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Let P (n) be the Siegel parabolic subgroup of O(n,n), and P_(n) be the Siegel parabolic
subgroup of Spa,(R). In this paper, we study the coadjoint orbits of Py(n). We establish
a one-to-one correspondence between the real coadjoint orbits of Sps,(R) and the principal
coadjoint orbits of Py (2n), and a one-to-one correspondence between the real coadjoint orbits
of O(p,n — p) with p € [0,n] and the principal real coadjoint orbits of P_(n).

1 Introduction

Let G be a Lie group. Let g be the real Lie algebra of G. Let Ad be the adjoint action of G
on g. Each G-orbit in g is called an adjoint orbit. Let g* be the space of real homomorphisms
fromgtoR. Vge G, ¢egh,zeg, define

(Ad*(9)¢)(x) = ¢(Ad(g™")z).

This action is often called the coadjoint action. Each G-orbit is called a coadjoint orbit.

The motivation for classifying coadjoint orbits comes from two directions. Firstly, adjoint
orbits generalize the notion of Jordan canonical forms. Notice for G = GL,(R), g is the space
of n x n matrices. The adjoint orbits of GL(n,R) are in one-to-one correspondence with Jordan
forms. Furthermore, one can identify adjoint orbits with coadjoint orbits by the trace form. In
other words, for each x € g, define a functional §, by

0z 1y € g — Trace(zy).

Then adjoint orbits become coadjoint orbits. It follows that coadjoint orbits are in one-to-one
correspondence with Jordan forms. This is true for all semisimple Lie groups.

Secondly, coadjoint orbits have a profound connection with the representation theory of Lie
groups. In [Kirillov], Kirillov proved that, for simply connected nilpotent groups, equivalence
classes of irreducible unitary representations are in one to one correspondence with coadjoint



orbits of G. Later, Auslander and Kostant extended Kirillov’s result to solvable groups of type
I. For semisimple groups, the structure of coadjoint orbits provides a nice channel to the con-
struction and classification of unitary representations (see [Vogan]). In all cases, classification
of coadjoint orbits is a very important problem in representation theory.

Let G be a semisimple Lie group. Identify g with g* through the Killing form. Then adjoint
orbits can be identified with coadjoint orbits. The classification of adjoint orbits for semisimple
groups are known (see for example [Steinberg], [Collingwood-McGovern]). In this paper, we
are interested in the classification of a selected class of coadjoint orbits of the Siegel parabolic
subgroups.

All matrices in this paper are real matrices. Let

r=c= (g 5 )1x (% o )= (% o )

be the Siegel parabolic subgroup of O(n,n). Let

pw=te= (0 B (g )= (% )

be the Siegel parabolic subgroup of Spa2,(R). An element n € pi(n)* is said to be principal
if 1 restricted to the upper diagonal part B is nondegenerate. We say that O is a principal
coadjoint orbit of P(n) if one of its element is principal. In this paper, we prove the following
theorem:

Theorem 1.1 There ezists a one-to-one correspondence j between coadjoint orbits of Spay,(R)
and principle coadjoint orbits of Py(2n). There exists a one-to-one correspondence between
coadjoint orbits of O(p,n — p) with p € [0, 5] and principal coadjoint orbits of P_(n).

The orbital correspondence in this paper is an analogy of the orbital induction (see [Richardson)],
[Kem]). It is parallel to Mackey’s induction on the representation level as explored by Howe (see
[Howe]). Throughout this paper, the group action will mostly be the matrix multiplication. If
a group (G acts on a set X and z € X, we use GG, to denote the subgroup preserving x. We use
M (n) to denote the space of n x n real matrices, A(n) to denote the space of n x n antisymmetric
matrices and S(n) to denote the space of n X n symmetric matrices. Unless stated otherwise,
all our vectors will be column vectors.

2 Orbital Correspondence for P, (2n) and Sps,(R)

Let S2n,2n = ( O2n Lo

). We define a real symmetric form
IZn O2n

(Q?, y) = xtSQn,Qny (.ZE, Y € R4n).



Let Ogy, 2y, be the isometric group fixing the symmetric form (, ). The Siegel parabolic subgroup
P, (2n) of O(2n,2n) will be denoted by P, for simplicity. Then the Lie algebra

XY
p+:{( 0 _Xt>|X7Y€M(2n);Yt:_Y}'
Let

01
Then P admits a Levi decomposition P = GL(2n)N. Here the Levi factor GL(2n) is simply

N:{( LB > | B! = —B, B € M(2n)}.

X 0
{( 0 (X-1)t ) | X € GL(2n)}.
We have the following exact sequence

1—-N— Py —-GL(2n) — 1.

Lemma 2.1 The matriz < 61 (B;lt)—l ) is in Py if and only if AB® is skew-symmetric, i.e.,

BA! = —AB'. We have
A B /A Bt
0 (AH~! N 0 Al

Proof: The lemma follows from the following computation.

A At At + AB?
(5t s (e %0 )= (71 6) g
Q.E.D.

Therefore,

A B t t
Py :{( 0 (A1) ) | Ae GL(2n),B € M(2n), BA' = —AB'}.

We parameterize P, by a pair (A4, B) such that BA* = —AB' and parameterize p, by a pair
(U,V) with U € M(2n) and V € A(2n). p4 = gl(2n) & A(2n).

Consider the Siegel parabolic subalgebra py. Every element in the dual of py can be
represented by a matrix through the trace form:



Notice that changes of [%] do not effect the linear functional it represents. We compute the
action of P, on p7 as follows.

(0 oo ) (7 5 ) (0 )

([ AX + BY A[x] - BX! Al Bt
- (At)—ly _(A—l)tXt 0 At
[ AXAT' 4+ BY AT [+
- ((A—l)tYA—l) (A—l)tYBt _ (A—l)tXtAt
X [¥] . .
Therefore, when we represent v _xt by a pair of 2n x 2n matrices (X,Y") such that
A B
Y € A(2n), and represent < 0 (4
BA! is antisymmetric, then the coadjoint action is given by

1 ) € P by a pair of 2n x 2n matrices (A, B) such that

Ad(A,B)(X,Y) = (AXA ' + BY A~ (AhHiyA™!).
Clearly (A~1'Y A~! is antisymmetric as well.

Since rank(Y) is fixed by the action of A, we can define the rank of a coadjoint orbit
O = Ad(P+)(X,Y) to be rank(Y'). We say that O is a principal orbit if rank(Y’) = 2n.

Now let
W_ On n
N _In On ’
A B

= {( & Py )14 B.CEMI.B =Bt =0)

Recall that

Equip gl(2n) with trace form (X,Y) = TrXY?!. Then gl(2n) can be decomposed as a direct
sum

wn®o(( 5 ) 1e M. B.Ceam).

Since p4 = gl(2n) @ A(2n), the embedding of spoy, to gl(2n) induced an embedding of spa, (R)
to p4+. On the group level, g € Spa,(R) is embedded into Py as (g, 0).

Theorem 2.1 The map
J Ad(Span(R))X — Ad(P1)(X, W) (X € spy,(R))

defines a one-to-one correspondence between the real coadjoint orbits of Spa,(R) and the real
principal orbits of Py (2n). Furthermore, j(Ad(Span(R))X) = Py (2n)/(Sp2n(R))x.



Proof: Fix an arbitrary orbit O = Ad(Sp2,(R))X. First, the map j does not depend on the
choices of X. Notice that V g € Spa,(R),

Ad(g,0)(X, W) = (9Xg™", (g7 )'Wg™") = (Ad(9) X, W).
By Lemma 2.1, (¢,0) € Py. Therefore
Ad(PL)(X, W) = Ad(P, )(Ad(g,0)(X,W)) = Ad(Py)(Ad(g) X, V).

So choosing Ad(g)X instead of X will not change the image of j. Therefore j is a well-defined
map from coadjoint orbits of Spa,(R) to coadjoint orbits of Py.

Secondly, j is one-to-one. Suppose that
JAA(Span(R))(X)) = j(Ad(Spaa(R)(X)).
Then there exists (A, B) € Py such that Ad(A, B)(X,W) = (X', W) € p*. In other words,
(AXA 4+ BWA™L (A"HIwWA™Y = (X, W).
It follows that (A=W A~ =W. So A € Spa,(R). We obtain
X'=AXA™'+ BWA™ = AXA™" + BA'W.

By Lemma 2.1, BA? is skew-symmetric. So BA'W is of the form

(J\I/:[ ]\N4t> (M,N,L € M(n),N'* = —N,L' = —L)

which is perpendicular to sp,, (R) with respect to the trace form. Since X’ € spa,(R), we must
have
BA'W =0, AXA T =X,

This shows that X and X’ is on the same Spo,-orbit and B = 0. Furthermore, if we take
X’ = X, we see that the isotropy subgroup of P, fixing (X, W) is equal to (Sp2,(R))x. This
implies that

J(Ox) = P/(Sp2n(R))x-
Here (Spa,(R))x is embedded in Py as ((Sp2,(R))x,0).
Lastly, j is also onto. For any principal orbit Ad(Py)(X,Y), Y must be skew-symmetric and
of rank 2n. We can choose a A € GL(2n) such that (A~1)'Y A~! = W. By Equation 2, we

may assume Y = W. Now by the same equation, if we take A = I, € Sps,(R) and B skew
symmetric, we have (Iay,, B) € P} and

Ad(Ion, B)(X, W) = (X + BW,W).



Notice that BW is of the form

(J\g ]\Nﬂ) (L,M,N € M(n),L' = —L,N' = —N).

We can choose a B such that
X + BW € sp,,.

This shows that in any principal orbit Ad(P;)(X,Y), there is an element (X', W) such that
X' € spy,,. So j is onto.

Therefore j defines a one-to-one correspondence between coadjoint orbit of Spa,(R) and prin-
cipal coadjoint orbit of Py. Q.E.D.

We can now compute the dimension of j(Ox). Notice that
dim(Ox) = dim(Sp2,(R)) — dim((Span(R))x) = 2n? + n — dim((Sp2,(R))x)
dim Py (2n) = dim(GL(2n)) + dim(Az,) = 4n? + 2n? — n = 6n? — n.
Therefore, we have
dim(j(Ox)) = dim(Py (2n)) — dim((Sp2n(R))x) = 4n* — 2n + dim(Ox).
Theorem 2.2 We have
dim(j(Ox)) = 4n? — 2n + dim(Ox).

3 Orbital Correspondence for O(p,q) and P_(p + q)
I, 0

0 -1
quadratic form defined by A, ,. Put n =p+q. Let

o= p )i (G )= (5 )

be the Siegel parabolic subgroup of Spa,(R). The Siegel parabolic subalgebra

Let A,, = > In this section, we define O(p,q) to be the group preserving the

p-=(( 5 Ty ) 1x cat. B e s,

0 C

(5 o) = (%7 3)

Lemma 3.1 The matriz ( 4 B ) € P_ if and only if AC* = I and BA' = AB'. We have



Proof: The lemma follows from the following computation:

A B At 0 \ [ —BA*4+ AB' ACt\
<o C>W(Bt Ct>_< oAt 0 >_W' 3)
Q.E.D.
Therefore,
P = {< ilt)‘l ) | A€ GL(n), BA' = AB'}.

Tw o>

Parameterize the matrix ( 61 ty-1 > € P_ by a pair of n x n matrices (A, B) with AB?

symmetric.

The trace form on sp,, (R)
K(X,Y)=Tr(XY)

is nondegenerate. It identifies the dual of spy, (R) with spy,(R). Thus, an element in p* can
be identified with

Using (X,Y) to parameterize p* , we may compute the action of (A, B) € P_ on (X,Y) € p*
as in Equation 2. We obtain

Ad(A,B)(X,Y) = (AXA™' + BY A~ (A~ Hiy A . (4)

Since rank(Y) is fixed by the action of (A, B), we define the rank of a coadjoint orbit O =
Ad(P-)(X,Y) to be rank(Y). We say that the orbit Ad(P_)(X,Y)) is a principal orbit if
rank(Y') is n. Notice that gl(n) can be decomposed as the direct sum

own-na{(( f ¢ ))14€SwhCesm-n)

The embedding of o(p,n — p) in gl(n) induces an embedding of o(p,q) into p_. The group
O(p,n — p) becomes a subgroup of P_, precisely in the form (O(p,n — p),0). We have the
following theorem.

Theorem 3.1 The real adjoint orbits of O(p,n — p) for all p € [0,n] are in one-to-one corre-
spondence with the real principal coadjoint orbits of P_(n). The correspondence is given by

Jp + Ad(O(p,n — p)) X — Ad(P-)(X, Apn—p) (X €0(p,n —p)).

Furthermore, j,(Ox) = P_/(O(p,n —p))x.



Proof: Let 0 < p < n. First of all, O(p,n — p) is a subgroup of P_. Let X € o(p,n — p). For
every g € O(p,n — p), we have

Ad(g, O)(X, Ap,nfp) = (Ad(g)X, Ap,nfp)'
So Ad(P_)(X, Apn—p) = Ad(P-)(Ad(g9)X, Apn—p). Therefore, j,(Ad(O(p,n —p))X) is unique.
Let us show that j, is injective. By Equation 4, the action of P_ on Y does not change
the signature of the symmetric matrix Y. So the images of j, for different O(p,n — p)’s are

distinct. Suppose that Ad(A, B)(X, Apn—p) = (X', Apn—p) € p* and X, X’ € o(p,q). Then
(A~1)A,,_pA™t = A, ,,—, implies that A € O(p,n — p). Hence we have

X' = AXA '+ BA,, pAT' = AXAT! + BA'A, .

Since, BA! is symmetric, BA'A, ,,_, are perpendicular to o(p, ¢) under the Trace form. There-
fore we have

X'=AXA"', BA'A,,_,=0.

This shows that X and X’ is on the same O(p, ¢)-orbit and j, is injective. Furthermore, if we
take X = X', we see that the isotropy group fixing (X, A, ,—p) is equal to

{(A,0)| A€ O(p,n—p)x}
Thus j,(Ox) = P-(n)/O(p,n —p)x.

On the other hand, the disjoint union of j, is also surjective. Suppose that Ad(P)(X,Y)
is a principal orbit. By definition, rank(Y) = n. There exists a A € GL(n) such that
(A Y'Y A=l = A, ,_,. Therefore we may assume Y = A, ,,_,. Then for every B € S(n)

Ad(IL, B)(X, Apn—p) = (X + BApn—p, Apn—p)-

Since gl(n) = o(p,n — p) ® S(n)Apn—p, we may choose proper B such that X + BA,,_, €
o(p,n — p). This shows that in any principal orbit Ad(P-)(X,Y’), there exists an element
(X', Apn—p) such that X’ € o(p,n — p). Then

Ad(P_)(X,Y) = jy(Ad(O(p,n — p)X")).
Q.E.D.

Now we can compute the dimension of j(Ox). Notice that

dim(Ox) = dim(O(p,n — p)) — dim(O(p, ¢)x) = L dim(O(p, q)x)

dim(P_(n)) = dim(GL(n)) + dim(S(n)) = n? +
Therefore we have

dim(j(Ox)) = dim(P_(n)) — dim(O(p, q)x) = n* + n + dim(Ox)



Theorem 3.2 We have
dim(j(Ox)) = n? + n + dim(Ox).
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