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Let P+(n) be the Siegel parabolic subgroup of O(n, n), and P−(n) be the Siegel parabolic
subgroup of Sp2n(R). In this paper, we study the coadjoint orbits of P±(n). We establish
a one-to-one correspondence between the real coadjoint orbits of Sp2n(R) and the principal
coadjoint orbits of P+(2n), and a one-to-one correspondence between the real coadjoint orbits
of O(p, n− p) with p ∈ [0, n] and the principal real coadjoint orbits of P−(n).

1 Introduction

Let G be a Lie group. Let g be the real Lie algebra of G. Let Ad be the adjoint action of G
on g. Each G-orbit in g is called an adjoint orbit. Let g∗ be the space of real homomorphisms
from g to R. ∀ g ∈ G, φ ∈ g∗, x ∈ g, define

(Ad∗(g)φ)(x) = φ(Ad(g−1)x).

This action is often called the coadjoint action. Each G-orbit is called a coadjoint orbit.

The motivation for classifying coadjoint orbits comes from two directions. Firstly, adjoint
orbits generalize the notion of Jordan canonical forms. Notice for G = GLn(R), g is the space
of n×n matrices. The adjoint orbits of GL(n, R) are in one-to-one correspondence with Jordan
forms. Furthermore, one can identify adjoint orbits with coadjoint orbits by the trace form. In
other words, for each x ∈ g, define a functional δx by

δx : y ∈ g → Trace(xy).

Then adjoint orbits become coadjoint orbits. It follows that coadjoint orbits are in one-to-one
correspondence with Jordan forms. This is true for all semisimple Lie groups.

Secondly, coadjoint orbits have a profound connection with the representation theory of Lie
groups. In [Kirillov], Kirillov proved that, for simply connected nilpotent groups, equivalence
classes of irreducible unitary representations are in one to one correspondence with coadjoint
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orbits of G. Later, Auslander and Kostant extended Kirillov’s result to solvable groups of type
I. For semisimple groups, the structure of coadjoint orbits provides a nice channel to the con-
struction and classification of unitary representations (see [Vogan]). In all cases, classification
of coadjoint orbits is a very important problem in representation theory.

Let G be a semisimple Lie group. Identify g with g∗ through the Killing form. Then adjoint
orbits can be identified with coadjoint orbits. The classification of adjoint orbits for semisimple
groups are known (see for example [Steinberg], [Collingwood-McGovern]). In this paper, we
are interested in the classification of a selected class of coadjoint orbits of the Siegel parabolic
subgroups.

All matrices in this paper are real matrices. Let

P+(n) = {X =
(

A B
0 D

)
| X

(
0n In

In 0n

)
Xt =

(
0n In

In 0n

)
}

be the Siegel parabolic subgroup of O(n, n). Let

P−(n) = {X =
(

A B
0 D

)
| X

(
0n In

−In 0n

)
Xt =

(
0n In

−In 0n

)
}

be the Siegel parabolic subgroup of Sp2n(R). An element η ∈ p±(n)∗ is said to be principal
if η restricted to the upper diagonal part B is nondegenerate. We say that O is a principal
coadjoint orbit of P±(n) if one of its element is principal. In this paper, we prove the following
theorem:

Theorem 1.1 There exists a one-to-one correspondence j between coadjoint orbits of Sp2n(R)
and principle coadjoint orbits of P+(2n). There exists a one-to-one correspondence between
coadjoint orbits of O(p, n− p) with p ∈ [0, n

2 ] and principal coadjoint orbits of P−(n).

The orbital correspondence in this paper is an analogy of the orbital induction (see [Richardson],
[Kem]). It is parallel to Mackey’s induction on the representation level as explored by Howe (see
[Howe]). Throughout this paper, the group action will mostly be the matrix multiplication. If
a group G acts on a set X and x ∈ X, we use Gx to denote the subgroup preserving x. We use
M(n) to denote the space of n×n real matrices, A(n) to denote the space of n×n antisymmetric
matrices and S(n) to denote the space of n × n symmetric matrices. Unless stated otherwise,
all our vectors will be column vectors.

2 Orbital Correspondence for P+(2n) and Sp2n(R)

Let S2n,2n =
(

02n I2n

I2n 02n

)
. We define a real symmetric form

(x, y) = xtS2n,2ny (x, y ∈ R4n).
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Let O2n,2n be the isometric group fixing the symmetric form (, ). The Siegel parabolic subgroup
P+(2n) of O(2n, 2n) will be denoted by P+ for simplicity. Then the Lie algebra

p+ = {
(

X Y
0 −Xt

)
| X, Y ∈ M(2n);Y t = −Y }.

Let

N = {
(

1 B
0 1

)
| Bt = −B,B ∈ M(2n)}.

Then P admits a Levi decomposition P = GL(2n)N . Here the Levi factor GL(2n) is simply

{
(

X 0
0 (X−1)t

)
| X ∈ GL(2n)}.

We have the following exact sequence

1 → N → P+ → GL(2n) → 1.

Lemma 2.1 The matrix
(

A B
0 (At)−1

)
is in P+ if and only if ABt is skew-symmetric, i.e.,

BAt = −ABt. We have (
A B
0 (At)−1

)−1

=
(

A−1 Bt

0 At

)
Proof: The lemma follows from the following computation.(

A B
0 (At)−1

)
Sn,n

(
At 0
Bt A−1

)
=

(
BAt + ABt I

I 0

)
(1)

Q.E.D.

Therefore,

P+ = {
(

A B
0 (At)−1

)
| A ∈ GL(2n), B ∈ M(2n), BAt = −ABt}.

We parameterize P+ by a pair (A,B) such that BAt = −ABt and parameterize p+ by a pair
(U, V ) with U ∈ M(2n) and V ∈ A(2n). p+ = gl(2n)⊕A(2n).

Consider the Siegel parabolic subalgebra p+. Every element in the dual of p+ can be
represented by a matrix through the trace form:(

X [∗]
Y −Xt

)
:
(

U V
0 −U t

)
→ Tr(XU + Y V + XtU t) (X, Y ∈ M(2n), Y t = −Y ).

3



Notice that changes of [∗] do not effect the linear functional it represents. We compute the
action of P+ on p∗+ as follows.(

A B
0 (At)−1

) (
X [∗]
Y −Xt

) (
A−1 Bt

0 At

)
=

(
AX + BY A[∗]−BXt

(At)−1Y −(A−1)tXt

) (
A−1 Bt

0 At

)
=

(
AXA−1 + BY A−1 [∗]

((A−1)tY A−1) (A−1)tY Bt − (A−1)tXtAt

) (2)

Therefore, when we represent
(

X [∗]
Y −Xt

)
by a pair of 2n× 2n matrices (X, Y ) such that

Y ∈ A(2n), and represent
(

A B
0 (At)−1

)
∈ P by a pair of 2n× 2n matrices (A,B) such that

BAt is antisymmetric, then the coadjoint action is given by

Ad(A,B)(X, Y ) = (AXA−1 + BY A−1, (A−1)tY A−1).

Clearly (A−1)tY A−1 is antisymmetric as well.

Since rank(Y ) is fixed by the action of A, we can define the rank of a coadjoint orbit
O = Ad(P+)(X, Y ) to be rank(Y ). We say that O is a principal orbit if rank(Y ) = 2n.
Now let

W =
(

0n In

−In 0n

)
.

Recall that

sp2n = {
(

A B
C −At

)
| A,B, C ∈ M(n), Bt = B,Ct = C}.

Equip gl(2n) with trace form (X, Y ) = TrXY t. Then gl(2n) can be decomposed as a direct
sum

sp2n(R)⊕ {
(

A B
C At

)
| (A ∈ M(n), B, C ∈ A(n))}.

Since p+ = gl(2n)⊕A(2n), the embedding of sp2n to gl(2n) induced an embedding of sp2n(R)
to p+. On the group level, g ∈ Sp2n(R) is embedded into P+ as (g, 0).

Theorem 2.1 The map

j : Ad(Sp2n(R))X → Ad(P+)(X, W ) (X ∈ sp2n(R))

defines a one-to-one correspondence between the real coadjoint orbits of Sp2n(R) and the real
principal orbits of P+(2n). Furthermore, j(Ad(Sp2n(R))X) ∼= P+(2n)/(Sp2n(R))X .
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Proof: Fix an arbitrary orbit O = Ad(Sp2n(R))X. First, the map j does not depend on the
choices of X. Notice that ∀ g ∈ Sp2n(R),

Ad(g, 0)(X, W ) = (gXg−1, (g−1)tWg−1) = (Ad(g)X, W ).

By Lemma 2.1, (g, 0) ∈ P+. Therefore

Ad(P+)(X, W ) = Ad(P+)(Ad(g, 0)(X, W )) = Ad(P+)(Ad(g)X, W ).

So choosing Ad(g)X instead of X will not change the image of j. Therefore j is a well-defined
map from coadjoint orbits of Sp2n(R) to coadjoint orbits of P+.

Secondly, j is one-to-one. Suppose that

j(Ad(Sp2n(R))(X)) = j(Ad(Sp2n(R)(X ′))).

Then there exists (A,B) ∈ P+ such that Ad(A,B)(X, W ) = (X ′,W ) ∈ p∗. In other words,

(AXA−1 + BWA−1, (A−1)tWA−1) = (X ′,W ).

It follows that (A−1)tWA−1 = W . So A ∈ Sp2n(R). We obtain

X ′ = AXA−1 + BWA−1 = AXA−1 + BAtW.

By Lemma 2.1, BAt is skew-symmetric. So BAtW is of the form(
M N
L M t

)
(M,N,L ∈ M(n), N t = −N,Lt = −L)

which is perpendicular to sp2n(R) with respect to the trace form. Since X ′ ∈ sp2n(R), we must
have

BAtW = 0, AXA−1 = X ′.

This shows that X and X ′ is on the same Sp2n-orbit and B = 0. Furthermore, if we take
X ′ = X, we see that the isotropy subgroup of P+ fixing (X, W ) is equal to (Sp2n(R))X . This
implies that

j(OX) ∼= P/(Sp2n(R))X .

Here (Sp2n(R))X is embedded in P+ as ((Sp2n(R))X , 0).

Lastly, j is also onto. For any principal orbit Ad(P+)(X, Y ), Y must be skew-symmetric and
of rank 2n. We can choose a A ∈ GL(2n) such that (A−1)tY A−1 = W . By Equation 2, we
may assume Y = W . Now by the same equation, if we take A = I2n ∈ Sp2n(R) and B skew
symmetric, we have (I2n, B) ∈ P+ and

Ad(I2n, B)(X, W ) = (X + BW, W ).
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Notice that BW is of the form(
M N
L M t

)
(L,M,N ∈ M(n), Lt = −L,N t = −N).

We can choose a B such that
X + BW ∈ sp2n.

This shows that in any principal orbit Ad(P+)(X, Y ), there is an element (X ′,W ) such that
X ′ ∈ sp2n. So j is onto.

Therefore j defines a one-to-one correspondence between coadjoint orbit of Sp2n(R) and prin-
cipal coadjoint orbit of P+. Q.E.D.

We can now compute the dimension of j(OX). Notice that

dim(OX) = dim(Sp2n(R))− dim((Sp2n(R))X) = 2n2 + n− dim((Sp2n(R))X)

dim P+(2n) = dim(GL(2n)) + dim(A2n) = 4n2 + 2n2 − n = 6n2 − n.

Therefore, we have

dim(j(OX)) = dim(P+(2n))− dim((Sp2n(R))X) = 4n2 − 2n + dim(OX).

Theorem 2.2 We have
dim(j(OX)) = 4n2 − 2n + dim(OX).

3 Orbital Correspondence for O(p, q) and P−(p + q)

Let Ap,q =
(

Ip 0
0 −Iq

)
. In this section, we define O(p, q) to be the group preserving the

quadratic form defined by Ap,q. Put n = p + q. Let

P− = {X =
(

A B
0 D

)
| X

(
0n In

−In 0n

)
Xt =

(
0n In

−In 0n

)
}

be the Siegel parabolic subgroup of Sp2n(R). The Siegel parabolic subalgebra

p− = {
(

X B
0 −Xt

)
| X ∈ gl(n), B ∈ S(n)}.

Lemma 3.1 The matrix
(

A B
0 C

)
∈ P− if and only if ACt = I and BAt = ABt. We have

(
A B
0 (At)−1

)−1

=
(

A−1 −Bt

0 At

)
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Proof: The lemma follows from the following computation:(
A B
0 C

)
W

(
At 0
Bt Ct

)
=

(
−BAt + ABt ACt

−CAt 0

)
= W. (3)

Q.E.D.

Therefore,

P− = {
(

A B
0 (At)−1

)
| A ∈ GL(n), BAt = ABt}.

Parameterize the matrix
(

A B
0 (At)−1

)
∈ P− by a pair of n × n matrices (A,B) with ABt

symmetric.

The trace form on sp2n(R)
κ(X, Y ) = Tr(XY )

is nondegenerate. It identifies the dual of sp2n(R) with sp2n(R). Thus, an element in p∗− can
be identified with (

X ∗
Y −Xt

)
(X ∈ M(n), Y ∈ S(n)).

Using (X, Y ) to parameterize p∗−, we may compute the action of (A,B) ∈ P− on (X, Y ) ∈ p∗−
as in Equation 2. We obtain

Ad(A,B)(X, Y ) = (AXA−1 + BY A−1, (A−1)tY A−1). (4)

Since rank(Y ) is fixed by the action of (A,B), we define the rank of a coadjoint orbit O =
Ad(P−)(X, Y ) to be rank(Y ). We say that the orbit Ad(P−)(X, Y )) is a principal orbit if
rank(Y ) is n. Notice that gl(n) can be decomposed as the direct sum

o(p, n− p)⊕ {
((

A B
Bt C

))
| A ∈ S(p), C ∈ S(n− p)}.

The embedding of o(p, n − p) in gl(n) induces an embedding of o(p, q) into p−. The group
O(p, n − p) becomes a subgroup of P−, precisely in the form (O(p, n − p), 0). We have the
following theorem.

Theorem 3.1 The real adjoint orbits of O(p, n− p) for all p ∈ [0, n] are in one-to-one corre-
spondence with the real principal coadjoint orbits of P−(n). The correspondence is given by

jp : Ad(O(p, n− p))X → Ad(P−)(X, Ap,n−p) (X ∈ o(p, n− p)).

Furthermore, jp(OX) ∼= P−/(O(p, n− p))X .
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Proof: Let 0 ≤ p ≤ n. First of all, O(p, n − p) is a subgroup of P−. Let X ∈ o(p, n − p). For
every g ∈ O(p, n− p), we have

Ad(g, 0)(X, Ap,n−p) = (Ad(g)X, Ap,n−p).

So Ad(P−)(X, Ap,n−p) = Ad(P−)(Ad(g)X, Ap,n−p). Therefore, jp(Ad(O(p, n− p))X) is unique.

Let us show that jp is injective. By Equation 4, the action of P− on Y does not change
the signature of the symmetric matrix Y . So the images of jp for different O(p, n − p)’s are
distinct. Suppose that Ad(A,B)(X, Ap,n−p) = (X ′, Ap,n−p) ∈ p∗− and X, X ′ ∈ o(p, q). Then
(A−1)tAp,n−pA

−1 = Ap,n−p implies that A ∈ O(p, n− p). Hence we have

X ′ = AXA−1 + BAp,n−pA
−1 = AXA−1 + BAtAp,n−p.

Since, BAt is symmetric, BAtAp,n−p are perpendicular to o(p, q) under the Trace form. There-
fore we have

X ′ = AXA−1, BAtAp,n−p = 0.

This shows that X and X ′ is on the same O(p, q)-orbit and jp is injective. Furthermore, if we
take X = X ′, we see that the isotropy group fixing (X, Ap,n−p) is equal to

{(A, 0) | A ∈ O(p, n− p)X}

Thus jp(OX) ∼= P−(n)/O(p, n− p)X .

On the other hand, the disjoint union of jp is also surjective. Suppose that Ad(P )(X, Y )
is a principal orbit. By definition, rank(Y ) = n. There exists a A ∈ GL(n) such that
(A−1)tY A−1 = Ap,n−p. Therefore we may assume Y = Ap,n−p. Then for every B ∈ S(n)

Ad(In, B)(X, Ap,n−p) = (X + BAp,n−p, Ap,n−p).

Since gl(n) = o(p, n − p) ⊕ S(n)Ap,n−p, we may choose proper B such that X + BAp,n−p ∈
o(p, n − p). This shows that in any principal orbit Ad(P−)(X, Y ), there exists an element
(X ′, Ap,n−p) such that X ′ ∈ o(p, n− p). Then

Ad(P−)(X, Y ) = jp(Ad(O(p, n− p)X ′)).

Q.E.D.

Now we can compute the dimension of j(OX). Notice that

dim(OX) = dim(O(p, n− p))− dim(O(p, q)X) =
n2 − n

2
− dim(O(p, q)X)

dim(P−(n)) = dim(GL(n)) + dim(S(n)) = n2 +
n2 + n

2
Therefore we have

dim(j(OX)) = dim(P−(n))− dim(O(p, q)X) = n2 + n + dim(OX)
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Theorem 3.2 We have
dim(j(OX)) = n2 + n + dim(OX).
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