 ⊗ v)(u)(u1);

L(v1 ⊗ v)(λu)(u1) = λL(v1 ⊗ v)(u)(u1);

L(v1 ⊗ v)(u)(λu1) = λL(v1 ⊗ v)(u)(u1).
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We see that L(v1⊗ v)(u) is in the Hermitian dual of V1. In addition, L(v1⊗ v) is G-equivariant:

L(v1 ⊗ v)(π(g)u)(u1) =

∫
h∈G

(π1(h)v1, u1)(π(h)v, π(g)u)dh (3)

=

∫
h∈G

(π1(h)v1, u1)(π(g−1h)v, u)dh (4)

=

∫
h∈G

(π1(gh)v1, u1)(π(h)v, u)dh (5)

=

∫
h∈G

(π1(h)v1, π1(g−1)u1)(π(h)v, u)dh (6)

= L(v1 ⊗ v)(u)(π1(g−1)u1) (7)

= [πh1 (g)L(v1 ⊗ v)(u)](u1). (8)

Here d h is a left invariant measure if G is not unimodular. Now it is easy to see that L(v1 ⊗
v)(u) = 0 for every u if and only if v1 ⊗G v = 0. So

L : V1 ⊗G V → HomG(Vc,Vh
1)

is an injection. �

Corollary 2.1 Under the same assumption as in Theorem 2.1, let G be a real reductive group
and K a maximal compact subgroup of G. Suppose that V and V1 are both smooth and K-finite.
Then L induces an injection from V1 ⊗G V into Homg,K(Vc,V1).

Proof: When V is K-finite, L(v1 ⊗ v)(u) will land in the K-finite subspaces of V h1 which is
isomorphic to V1. �

3 A Geometric Realization

Let G be a Lie group and dg a left invariant Haar measure. Let X be a manifold with a
continuous free (right) G action. Suppose that X/G is a smooth manifold. Let (π,H) be a
unitary representation of G. For any f ∈ Cc(X), v ∈ H, define

L0(f ⊗ v)(x) =

∫
G

f(xg)π(g)vdg.

Then L0(f⊗v) is a H-valued function on X. We shall see that it realizes f⊗G v in the following
sense.

Theorem 3.1 Let G be a Lie group and dg a left invariant Haar measure. Let X be a manifold
with a continuous free (right) G action such that the topological quotient X/G is a smooth
manifold. Suppose there exist measures (X,µ) and (X/G, d[x]) such that∫

X

f(x)dµ(x) =

∫
[x]∈X/G

∫
G

f(xg)dgd[x].

Let Cc(X) be the set of continuous functions with compact support. Let (π,H) be a representation
of G. Then L0(f ⊗ v) ∈ Cc(X ×G H, X/G) where Cc(X ×G H, X/G) is the set of continuous
compactly supported sections of the vector bundle

X ×G H → X/G.
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Furthermore,
Cc(X)⊗G H ∼= Lo(Cc(X)⊗H),

and for every f ∈ Cc(X) and v ∈ H,

(f ⊗G v, f ⊗G v)G = (L0(f ⊗ v),L0(f ⊗ v))X/G.

Proof: Let f ∈ Cc(X) and v ∈ H. It is easy to see that L0(f ⊗ v) is compactly supported in
X/G. In addition

L0(f ⊗ v)(xg1) =

∫
G

f(xg1g)π(g)vdg =

∫
G

f(xg)π(g−11 g)vdg = π(g1)−1L0(f ⊗ v)(x).

So L0(f ⊗ v) ∈ Cc(X ×G H, X/G). Observe that

(f ⊗G v, f ⊗G v)G (9)

=
∫
G

(R(g)f, f)(π(g)v, v)dg (10)

=
∫
G

∫
X
f(xg)f(x)dx(π(g)v, v)dg (11)

=
∫
G

∫
X/G

∫
G
f(xg1g)f(xg1)(π(g)v, v)dg1d[x]dg (12)

=
∫
X/G

∫
G

∫
G
f(xg)f(xg1)(π(g−11 g)v, v)dg1dgd[x] (13)

=
∫
X/G

∫
G

∫
G
f(xg)f(xg1)(π(g)v, π(g1)v)dg1dgd[x] (14)

=
∫
X/G

(
∫
G
f(xg)π(g)vdg,

∫
G
f(xg1)π(g1)vdg1)d[x] (15)

(16)

Absolute convergence are guaranteed since f(g) is compactly supported. Notice that

L0(f ⊗ v)(x) =

∫
G

f(xg)π(g)vdg.

We have
(f ⊗G v, f ⊗G v)G = (L0(f ⊗ v),L0(f ⊗ v))X/G.

Clearly, Cc(X)⊗G H ∼= Lo(Cc(X)⊗H). �

4 Invariant Tensor Product and Representation Theory

Definition 2 Let G be a classical group that preserves a nondegenerate sesquilinear form Ω.
Write G = G(V,Ω) or simply G(V ), where V is a vector field over F = R,C,H equipped
with the nondegenerate sesquilinear form Ω. Let V = V1 ⊕ V2 such that Ω(V1, V2) = 0. Let
G1 = G(V1,Ω|V1

) and G2 = G(V2,Ω|V2
). For each g1 ∈ G1, g2 ∈ G2, let (g1, g2) acts on

V1 ⊕ V2 = V diagonally. We say that G1 ×G2 is diagonally embedded in G.

Definition 3 Let (G1, G2) be diagonally embedded in G. Let (π,Hπ) be a unitary representation
of G and (π1,Hπ1) be a unitary representation of G1. Let V be a subspace of H∞π that is
invariant under G2. Let V1 be a subspace of H∞π1

such that V ⊗G1
V1 is well-defined. Define a

linear G2-representation (π ⊗G π1, V ⊗G1
V1) as follows:

(π ⊗G1
π1)(g2)(u⊗G1

u1) = π(g2)u⊗G1
u1 (g2 ∈ G2, u ∈ V, u1 ∈ V1).

Since the Lie group action of G2 commutes with the integration over G1, the action of G2 on
V ⊗G1

V1 is well-defined.
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The linear representation (π⊗G1
π1, V ⊗G1

V1) is not neccessarily continuous because no topology
has been defined on V ⊗G1 V1.

Lemma 4.1 The form ( , )G1 on V ⊗G1 V1 is G2-invariant.

Proof: Let u, v ∈ V ;u1, v1 ∈ V1 and g2 ∈ G2. Write σ = π ⊗G1 π1. Then

(σ(g2)(u⊗G1
u1), v ⊗G1

v1)G1
(17)

=
∫
G1

(π(g1)π(g2)u, v)(π1(g1)u1, v1)dg1 (18)

=
∫
G1

(π(g2)π(g1)u, v)(π1(g1)u1, v1)dg1 (19)

=
∫
G1

(π(g1)u, π(g−12 )v)(π1(g1)u1, v1)dg1 (20)

= (u⊗G1 u1, π(g−12 )v ⊗G1 v1)G1 (21)

= (u⊗G1 u1, σ(g−12 )(v ⊗G1 v1))G1 (22)

Hence ( , )G1
is G2-invariant. �

5 ITP associated with Discrete Series Representations

LetG(m+n) be a classical group preserving a nondegenerate sesquilinear form. Let (G(n), G(m))
be diagonally embedded in G. For any irreducible unitary representation π of G(m + n), let
H∞π be the Frechet space of smooth vectors.

Theorem 5.1 Suppose that (π,Hπ) is a discrete series representation of G(m + n). Suppose
that m > n and (π1,H1) is a unitary representation of G(n). Then H∞π ⊗G(n) H1 is well-
defined. Suppose that H∞π ⊗G(n) H1 6= 0. Then ( , )G(n) is positive definite. Furthermore,
(H∞π ⊗G(n) H1, ( , )G(n)) completes to a unitary representation of G(m).

The key of the proof is to realize H∞π ⊗G(n) H1 as a subspace of the L2-sections of the Hilbert
bundle

H1 ×G(n) G(m+ n)→ G(n)\G(m+ n).

Proof: Write G = G(m+ n). Fix a maximal compact subgroup K of G such that

K(m) = K ∩G(m), K(n) = K ∩G(n)

are maximal compact subgroups of G(m) and G(n) respectively. Let a be a maximal Abelian
subalgebra in the orthogonal complement of k with respect to the Killing form ( , )κ, such that

a = (a ∩ g(m))⊕ (a ∩ g(n)).

Let A be the analytic group generated by a. The function log : A → a is well-defined. Let
‖H‖2 = (H,H)κ for each H ∈ a.

Since (π,H) is a discrete series representation, without loss of generality, realize H on a right
K-finite subspace of L2(G). So H ⊆ L2(G)K .

Let ΞG(g) be Harish-Chandra’s basic spherical function. Let HCS(G) be the space of Harish-
Chandra’s Schwartz space. It is well-known that every f ∈ H∞π ⊆ HCS(G) satisfies f(g) ≤
CfΞG(g) for some Cf (see for example Ch. 12.4 [?]). For every h ∈ G, |f(hg)| ≤ ΞG(hg) ≤
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ChCfΞG(g) for a constant Ch. Observe that H∞π is G(m)-invariant.

Fix a positive root system in Σ(g, a). Let A+ be the corresponding closed Weyl Chamber.
Let ρ be the half sum of positive roots. Let u, v ∈ H∞π ⊆ L2(G). Then |(L(g)u, v)| ≤ Cu,vΞG(g)
for a positive constant Cu,v ([CHH] [HE]). Notice that for a ∈ A+, k1, k2 ∈ K,

ΞG(k1ak2) ≤ C(1 + ‖ log a‖)q exp(−ρ(log a))

for some q ≥ 0 and C > 0. Let ρ(n) be the half sum of positive roots of the restricted root
system Σ(g(n), a∩ g(n)). Let (a∩ g(n))+ be the positive Weyl chamber of a∩ g(n) with respect
to the root system Σ(g(n), a ∩ g(n)). Since

ρ|a∩g(n)(H) > 2ρ(n)(H) (H ∈ (a ∩ g(n))+),

ΞG(g)|G(n) ∈ L1(G(n)). It follows that (L(g)u, v)|G(n) ∈ L1(G(n)) for every u, v ∈ H∞π . Notice
that g1 ∈ G(n)→ (π1(g1)u1, v1) is always bounded for u1, v1 ∈ H1. We see that∫

G(n)

(π(g1)u, v)(π1(g1)u1, v1)dg1

always converges. So H∞π ⊗G(n) H1 is well-defined. Now suppose that H∞π ⊗G(n) H1 6= 0.

Notice that u ∈ H∞π ⊆ L2(G)K is bounded by a multiple of ΞG(g). So u|G(n) ∈ L1(G(n)).
For each u ∈ H∞π and u1 ∈ H1, define L0(u⊗ u1) to be the H1-valued function on G:

g ∈ G→
∫
g1∈G(n)

[L(g1)u](g)π1(g1)u1 dg1 =

∫
g1∈G(n)

u(g−11 g)π1(g1)u1dg1

in the strong sense. Notice that for g ∈ G, h1 ∈ G(n),

L0(u⊗ u1)(h1g) =

∫
g1∈G(n)

[L(g1)u](h1g)π1(g1)u1 dg1 (23)

=

∫
g1∈G(n)

u(g−11 h1g)π1(g1)u1 dg1 (24)

=

∫
g1∈G(n)

u(g−11 g)π1(h1g1)u1 dg1 (25)

= π(h1)[

∫
g1∈G(n)

L(g1)u(g)π1(g1)u1 dg1] (26)

= π(h1)L0(u⊗ u1)(g) (27)

So L0(u⊗ u1) can be regarded as a section of the Hilbert bundle

H1 G(n)×G→ G(n)\G.
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In addition, we have

(u⊗G(n) u1, v ⊗G(n) v1)G(n) (28)

=

∫
G(n)

(L(g1)u, v)(π1(g1)u1, v1)dg1 (29)

=

∫
G(n)

∫
G

u(g−11 g)v(g)dg(π1(g1)u1, v1)dg1 (30)

=

∫
G(n)

∫
G(n)\G

∫
G(n)

u(g−11 h1g)v(h1g)dh1d[g](π1(g1)u1, v1)dg1 (31)

=

∫
G(n)\G

∫
G(n)×G(n)

u(g−11 h1g)v(h1g)(π1(g1)u1, v1)dg1dh1d[g] (g1 = h1g1) (32)

=

∫
G(n)\G

∫
G(n)×G(n)

u(g−11 g)v(h1g)(π1(h1g1)u1, v1)dg1dh1d[g] (33)

=

∫
G(n)\G

∫
G(n)×G(n)

u(g−11 g)v(h1g)(π1(g1)u1, π(h−11 )v1)dg1dh1d[g] (34)

=

∫
G(n)\G

∫
G(n)×G(n)

u(g−11 g)v(h−11 g)(π1(g1)u1, π1(h1)v1)dg1dh1d[g] (35)

= (L0(u⊗ u1),L0(v ⊗ v1))G(n)\G (36)

where G(n)\G is equipped with a right G invariant measure. Eqn. ( 32) is valid because the
integral Eqn. ( 30) converges absolutely. In fact, we have∫

G(n)×G
|u(h1g)v(g)|dgdh1 <∞.

To see this, recall that u(g), v(g) ∈ HCS(G). In particular, for any N > 0 and a ∈ A+,
k1, k2 ∈ K, there exists Cu,N > 0 such that

|u(k1ak2)| ≤ Cu,N‖ log a‖−NΞG(k1ak2).

Write WN (g) = ‖ log a‖−NΞG(k1ak2) for g = k1ak2. Then there also exists Cv,N > 0 such that

|v(g)| ≤ Cv,NWN (g).

Fix an N such that WN (G) ∈ L2(G). In particular, WN (G) ∈ KL
2(G)K . Observe that the

function
h ∈ G→ (L(h)|u|(g), |v|(g))

is bounded by a multiple of (L(h)WN (g),WN (g)), which, by a Theorem of Cowling-Haagerup-
Howe ( [CHH]), is bounded by a multiple of ΞG(g). Hence∫

G(n)×G
|u(h1g)v(g)|dgdh1 <

∫
G(n)

(

∫
G

|u(h1g)||v(g)|dg)dh1 <

∫
G(n)

CΞG(h1)dh1 <∞.

Eqn. (30) converges absolutely. Therefore Eqn. (32) holds.

Now we have

(u⊗G(n) u1, v ⊗G(n) v1)G(n) = (L0(u⊗ u1),L0(v ⊗ v1))G(n)\G.
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It follows that L0(H∞π ⊗H1) ∼= L(H∞π ⊗H1). Realize H∞π ⊗G(n) H1 as L0(H∞π ⊗H1), which is
a subspace of L2-sections of the Hilbert bundle

H1 G(n)×G→ G(n)\G.

Clearly ( , )G(n) is positive definite. LetH∞π ⊗G(n) H1 be the completion of (H∞π ⊗G(n)H1, ( , )G(n)).

Since G(m) acts on H∞π and it commutes with G(n), G(m) acts on H∞π ⊗G(n) H1 and it
preserves ( , )G(n). So the action of each g2 ∈ G(m) can be extended into a unitary opera-

tor on H∞π ⊗G(n) H1. The group structure is kept in this completion essentially due to the
fact that each extension is unique. Therefore (H∞π ⊗G(n) H1, ( , )G(n)) completes to a unitary
representation of G(m). �

Definition 4 Let Πu(G) be the unitary dual of G. Suppose that m > n. Let π be a discrete
series representation of G(m+n). We denote the functor from π1 to the completion of (H∞π ⊗G(n)

H1, ( , )G(n)) by ITπ. If ITπ(π1) 6= 0, ITπ(π1) is a unitary representation of G(m). Regarding
the zero dimensional representation as a unitary representation, ITπ defines a functor from
unitary representations of G(n) to unitary representations of G(m).

One natural question arises. That is, if π1 is irreducible, is ITπ(π1) irreducible? This is beyond
the scope of this pape. In fact, this problem is quite difficult. In general, ITπ(π1) is not
irreducible. However, for a certain holomorphic discrete series representation π, ITπ(π1) will
indeed be irreducible. For the time being, it is not clear which discrete series representation π
has such a property. This question may be intrinsically related to the cohomology induction
(see [kv]).
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