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LECTURE NOTES

HONGYU HE

1. Hamiltonian Mechanics

Let us consider the classical harmonic oscillator

mẍ = −kx (x ∈ R).

This is a second order differential equation in terms of Newtonian mechanics. We can convert it into
1st order ordinary differential equations by introducing the momentum

p = mẋ; q = x.

Then we have
q̇ =

p

m
, ṗ = −kq.

The map (q, p) → p
m i − kqj defines a smooth vector field. The flow curve of this vector field gives

the time evolution from any initial state (q(0), p(0)).

Let H(q, p) = p2

2m + kq2

2 be the Hamiltonian. It represents the energy function. Then

∂H

∂q
= kq,

∂H

∂p
=

p

m
.

So we have
q̇ =

∂H

∂p
, ṗ = −∂H

∂q
.

Generally speaking, for p, q ∈ Rn, for H(q, p) the Hamiltonian,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

is called the Hamiltonian equation. The vector field

(q, p) → (
∂H

∂p
,−∂H

∂q
)

is called the Hamiltonian vector field, denoted by XH . In this case, {(q, p)} = R2n is called the phase
space. Any (q, p) is called a state. Any functions on (q, p) is called an observable. In particular H
is an observable.

Suppose that H is smooth. Then the Hamiltonian equation has local solutions. In other words,
for each (q0, p0) ∈ R2n, there exists ε > 0 and a function (q(t), p(t))(t ∈ [0, ε)) such that

q̇(t) =
∂H

∂p
(q(t), p(t)), ṗ(t) = −∂H

∂q
(q(t), p(t))

and q(0) = q0, p(0) = p0. Put φ(q0, p0, t) = (q(t), p(t)). Then the function φ describe the time
evolution

φt : (q0, p0) ∈ R2n → (q(t), p(t)).
φt is called the Hamiltonian flow. If φ exists for all t, the Hamiltonian system is said to be complete.
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Homework: Give an example of a smooth Hamiltonian system that is not complete.

Properties of Hamiltonian system:
(1) The Hamiltonian remains constant under the Hamiltonian flow:

dH(p(t), q(t))
dt

=
∂H

∂q
q̇ +

∂H

∂p
ṗ = −ṗq̇ + q̇ṗ = 0.

When H is the energy function, this says that the energy is preserved.
(2) Hamiltonian vector field is divergence free

XH = (
∂H

∂p
,−∂H

∂q
).

So
divXH =

∂

∂q

∂H

∂p
− ∂

∂p

∂H

∂q
= 0.

Notice that divergence free means the flow out of a compact closed surface is equal to the
flow into the compact closed surface.

Homework: Suppose that H is smooth. Show that Hamiltonian flow preserves the volume.
Why?

(3) If the phase space is not the whole R2n, how do we define the Hamiltonian system? This
happens when the physical system is under certain constrain, for example q satisfies a system
of equations. So we have to define a Hamiltonian system on a manifold, in this course, mostly
smooth algebraic varieties.

The main reference is [1].
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2. Symplectic Formulation

Now we shall formulate the Hamiltonian system on manifolds. This corresponds to mechanic
systems under geometric constraint.

Let V be a real vector space of dimension m. A nondegenerate skew symmetric form on V is called a
symplectic form. A linear space equipped with a symplectic form is called a (linear) symplectic space.

Homework: Show that a symplectic space must be of even dimensional.

Let ω be a symplectic form on V and let V ∗ be the space of real linear functional on V .
(1) ω defines a canonical isomorphism ω̃ : V → V ∗:

ω̃(x)(y) = ω(y, x), y, x ∈ V.
(2) symplectic forms can be regarded as two forms in ∧2(V ∗).
(3) If V is of 2n dimensional, ωn = ω ∧ . . . ∧ ω is a top degree form on V .

Let M be a m dimensional smooth manifold. Let TM be the tangent bundle. A smooth section
of the tangent bundle

x ∈M → TxM ∼= Rm

is called a vector field. Let X (M) be the space of (smooth) vector fields on M . Let X be a smooth
vector field and let φX(x, t) ∈M be the local flow defined by X. Let f ∈ C∞(M). Define a function
Xf ∈ C∞(M) as follows

Xf(x) =
d

dt
|t=0f(φX(x, t)).

Then X becomes a linear first order differential operator on M . X (M) has a Lie algebra structure

[X,Y ] = XY − Y X.

Homework: Show that [X,Y ] ∈ X (M) for M = Rm.

Definition 2.1. Let M be a smooth manifold of 2n dimension. A symplectic form ω on M is a two
form on the TM satisfying the following properties:

(1) For each x ∈M , ωx is a linear symplectic form on TxM ;
(2) ω : M → ∧2(T ∗M) is smooth and its exterior derivative vanishes. The exterior derivative

is a linear operator from two forms to three forms:

dω(X1, X2, X3) = X1(ω(X2, X3)) +X2(ω(X3, X1)) +X3(ω(X1, X2))

−ω([X1, X2], X3)− ω([X2, X3], X1)− ω([X3, X1], X2),
Where X1, X2, X3 ∈ X (M).

The forms satisfies dω = 0 are called closed forms.

The closedness of ω is what is needed to attach a Poisson structure on C∞(M). We shall see this
later.

Homework: Give a general definition of d for one forms and show that d2 = 0 for one forms.

Now if f ∈ C∞(M), considered as a zero form, df(X) is defined to be just X(f) for any X ∈ X (M).
If M = Rn, then

df =
∑ ∂f

∂xi
dxi.
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So exterior derivative is a generalization of complete differential.

Homework: Write down dω for M = R2n.

Notice that what we said about linear symplectic form carry over to the manifold case.
(1) ω̃ defines an isomorphism between X (M) and one forms on M , i.e.,

ω̃(X)(Y ) = ω(Y,X).

(2) ωn defines a nowhere vanishing volume form on M .

2.1. Hamiltonian Vector Field. Let f ∈ C∞(M). Then df is a smooth one-form. We consider
ω̃−1 of such a form.

Definition 2.2. Define Xf be the unique vector field satisfies

ω(Y,Xf ) = df(Y ) = Y (f) Y ∈ X (M).

ω being nondegenerate guarantees that Xf is unique. Xf is called the Hamiltonian vector field
associated with (the Hamiltonian) f .

For M = R2n, then TxM ∼= M . Retain (q, p) as coordinates. Then ∂
∂q ,

∂
∂p can be regarded as

a basis for TxM . A tangent vector in TxM can still be representated by (q, p) in this basis. Define

ω((q, p), (q′, p′)) = −qp′ + pq′.

Suppose that Y =
∑n
i=1 φi

∂
∂qi

+ ψi
∂
∂pi

. Then

df(Y ) = Y (f) =
n∑
i=1

φi
∂f

∂qi
+ ψi

∂f

∂pi
.

Since ω(Y,Xf ) = Y (f), it is easy to check that

Xf =
∑ ∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
.

Again we obtain our Hamiltonian system

(q̇, ṗ) = XH .

So for (M,ω) a symplectic manifold, we define Halmiltonian equation to be

ẋ = XH(x) x ∈M.

2.2. Poisson bracket on C∞(M). For f, g ∈ C∞(M), define

{f, g} = ω(Xf , Xg) = Xf (g) = −Xg(f).

Clearly, {f, g} ∈ C∞(M).

Lemma 2.1.
[Xf , Xg] = X{f,g}.

Proof: It suffice to show that for any Y ∈ X (M),

ω([Xf , Xg], Y ) = ω(X{f,g}, Y ).
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Since ω is a closed tow form, we have 0 = dω(Xf , Xg, Y ). So

ω([Xf , Xg], Y )

=Xf (ω(Xg, Y )) +Xg(ω(Y,Xf )) + Y (ω(Xf , Xg))− ω([Xg, Y ], Xf )− ω([Y,Xf ], Xg)

=−Xf (Y (g)) +Xg(Y (f)) + Y (Xf (g))− [Xg, Y ](f)− [Y,Xf ](g)

=−Xf (Y (g)) +Xg(Y (f)) + Y (Xf (g))−Xg(Y (f)) + Y (Xg(f))− Y (Xf (g)) +Xf (Y (g))

=Y (Xg(f))

=ω(Y, {g, f})
=ω({f, g}, Y )

(1)

Lemma 2.2. {, } defines a Lie bracket on C∞(M) and the canonical map f → Xf is a Lie algebra
homomorphism. The kernel is the space of constant functions.

2.3. Poisson Algebra (C∞(M), {, }).

Definition 2.3. A Poisson algebra A is an associative algebra equipped with a Poisson bracket {, }
such that

(1) (A, {, }) is a Lie algebra;
(2) The Poisson bracket with any element is a derivation, i.e.,

{x, yz} = {x, y}z + y{x, z}.

Lemma 2.3. Let M be a symplectic manifold. Let C∞(M) be equipped with the ordinary multipli-
cation and Poisson bracket {, }. C∞(M) is a Poisson algebra.

Proof: {f, gh} = Xf (gh) = Xf (g)h+ gXf (h) = {f, g}h+ g{f, h}. So (2) is proved.

The associative algebra we are interested will be commutative, coincides with ”regular functions” in
a proper category. Generally speaking, the associative algebra does not have to be commutative.

Lastly, for M = R2n,

{f, g} =
∑ ∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
.
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3. Harmonic Oscillator and Quantum Mechanics

Recall that the Hamiltonian equation for the classical harmonic oscillator is given by

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

with H(q, p) = p2

2m + kq2

2 . In the classical system, a state is a point in the phase space and the value
of an observable is completely determined for each state. In a quantum mechanic system, a state is
a projective line in a Hilbert space H. Observables are certain self adjoint operator commuting with
the Hamiltonian.

Set the Planck constant to be 1. For the quantum harmonic oscillator, the Hamiltonian is given by

H = − 1
2m

∂2

∂x2
+
k

2
x2.

It is self adjoint operator. The states are in PH with H = L2(R). The operator p, q are given by

p→ d

dx
, q → m(x).

Here m(x) is the multiplication operator by x. Sometimes, we will write just x.

A state in PH can be represented by a unit vector u ∈ H. One start with an initial ψ0, a unit
vector in L2(R). The evolution of the Harmonic oscillator is given by the Schrödinger equation

i
∂ψ

∂t
= Hψ = − 1

2m
∂2ψ

∂x2
+
k

2
x2ψ,

with ψ(x, 0) = ψ0(x). ψ(x, t) is called the wave function. It is complex valued.

Since iH is skew-self adjoint operator, ψ(x, t) can be written as e−itHψ0 where e−itH is a one
parameter group of unitary operators generated by itH. The existence of the one parameter group
e−itH for self-adjoint H is known as the Stone’s theorem. So ψ(x, t) are states for all t. In particular,
let ρ(x, t) = ‖ψ(x, t)‖2. Then ∫

x

ρ(x, t)dx = 1.

The function ρ(x, t) can be interpreted as the probability density for observing the oscillator at the
position x at time t.

If Hψ = Eψ for ψ ∈ R, i.e., ψ is an eigenfunction of H, ψ is called a stationary state. ψ is
often denoted by ψE . In higher dimensional case, where the eigenspace of H is more than 1 dimen-
sional, a commuting set of self-adjoint operators will be needed to parametrize the stationary states.
So E can be a set of parameters.

Now consider the Schrödinger equation

i
d

dt
ψ(x, t) = Hψ(x, t).

We try the separation of variables by letting ψ(x, t) = ψE(x)AE(t). Then we have

i
dA(t)
de

ψE(x) = A(t)HψE(x) = A(t)EψE(t).
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So dA(t)
dt = −iEA(t). We see that

A(t) = e−iEt.

So ψ(x, t) = ψE(x)e−iEt is a wave function. ψ(x, t0) differs from ψ(x, 0) by a phase factor, which
means that in PH, they are identical. So ψE(x) is called stationary.

This method can be used to solve the Schrödinger equation by expanding φ0 =
∑
E aEψE(x).

Then
φ(x, t) =

∑
E

aEe
−iEtψE(x).

3.1. Observables and Spectral Theory. The broader definition of an observable is any self-
adjoint operator commuting with the Hamiltonian. Two observables A,B are said to be incompat-
ible if AB 6= BA. Physically, making the observation A after the measure B will have different
results from making the observation B after A.

Given an observable A and a state u, the value of A at u is

(Au, u) = (u,Au) = 〈u | A | u〉.
Here u is a unit vector. The value of A is independent of the phase factor. Also, if A = H, then the
value of H at ψE is exactly the energy.

There is yet a narrower definition of observables by enforcing all observables commuting with each
other. See [8].

Discuss projection valued measure here.
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4. Formulation of Quantization

Now we go back to the basic question of deriving quantum mechanic system from classical Hamil-
tonian system, in particular, the Schrödinger equations from Hamiltonian equations. The key ques-
tion is how one can quantize the classical Hamiltonian

H → H

and how one can quantize the phase space

M → L2(X).

In the harmonic oscillator case, M = R2n, and X = Rn.

It seems that no matter how you formulate the quantization process, you will always encounter
inconsistency. See [4] for his formulation of quantization in terms of constraint. In this section, I
will give a formulation that applies to affine algebraic varieties with a symplectic structure, which
seems to be one focus of [4].

Recall that the classical Hamiltonian H(q, p) = p2

2m + kq2/2 and the Schrödinger operator H(ψ) =
− 1

2m
∂2ψ
∂x2 + kx2/2ψ. So it seems that the quantization process can be achieved by

p→ i
∂

∂x
; q → x.

This is far from the case. In fact, if H(q, p) = p2

2m + kq2p2, one is facing serious problem in choosing
H. For example, is

H = − 1
2m

∂2ψ

∂x2
− k

∂2

∂x2
x2/2ψ − kx2/2

∂2

∂x2
ψ,

or

H = − 1
2m

∂2ψ

∂x2
− k

∂

∂x
x2 ∂

∂x
ψ

a better choice? Are there canonical choices?

4.1. Weyl Correspondence. Yes, there are canonical choices:

H ∈ P(R2n) → H ∈ L(S(Rn),S(Rn)).

Here S(Rn) is the Schwartz space of rapidly decaying functions, namely the topological vector space
defined by the seminorm ‖.‖α,β

‖f‖α,β = ‖xα∂βf‖sup.
Let S ′ be the dual of S, namely the space of continuous functionals on S equipped with the weak
star topology. Elements in S ′ are called tempered distributions. They behave like generalized func-
tions. Notice that even though differential operators with slowly increasing smooth coefficients are
not bounded operators on L2(Rn), they are continuous operators in L(S,S). So the Schwartz space
is very convenient in our setting.

One classical result is that the Fourier transform operator F : S → S and F : S ′ → S ′ are bi-
jective.

For any slowly increasing continuous function H, Define a kernel

KH(x, y) =
∫
H(ξ,

1
2
(x+ y)) exp 2πi(x− y)ξdξ
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This is a well-defined tempered distribution. For any f ∈ S, define

WHf(x) =
∫
KH(x, y)f(y)dy =

∫ ∫
H(ξ,

1
2
(x+ y))f(y) exp 2πi(x− y)ξdydξ.

It is not hard to check that WH is a well-defined continuous map from S to S for any H ∈ S ′(R2n).
The well-known Schwartz kernel theorem then states that every continuous operator on S can be
written as WH for some H ∈ S ′(R2n). The map

H ∈ S(R2n) →WH ∈ L(S,S)

is called the Weyl correspondence and the function H is called the Weyl symbol of the operator WH .

We shall now show that the function H(ξ, x) = x is the symbol for the multiplication operator
m(x) and H(ξ, x) = 2πiξ is the symbol for the operator d

dx . We will prove it for the one variable
case. For every F ∈ S, we formally compute

WHf(x) =
∫ ∫

2πiξf(y) exp 2πi(x− y)ξdydξ

=
∫ ∫

−f(y)
d exp 2πi(x− y)ξ

dy
dydξ

=
∫ ∫

exp 2πi(x− y)ξ
df

dy
dydξ

=
∫
δx(y)

df

dy
dy

=
df

dx

(2)

Notice here we have
∫

exp 2πiξxdξ = δx. Similarly, for H(ξ, x) = x, we have

WHf(x) =
∫ ∫

H(ξ,
1
2
(x+ y))f(y) exp 2πi(x− y)ξ dy dξ

=
∫ ∫

1
2
(x+ y)f(y) exp 2πi(x− y)ξ dy dξ

=
∫ ∫

1
2
(2x− z) exp(2πizξ)f(x− z) dz dξ

=
∫

1
2
(2x− z)

∫
exp(2πizξ) dξf(x− z) dz

=
∫

1
2
(2x− z)f(x− z)δz(0)

=xf(x)

(3)

All the computation makes sense as distributions when f ∈ S(Rn). Thus, Weyl correspondence
establishes a one-to-one correspodence from

S ′(R2n) → L(S(Rn)),

that meets certain requirements from quantization. In addition, there is a Weyl convolution

H1]H2(u) =
∫ ∫

H1(v)H2(w) exp 4πiu(u− w, u− v)dvdw,

such that WH1]H2 = WH1WH2 .
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The problem now is how we can generalize the Weyl correspondence to algebraic symplectic mani-
fold. Let (M2n, ω) be an algebraic symplectic manifold of dimension 2n. We are seeking a manifold
X of dimension n, such that there is a correspondence between a subspace of smooth functions
Q∞(M2n) and a space of formally skew self-adjoint (unbounded) operators on L2(X) with respect
to a certain measure. A good choice of Q∞(M2n) will be real valued algebraic functions on M2n.
One nice feature of these functions is the slowing increasing property. The question is then what
condition we shall impose on this correspondence to make it meets the requirement of quantization.

4.2. Symbol Calculus. We discuss the symbol calculus on Rn. It applies to any smooth manifold
M . Let D be a smooth differential operator on Rn. For each D =

∑
α aαD

α of order less or equal
to m, we define a (principal) symbol

σm(D) =
∑

‖α‖=m

aα(x)ξα.

If no ambiguity occurs, we will write the symbol map as σ.

Homework Show that σm here is linear. But σ is not.

When M is a manifold, one can choose a coordinate atlas {Uα}. Then on each coordinate patch Uα,
σ(D) will be a function on the cotangent bundle T ∗(Uα) with local coordinate (x, ξ). So σ(D) will
be a function on T ∗M . Over each cotangtant space, σ(D) is a polynomial of degree equal to the
order of the differential operator.

Homework Show that the principal symbol σ is independent of the coordinate system.

LetD≤m be the linear space of smooth differential operators of order less or equal tom. IfD1 ∈ D≤m1

and D2 ∈ D≤m2 , then D1D2, D2D1 ∈ D≤m1+m2 . In this case,

σm1+m2(D1D2) = σm1+m2(D2D1) = σm1(D1)σm2(D2).

This is the naive way of quantization. But it does not address the noncommutativity we encounter
in the earlier example. To address the noncommutativity, we consider the Lie bracket [D1, D2].

Homework: Show that [D1, D2] ∈ D≤m1+m2−1.

Definition 4.1. Let P≤m(x, ξ) be smooth functions on (x, ξ) that are polynomials of degree less or
equal to m for ξ. Let Pm(x, ξ) be those of degree m for ξ. Let

P(x, ξ) = ∪P≤m(x, ξ) = ⊕Pm(x, ξ).

Define a Lie bracket on P(x, ξ) as follows. Let D1, D2 ∈ D≤m1 ,D≤m2 . Define

{σm1(D1), σm2(D2)} = σm1+m2−1([D1, D2]).

Theorem 4.1. {, } is well-defined. (P(x, ξ), {, }) is a Poisson algebra under the ordinary multipli-
cation.

Proof: Let D1 ∈ Dm1 , D2 ∈ Dm2 and D3 ∈ Dm3 . It suffices to show that the anti-commutativity,
Jacobian identity and derivation requirement hold for σm1(D1), σm2(D2) and σm3(D3).

(1) {σm1(D1), σm2(D2)} = σm1+m2−1([D1, D2]) = −σm1+m2−1([D2, D1]) = −{σm2(D2), σm1(D1), }.
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(2) (Jacobian Identity)

{σm1(D1), {σm2(D2), σm3(D3)}}+ {σm2(D2), {σm3(D3), σm1(D1)}}+ {σm3(D3), {σm1(D1), σm2(D2)}}
={σm1(D1), σm2+m3−1([D2, D3])}+ {σm2(D2), σm1+m3−1([D3, D1])}+ {σm3(D3), σm2+m1−1([D1, D2])}
=σm1+m2+m3−2([D1, [D2, D3]]) + σm1+m2+m3−2([D2, [D3, D1]]) + σm1+m2+m3−2([D3, [D1, D2]])

=σm1+m2+m3−2([D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]])
=0

(4)

(3) (Derivation)

{σm1(D1), σm2(D2)σm3(D3)}
={σm1(D1), σm2+m3(D2D3)}
=σm1+m2+m3−1([D1, D2D3])

=σm1+m2+m3−1(D1D2D3 −D2D3D1)

=σm1+m2+m3−1([D1, D2]D3 +D2[D1, D3])

=σm1+m−2−1([D1, D2])σm3(D3) + σm2(D2)σm1+m3−1([D1, D3])

={σm1(D1), σm2(D2)}σm3(D3) + σm2(D2){σm1(D1), σm3(D3)}.

(5)

Notice that T ∗(Rn) has a cannonical symplectic form. Identifty the tangent space Ta(Rn) with
x ∈ Rn. Then ξ ∈ T ∗a (Rn) can be regarded as a function on x. Define

ω((x, ξ), (x′, ξ′)) = ξ′(x)− ξ(x′).

Then P(x, ξ) has a natural Poission structure induced from (T ∗(Rn), ω). The Poisson bracket is
simply

{f, g} =
∑ ∂f

∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi
.

Theorem 4.2. The two different Poisson structures on P(x, ξ) are identical.

Proof: We shall prove this for n = 1. By linearlity, it suffice to prove that the two Poission
struction for a(x)ξi and b(x)ξj . If i = j = 0, then {a(x), b(x)} = 0 for both Poission structures.
Without loss generality suppose i + j ≥ 1. For the Poisson structure induced from the symplectic
form, we have

{a(x)ξi, b(x)ξj} = (ia(x)b′(x)− ja′(x)b(x)ξi+j−1.

Now let us compute the Poisson structure induced from symbol calculus. Let D1 = a(x) d
i

dxi and
D(2) = b(x) d

j

dxj . Then

[D1, D2]f

=a(x)
di

dxi
(b(x)

djf

dxj
)− b(x)

dj

dxj
(a(x)

dif

dxi
)

=a(x)
i∑

k=0

(
i

k

)
dkb(x)
dxk

di−k+jf

dxi−k+j
− b(x)

j∑
k=0

(
j

k

)
dka(x)
dxk

dj−k+if

dxj−k+1

(6)

So we have

{a(x)ξi, b(x)ξj} = σi+j−1([D1, D2]) = (ia(x)b′(x)− ja′(x)b(x)(ξi+j−1).

�
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Roughly speaking, this allows us to quantize the Hamiltonians in a way that preserves the prin-
cipal part of the commutant. Similarly, this process can be viewed as quantization of Hamiltonian
vector field, which is closely related to representation theory.

I shall mention that there are quantization processes that are based on forms or bundles. Our
discussion shall be modified to fit these situations.

4.3. The Two Poisson algebras: Manifold Case. I shall state the result in the manifold case
for the two Poisson algebras: one induced from the canonical symplectic form; the other induced
from the principal symbols.

4.4. Quantization of Affine Symplectic Varieties. The quantization process for R2n has been
studied for many years. Our formulation offers nothing new in this case. It becomes more inter-
esting when M is an affine symplectic variety. Much less is known. This is the quantization under
geometric constrain.

Let M be an affine variety. Let P(T ∗(M)) be the algebraic functions on T ∗M that are polyno-
mials restricted to every cotangent space. Symbol maps induces a Poisson structure on P(T ∗(M)).

Let us now state the problem. Let X be a (real) smooth affine variety, equipped with a symplec-
tic form ω. Smoothness in not necessary because one can always choose a smooth open manifold.
We require that the symplectic form evaluated on algebraic vector fields gives algebraic functions.
This is often the case. Now the regular functions on X become a Poisson algebra under {, }. The
problem is to find a real affine algebraic variety X and to construct a map

O(X) → P(T ∗M)

such that the Poisson structure is preserved. In addition, to make the choice unique, one often
requires that the map preserves certain group action.



LECTURE NOTES 13

5. Example I: Harmonic Oscillator Revisited

I shall discuss how one arrives at the quantization of harmonic oscillator in light of our discussion
in the last lecture.

5.1. Schrödinger Model.

5.2. Segal-Bargmann Model.

5.3. Tensor Products.
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6. Example II: Kobayashi-Orsted Quantization

This is another example that
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7. Open Problems

7.1. Kostant-Sekiguchi-Vergne correspondence. There are certain homogeneous symplectic
manifolds that are also complex homogeneous.

7.2. Real Analytic Method.

7.3. Complex Analytic Method.

7.4. Bergman Reproducing Kernel for algebraic varieties.
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