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UNITARY REPRESENTATIONS AND HEISENBERG PARABOLIC SUBGROUP

HONGYU HE

Abstract. In this paper, we study the restriction of an irreducible unitary representation π of

the universal covering S̃p2n(R) to a Heisenberg maximal parabolic group P̃ . We prove that if π|P̃
is irreducible, then π must be a highest weight module or a lowest weight module. This is in sharp
constrast with the GLn(R) case. In addition, we show that for a unitary highest or lowest weight

module, π|P̃ decomposes discretely. We also treat the groups U(p, q) and O∗(2n).

1. Introduction

Let F = C,R. Let GLn(F) be the general linear group on Fn. Let P1 be the maximal parabolic
subgroup preserving a one dimensional subspace in Fn. Let π be an irreducible unitary representa-
tion of GLn(F). Consider the restriction of π onto P1. Kirillov conjectured that π|P1

is irreducible.
Kirillov’s conjecture was proved by Sahi using Vogan’s classification ( [Sah] [Vogan]). Recently,
Baruch established Kirillov’s conjecture without Vogan’s classification ( [Baru]).

Generally speaking, for other semisimple Lie groups G, the restriction of an irreducible unitary
representation of G to a maximal parabolic subgroup is hardly irreducible. Nevertheless, as proved
by Howe and Li, for irreducible low rank representations, their restrictions to a certain maximal
parabolic subgroup remain irreducible ( [Howes] [Li]). In this situation, the restriction uniquely de-
termines the original representation. However, it is not clear whether there are other representations
whose restriction to a fixed maximal parabolic group is irreducible.

Now Let G = Sp2n(R) and n ≥ 2. Let P be the maximal parabolic subgroup that preserves a
one-dimensional isotropic subspace of the symplectic space R2n. Decompose the identity component
of P as Sp2n−2(R)AHn−1 where Hn−1 is the Heisenberg group and A ∼= R+. We call P a Heisen-

berg parabolic subgroup of G. Let G̃ be the universal covering of G. For any subgroup H of G,
let H̃ be the preimage of H under the universal covering. The classification of irreducible unitary
representation of P̃ can be obtained directly by Mackey analysis.

As an example, take the linear group P . Let C(Hn−1) be the center of Hn−1. Let π be an ir-
reducible unitary representation of P . If π|C(Hn−1) is trivial, then π is in one-to-one correspondence
with irreducible unitary representations of maximal parabolic subgroup of Sp2n−2(R) with levi fac-
tor GL1(R)Sp2n−4(R). Suppose π|C(Hn−1) is not trivial. Let ρ± be the two irreducible unitary

representation of dilated Heisenberg group AHn−1. Then P̂ is parametrized by a triple (ρ±, τ,±)
where τ is a genuine irreducible unitary representation of Mp2n−2(R) and ± corresponds to the
two representations of the component group of P . Notice that ρ± can be extended to a unitary
representation of Mp2n−2(R), and τ can also be extended trivially to AHn−1. Every irreducible
unitary representation of P can be written as ρ± ⊗ τ ⊗C±. All tensor product of Hilbert spaces in
this paper will mean the completion of the algebraic tensor product.
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For simplicity, let us absorb the parameter ± into τ . Any unitary representation π of P can be
written as

[ρ+ ⊗ τ+]⊕ [ρ− ⊗ τ−]⊕ τ0,

here τ0|C(Hn−1) is trivial. Hence every irreducible unitary representation of G can also be written
in this form. Now ρ+|Mp2n−2(R) is equivalent to ω(n − 1) ⊗ C∞ where ω(n − 1) is the oscillator
representation and C∞ is an infinite dimensional trivial representation of Mp2n−2(R). ρ−|Mp2n−2(R)
is equivalent to ω(n− 1)∗ ⊗ C∞.

Theorem 1.1 (See [Howe]). Let π be a nontrivial irreducible unitary representation of S̃p2n(R).

Then there are two unitary representations τ+(π) and τ−(π) of S̃p2n−2(R) such that

πP̃0

∼= [ρ+ ⊗ τ+(π)]⊕ [ρ− ⊗ τ−(π)],

π|
S̃p2n−2(R)

∼= [ω ⊗ τ+(π)⊕ ω∗ ⊗ τ−(π)]⊗ C∞.

This theorem is established by Howe for the double covering of Sp2n(R) ([Howe]). Howe’s argu-
ment essentially extends to the universal covering of Sp2n(R).

If π is a unitarily induced representation from a unitary representation of P̃ , then τ+ and τ− are
quite easy to compute. The issue of computing the map π → τ±(π) for smaller representations is
rather complex. For the constituent of the oscillator representation ω+, τ+ is trivial and τ− is zero.
For the constituent of the oscillator representation ω−, τ+ is the sign character of GL1(R) and τ− is
zero. In this paper, we give some results concerning τ±(π). By Mackey analysis, π|P̃ is irreducible,
if and only if one of τ±(π) vanishes and the other is irreducible.

Theorem 1.2. Let π be an irreducible unitary representation of G̃. If π|P̃ is irreducible, then π
must be either a highest weight module or lowest weight module. In addition, for π a unitary lowest
weight module, π|P̃ ∼= ρ+ ⊗ τ+(π) where τ+(π) decompose discretely into a direct sum of lowest

weight modules of S̃p2n−2(R); for π a unitary highest weight module, π|P̃ ∼= ρ−⊗ τ−(π) where τ−(π)

decompose discretely into a direct sum of highest weight modules of S̃p2n−2(R).

It is not clear whether τ±(π) is irreducible for π a highest or lowest weight module. For some

highest (lowest) weight modules, τ±(π) is irreducible. In fact, for S̃p2(R), τ±(π) will always be irre-
ducible. For n ≥ 2, decomposing π|P̃ is quite difficult, because π|P̃ does not decompose according
to the K-types.

In this paper, we derive some equivalent conditions for π being a nontrivial highest weight module.
One of the condition can be stated as follows.

Theorem 1.3. Let Sp2(R) be a subgroup of G that fixes a nondegenerate 2n− 2 dimensional sym-

plectic subspace. Let N be a unipotent subgroup in Sp2(R). Identify N̂ with the real line. Then π is
a nontrivial irreducible unitary highest weight module if and only if π|N is supported on half of the
real line.

In this paper, we also treat the groups U(p, q) and O∗(2n). The group P will be a maximal
subgroup whose nilradical is a Heisenberg group. We call such P a Heisenberg parabolic subgroup.
The detailed results are stated in Theorems 6.1, 6.2, 7.1, 7.2.
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2. Irreducible Unitary Representations of P̃

Let G be the symplectic group Sp2n(R) with n ≥ 2 and P be the maximal parabolic subgroup

preserving a one dimensional isotropic subspace Re1. Let G̃ be the universal covering of G. For
simplicity, let Z be the preimage of the identity. The group P has a Langlands decomposition
GL1(R)Sp2n−2(R)Hn−1 where Hn−1 is the Heisenberg group. P is a semidirect product of GL1(R)×
Sp2n−2(R) and Hn−1. GL1(R) can be further decomposed as Z2A with A ∼= R+.

Lemma 2.1. Ã ∼= ZÃ0 where Ã0 is the identity component of Ã which can be identified with A. So

we will write Ã = ZA. In addition, G̃L1(R) ∼= 1
2ZA. Lastly

P̃ ∼=
1

2
ZAS̃p2n−2(R)Hn−1/Z.

So π0(P̃ ) = Z2. Here G̃L1(R) ∩ S̃p2n−2(R) = Z.

Notice here that the adjoint action of G̃L1(R) on Hn−1 descends into the adjoint action of GL1(R)

on Hn−1 and the adjoint action of S̃p2n−2(R) descends into the adjoint action of Sp2n−2(R) on Hn−1.

Suppose that λ is real and λ 6= 0. Let ρλ be the unique irreducible unitary representation of
Hn−1 with central character exp iλt. The adjoint action of GL1(R) on Hn−1 induces an action of

GL1(R) on Ĥn−1. In particular, ±1 ∈ GL1(R) perserve ρλ and

a ∈ GL1(R) : ρλ → ρa2λ.

By Mackey analysis, there are two irreducible unitary representations of AHn−1:

ρ+ =

∫
λ∈R+

ρλdλ, ρ− =

∫
λ∈R−

ρλdλ.

These are the only irreducible unitary representations with ρ|C(Hn−1) 6= I, the identity. Now ±1 ∈
GL1(R) preserves each ρλ. By Stone-Von Neumannn Theorem, ±1 acts on each ρλ projectively. In
this situation, it is easy to make ±1 act on ρλ directly. There is no obstruction to lift the projective
action of ±1 on ρλ. Using the Schrödinger model, −1 acts on the odd functions by −1 and on the even
functions by +1. Let us include the actions of Z2 ⊆ GL1(R) in the model ρλ, consequently in ρ±.
Now again, by Mackey analysis, there are four irreducible unitary representations of GL1(R)Hn−1
on which C(Hn−1) acts nontrivially, namely

ρ± ⊗ sgn, ρ±.

The difference between the former and the latter is a little subtle. One way to tell the difference
is that ρ± ⊗ sgn(−1) acts on the even functions by −1 while ρ±(−1) acts on the even functions by
identity.

Now consider G̃L1(R)Hn−1. The representation ρ± can be regarded as a representation of G̃L1(R)Hn−1.

Lemma 2.2. Identify G̃L1(R)Hn−1 with 1
2Z AHn−1. Then the irreducible unitary representations

on which C(Hn−1) act nontrivially are all of the form

ρ± ⊗ χt | t ∈ [0, 1)

with χt(m) = exp 4πimt for m ∈ 1
2Z.

For GL1(R)Hn−1, t = 0, 12 because χt(Z) = 1.

Now let us consider S̃p2n−2(R). This group preserves ρλ. Again, by the Stone-Von Neumann
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Theorem, S̃p2n−2(R) acts on ρλ projectively. Since S̃p2n−2(R) is already simply connected, one

obtains a group action of S̃p2n−2(R) on ρλ. By a theorem of Segal-Shale-Weil, S̃p2n−2(R) action on
ρλ descends into an action of Mp2n−2(R). Simply put, m ∈ Z acts by (−1)m = exp imπ on ρλ. We

can now extend ρ± to include the action of S̃p2n−2(R).

From now on ρ± will be representations of P̃ .

Theorem 2.1 (Howe). Irreducible unitary representations of P̃ on which C(Hn−1) acts nontrivially
are of the form

[ρ± ⊗ χt]⊗ τ
with τ an irreducible unitary representation of S̃p2n−2(R) such that τ(m) = χt(m) for any m ∈ Z.
In addition, two such representations are equivalent if and only if all the parameters (±, t, τ) are the
same.

I shall make some remarks here. First, τ is extended as a representation of P̃ , trivially on AHn−1,
amd trivially on the component group. Second, χt ⊗ τ is a twisted tensor product in the sense that
the action of Z commutes with the tensor. For group P , ρ±(m)⊗χt(m)⊗ τ(m) must be the identity

for every m ∈ Z ⊆ G̃. So (−1)m exp 4πmt = (−1)mτ(m) = 1. For an irreducible unitary represen-
tation of P on which C(Hn−1) acts nontrivially, t = 1

4 ,
3
4 and τ is a genuine unitary representation

of Mp2n−2(R).

The proof is straight forward by applying the Mackey analysis. Observe that the subgroup of

P̃ that preserves ρ± is 1
2Z×Z S̃p2n−2(R). χt ⊗ τ parametrizes the equivalence classes of irreducible

unitary representations of this subgroup.

3. Irreducible Unitary Representations of S̃p2(R)

Throughout this section G = Sp2(R) and P = MAN where M ∼= Z2 and A ∼= R+ and N ∼= R.

What we have proved in the last section needs to be modified. Since the unitary dual of G̃ is known
([Puk], [HT]), we will analyze π|P̃ in detail. The results in this section must have been known to
the experts. Some of the result will be used in the next section to analyze higher rank case.

There are essentally four classes of irreducible unitary representations of G̃ (see [Puk]):

(1) the trivial representation 1;
(2) unitary principal series I(ε, s) where ε ∈ [0, 1) and s ∈ iR ( we exclude ε = 1

2 , s = 0);
(3) complementary series C(ε, s) (ε ∈ [0, 1), s ∈ (0, |1− 2ε|));
(4) Highest weight modules D−l (l > 0) and lowest weight modules D+

l (l > 0).

Let P be the standard parabolic subgroup of G. Let N be the nilradical of P . Then the identity
component P0 has two irreducible unitary representations on which N acts nontrivially, namely ρ+
and ρ−. ρ+|N is supported on R+ ⊆ N̂ , and ρ−|N is supported on R− ⊆ N̂ . Now the center of G̃ can

be identified with 1
2Z. Identifying P̃ with 1

2ZAN , ρ± can be extended to a representation of P̃ by

identify P0 with P̃ / 1
2Z. Then elements of ˆ̃P are parametrized by (±, t) with t ∈ [0, 1). More precisely,

every irreducible unitary representation of P̃ is equivalent to ρ± ⊗ χt. Here χt(man) = exp 4πimt

with m ∈ 1
2Z, a ∈ A and n ∈ N . Notice that χt also defines a central character of G̃. In our

setting, the representations with even weights have central character χ0; the representations with
odd weights have central character χ 1

2
.
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The following theorem gives the structure of the restriction of irreducible unitary representations
of G̃ to P̃ . It is known to the experts. However, I could not find an elementary proof in the literature.

Theorem 3.1.

(1) I(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε;
(2) C(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε;
(3) D+

l |P̃ ∼= ρ+ ⊗ χ l
2−b

l
2 c

;

(4) D−l |P̃ ∼= ρ− ⊗ χ1− l
2+b

l
2 c
. Here b l2c is the largest integer less or equal to l

2 .

Proof: The central character of each π ∈ ˆ̃G can be computed easily. Using the noncompact
model, I(ε, s) can be modeled on L2(N) with N act as translations. Hence (1) is proved. To prove
(2), (3), (4), it suffices to show that the Fourier transform of the matrix coefficients of π restricted
to N has the desired support.

To show (2), let ( , ) be the inner product of C(ε, s) and ( , )Ind be the natural pairing between
the induced representations I∞(ε,−s) and I∞(ε, s). For smooth vectors φ, ψ ∈ I∞(ε, s), we have

(φ, ψ) = (A(ε, s)φ, ψ)Ind

where A(ε, s) is the intertwining operator defined over smooth vectors. In addition, A(ε, s) defines
a bijection between I∞(ε, s) and I∞(ε,−s). Using the noncompact model, for every n ∈ N as an
additive group, we have

(C(ε, s)(n)φ, ψ) = (A(ε, s)φ, I(ε, s)(−n)ψ)Ind =

∫
N

A(ε, s)φ(x)ψ(x− n)dx.

Now C∞c (N) ⊆ I∞(ε,±s). We choose φ and ψ so that

A(ε, s)φ ∈ C∞c (N), ψ ∈ C∞c (N).

So (C(ε, s)(n)φ, ψ) becomes the convolution of two smooth and compactly supported functions. Its

Fourier transform can be made to be supported on N̂ , upon proper choices of φ and ψ. So again we
have C(ε, s)|P̃ ∼= (ρ+ ⊕ ρ−)⊗ χε.

We will now prove (3). (4) follows immediately from (3). Notice that D+
l (l > 0) is a subquo-

tient of I(ε, l− 1) and of I(ε, 1− l) with ε = l
2 − b

l
2c. Let vl+p be of weight l+ p in D+

l where p is a
nonnegative even integer. We stick with the noncompact picture. Let

φl+p = (
1√

x2 + 1
)l(

1 + xi

1− xi
)

l+p
2 =

(1 + xi)
p
2

(1− xi)l+ p
2

be a function in the noncompact model of I(ε, 2l − 1). Here we choose the standard arg funtion
between −π2 and π

2 to define (1± xi)l if l is not an integer. Let

ψl+q = (
1√

x2 + 1
)2−l(

1 + xi

1− xi
)

l+q
2 =

(1 + xi)l−1+
q
2

(1− xi)1+ q
2

be a function in the noncompact model of I(ε, 1− 2l). Then

(D+
l (g)vl+p, vl+q) = C(I(ε, 2l − 1)(g)φl+p, ψl+q) (g ∈ G̃, p, q ≥ 0).
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In particular, for n ∈ N ,

(D+
l (n)vl+p, vl+q) =

∫
N

φl+p(x− n)ψl+q(x)dx

=

∫
N̂

(exp inξ)φ̂l+p(ξ)ψ̂l+q(ξ)dξ

(1)

Notice that
1

(1− xi)l+ p
2

= C1

∫
R+

(exp−ξ) ξl+
p
2−1(exp ixξ)dξ.

So the Fourier transform of 1

(1−xi)l+
p
2

is supported on R+ (See Ch. 8.3 [Fo]). Hence the Fourier

transform of φl+p(x) = (1+xi)
p
2

(1−xi)l+
p
2

is also supported on R+. Even though ψl+q(x) are not in L1,

ddle+3

dxdle+3ψl+q(x) will be in L1. So Fourier transform of ψl+q(x) will be a C0(R) function multi-
plied by a monomial of ξ. Hence, Eq. 1 holds. We have thus seen that the Fourier transform of
(D+

l (n)vl+p, vl+q) is supported on R+. Since {vl+p | p > 0} is an orthogonal basis for D+
l , D+

l |N is
supported on R+.

I shall remark that there may be a more “topological ”proof of Theorem 3.1. The proof of (3)
and (4) I give here is more self-contained.

4. Restriction of Unitary Representations and Irreducibility

Now let π be a nontrivial irreducible unitary representation of G̃. Then π|P̃ can be decomposed
into a direct integral of ρ± ⊗ χt ⊗ τ . In particular, one can write

π ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π)⊕ τ0.

Here τ+(π) and τ−(π) are unitary representations of G̃L1(R)S̃p2n−2(R).

Theorem 4.1 (See [Howe]). Let π be a nontrivial irreducible unitary representation of G̃. Then

there exist two unitary representations τ+(π) and τ−(π) of G̃L1(R)S̃p2n−2(R) such that

π|P̃ ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

Notice that one of τ±(π) could be zero. This theorem was proved by Howe in [Howe] Pg. 249 for
the metaplectic group.

Proof: We will have to prove that π|P̃ does not have any subrepresentation on which C(Hn−1)

acts trivially. Let v be a nonzero vector fixed by C(Hn−1). Let G̃0 be the subgroup of G̃ that com-

mutes with S̃p2n−2(R). So G̃0
∼= S̃p2(R). Notice that C(Hn−1) ⊆ G̃0 and A ⊆ G̃0. Let H be the

Hilbert space spanned by g̃0v forg̃0 ∈ G̃0. Clearly, H decomposes into a direct integral of irreducible
unitary representations of G̃0 on which Z acts as a character. Indeed, all factorial representations
of G̃0 are direct sum of irreducible representations. Now let

v =

∫
̂̃G0

vsdµ(s)

where vs ∈ Hs ⊗ Vs, Hs ∈ ˆ̃G0 and dimVs = m(Hs,H). Then C(Hn−1) must fix vs for almost all s
with respect to µ. If Hs is not trivial, Hs⊗Vs has no vector fixed by C(Hn−1). Hence, H must be a

direct sum of the trivial representation of G̃0. In particular, π must descend to a representation of
G. The matrix coefficent g → (π(g)v, v) violates the Howe-Moore vanishing Theorem ( [HM]). We
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reach a contradiction. �

Theorem 4.2. Let π be a nontrivial irreducible unitary representation of G̃ such that Z acts by
exp 2πmt (∀m ∈ Z) for a fixed t ∈ [0, 1). Suppose that π|P̃ is irreducible. Then π must be a highest
weight module or a lowest weight module.

Proof: Let us fix the standard maximal compact group U(n) ⊆ G. Then U(n) ∩ Sp2n−2(R) =
U(n− 1). As usual, the complexified Lie algebra gC decomposes into a direct sum

kC ⊕ p+ ⊕ p−.

Suppose that π|P̃ is irreducible. By the last Corollary, either τ+(π) or τ−(π) must be zero. Without
loss of generality, suppose that π|P̃ ∼= ρ+ ⊗ τ+(π). Notice that ρ+|C(Hn−1) is supported on R+.

So π|C(Hn−1) must also be supported on R+. Let G̃0 be the subgroup of G̃ that commutes with

S̃p2n−2(R). Consider the restriction π|G̃0
. π|G̃0

can be decomposed into a direct integral of irre-
ducible unitary representations with multiplicities. By Theorem 3.1, among the irreducible unitary

representations of G̃0, only the lowest weight modules are supported on R+ ⊂ ̂C(Hn−1). Hence only
the lowest weight modules occur in the direct integral decomposition of πG̃0

.

Now π|G̃0
is a direct integral of lowest weight modules. Let U(1) = G0 ∩ U(n). Then π|Ũ(1)

can only have positive weights. Fix a maximal torus T in U(n) ⊆ G. Then π|T̃ can only have
positive weights. Let vλ be a vector with weight λ such that

∑
λi is minimal among all possible

weights occuring in π|T̃ . Notice that
∑
λi must be a nonnegative integer. So a minimal

∑
λi must

exist. Now π|Ũ(n) must contain an irreducible representation Vµ with
∑
µi =

∑
λi. Clearly, p− act

on Vµ by zero. So the module generated by Vµ must have a lowest weight module as its quotient.
Since π is already unitary and irreducible, π must be a lowest weight module. Now we have shown
that π is a unitary lowest weight module. �

I shall remark that the last paragraph is true even one assumes that the weights for π|Ũ(1) is

bounded from below.

5. Some Criterions for Lowest Weight Modules

In this section, we give some characterization of lowest weight modules in terms of their restric-
tions on certain subgroups. Some of them are well-known to the experts. Let us fix a complex
structure and an inner product ( , ) on the symplectic space R2n such that the symplectic form
coincides with the imaginary part of ( , ). Let e1, e2, . . . , en be the standard basis over C. Let P be
the subgroup preserving Re1. Let U(n) be the subgroup preserving ( , ).

Theorem 5.1. Let T be a maximal torus in the maximal compact group U(n) of G. Let Sp2(R)
be the subgroup of G acting on a n − 1-dimensional complex subspace by identity. Let U(1) =

Sp2(R) ∩ U(n). Let π be a nontrivial irreducible unitary representation of G̃. Let Q be a maximal
parabolic subgroup of G. Let N be its nilradical and ZN be the center of N . The following are
equivalent:

(1) π|ZN is supported on the positive semidefinite cone of ẐN , regarded as the space of symmetric
matrices;

(2) π|C(Hn−1) is supported on R+ ⊆ ̂C(Hn−1);
(3) π|

S̃p2(R)
decomposes into a direct integral of lowest weight modules;



8 HONGYU HE

(4) π|Ũ(1) only has positive weights;

(5) π|T̃ only has positive weights;
(6) the weights of π|Ũ(1) is bounded from below;

(7) there is an integer k such that every weight λ of π|T̃ satisfies λi ≥ k for every i;

(8) π is a unitary lowest weight module of G̃;
(9) If n = 1, π is a unitary lowest weight module; if n ≥ 2, π|P̃ decomposes into ρ+ ⊗ τ+(π)

and that the weights of τ+(π)|Ũ(1) are bounded from below. Here U(1) is a subgroup of the

Sp2n−2(R) factor of P .

Proof: When n = 1, our theorem follows from Theorem 3.1. Suppose now n ≥ 2.

By [Howe], π|ZN is supported on GL-orbits on ẐN . (1) ↔ (2) is a matter of matrix analysis.
(2) → (3) → (4) is proved in Theorem 4.2. (4) → (3) → (2) is easier than the other direction. So
(1), (2), (3) and (4) are equivalent.

(4) → (5) → (6) → (7) is trivial. (7) → (8) follows as in Theorem 4.2. (8) → (6) is also obvi-
ous. So (8), (7), (6) are equivalent.

To prove (8) → (9), suppose π is a nontrivial unitary lowest weight module. By Cor. 4.1, π|P̃ ∼=
ρ+ ⊗ τ+(π) ⊕ ρ− ⊗ τ−(π). If τ−(π) 6= 0, fix a Ũ(1)-eigenvector v with eigenvalue λ1. By tensoring

with vectors in ρ−, we obtain Ũ(1)-eigenvector with arbitarily low eigenvalue. This contradicts (6).
So π ∼= ρ+⊗ τ+(π). Similarly, weights for τ+(π)|Ũ(1) must also be bounded below. Hence (8)→ (9).

Suppose that (9) holds. So the weights of τ+(π)|Ũ(1) are bounded from below. This implies that

τ+(π)|
S̃p2(R)

must be a direct integral of lowest weight modules with multiplicites. So the weights

of τ+(π)|Ũ(1) must all be positive. Hence the weights of π|Ũ(1) must all be positive. Thus (9)→ (4).

We have proved (9)→ (4)→ (5)→ (6)→ (7)→ (8)→ (9). �

I shall remark here that the parametrization of unitary highest or lowest weight modules is al-
ready known, due to the work of Enright-Howe-Wallach ( [EHW]). It is perhaps easy to go further
to derive more properties of unitary lowest or highest weight modules from Theorem 5.1.

Corollary 5.1. Let π be an irreducible unitary lowest weight module of G̃. Then π|P̃ ∼= ρ+⊗ τ+(π)

and τ+(π) decomposes into a direct sum of lowest weight modules of S̃p2n−2(R).

Proof: By Theorem 5.1 (9), the weights of τ+(π)|Ũ(1) are bounded from below. By Theorem

5.1 (4), τ+(π)|Ũ(1) only has positive weights. By Theorem 5.1 (7) (8), there is a lowest weight

subrepresentation of S̃p2n−2(R) in τ+(π). Consider the orthogonal complement. If it is nonzero,
then there is another lowest weight subrepresentation. This process can continue and it will end in
countable time due to the fact that π has a countable basis. We now obtain a discrete decomposition.
�

6. The group U(p, q)

Suppose p ≥ q ≥ 1 and p+q ≥ 3. Let U(p, q) be the group that preserve a Hermitian form ( , ) on
Cp+q with signature (p, q). Let P be a maximal parabolic subgroup that preserves a one dimensional
isotropic subspace. Then P can be identified with GL1(C)U(p− 1, q − 1)Hp+q−2. Here Hp+q−2 are
parametrized by (t ∈ R, u ∈ Cp+q−2) . The adjoint action of g ∈ U(p − 1, q − 1) on Hp+q−2 leaves
t fixed and operates on u as the left multiplication. The adjoint action of a ∈ GL1(C) on Hp+q−2
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dilates t to ‖a‖2t and operates on u as scalar multiplication. Write GL1(C) = AU(1) where A = R+.

Let G̃ = {(g, t) | g ∈ U(p, q), exp 2πit = det g} be an infinite covering of G. For any subgroup

H of G, let H̃ be the preimage of H. Let ρ± be the irreducible unitary representations of AHp+q−2
we defined earlier. These are the only irreducible unitary representations on which C(Hp+q−2) acts

nontrivially. Extend ρ± to a unitary representation of P̃ . Notice that ρ+|Ũ(1)Ũ(p−1,q−1) decomposes

as follows

[⊕n∈Zdet
n
2 ⊗ θ(det

n
2 )]⊗ C∞.

Here det
n
2 is a character of Ũ(1), θ(det

n
2 ) is the theta lift of det

n
2 with respect to (U(1), U(p −

1, q − 1)) (see [H]) and C∞ records the multiplicity.

Theorem 6.1. Let π be an infinite dimensional irreducible unitary representation of G̃. Then there
are two unitary representation τ±(π) of Ũ(p− 1, q − 1) such that

π|P̃ ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

Let U(1) be diagonally embedded in U(1, 1) ⊆ U(p, q). Then

π|Ũ(1)Ũ(p−1,q−1)
∼= [⊕n∈Zdet

n
2 ⊗ θ(det

n
2 )]⊗ τ+(π)⊗ C∞ ⊕ [⊕n∈Zdet

n
2 ⊗ θ′(det

n
2 )]⊗ τ−(π)⊗ C∞.

Here θ′ refers to the theta lifts with respect to the congredient oscillator representation.

Notice that one of the τ±(π) could be zero. Similarly, we can prove

Theorem 6.2. Let π be an infinite dimensional irreducible unitary representation of G̃. Suppose
that π|P̃ is irreducible. Then π must be a highest weight module or a lowest weight module.

Essentially, SU(1, 1) in SU(p, q) will play the role of Sp2(R) in Sp2n(R). The proof is omitted
here.

7. The group O∗(2n)

Let n ≥ 3. Let O∗(2n) be the group of isometry preserving a nondegenerate skew-Hermitian
form on Hn. Let P be the maximal parabolic subgroup preserving a 1 dimensional isotropic sub-
space. Then P can be identified with GL1(H)O∗(2n− 4)H2n−4 where H2n−4 is a Heisenberg group
parametrized by

(t ∈ R, u ∈ Hn−2).

GL1(H) can be further decomposed as Sp(1)A where A is the center of GL1(H). The adjoint action
of a ∈ A on H2n−4 is given by

(t, u)→ (a2t, au).

The adjoint action of O∗(2n − 4) on H2n−4 is the left multiplication on u. The adjoint action of
k ∈ Sp(1) on H2n−4 is the right multiplication. Clearly, Sp(1) × O∗(2n − 4) action preserves the
real part of canonical skew-Hermitian form on Hn−2. (Sp(1), O∗(2n− 4)) becomes a dual reductive
pair (See [H]).

Now let ρ± be the two irreducible unitary representations of AH2n−4 on which C(H2n−4) acts
nontrivially. ρ± extends to irreducible unitary representations of the linear group P . In particular,
ρ+|Sp(1)O∗(2n−4) decomposes according to the theta correspondence with infinite multiplicity:

⊕
σ∈Ŝp(1)σ ⊗ θ(σ)⊗ C∞.



10 HONGYU HE

Similarly,
ρ−|Sp(1)O∗(2n−4) ∼= ⊕σ∈Ŝp(1)σ ⊗ θ

′(σ)⊗ C∞.
Here θ′ is the theta correspondence with respect to the contragredient oscillator representation.

Ŝp(1) is parametrized by N.

Theorem 7.1. Let π be a nontrivial irreducible unitary representation of O∗(2n). Then there exists
two unitary representations τ±(π) of O∗(2n− 4) such that

π|P ∼= ρ+ ⊗ τ+(π)⊕ ρ− ⊗ τ−(π).

In additon,

π|Sp(1)O∗(2n−4) ∼= {⊕σ∈Ŝp(1)[σ ⊗ θ(σ)]⊗ τ+(π)⊗ C∞} ⊕ {⊕
σ∈Ŝp(1)[σ ⊗ θ

′(σ)]⊗ τ−(π)⊗ C∞}

One of τ±(π) could be zero. The theorem for the universal covering of O∗(2n − 4) is left to the
reader. Similarly, we have

Theorem 7.2. Let π be a nontrivial irreducible unitary representation of O∗(2n). If π|P is irre-
ducible, then π must be a highest weight module or lowest weight module.

Notice that the group O∗(4) contains a noncompact factor SL2(R). The proof is essentially the
same as in Theorem 4.2.
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