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ON MATRIX VALUED SQUARE INTEGRABLE POSITIVE DEFINITE

FUNCTIONS

HONGYU HE

Abstract. In this paper, we study matrix valued positive definite functions on a unimodular group.

We generalize two important results of Godement on L2 positive definite functions. We show that a
matrix-valued continuous L2 positive definite function can always be written as the convolution of an

matrix-valued L2 positive definite function with itself. We also prove that, given two L2 matrix valued

positive definite functions Φ and Ψ,
∫
G Tr(Φ(g)Ψ(g)

t
)dg ≥ 0. In addition this integral equals zero if

and only if Φ ∗ Ψ = 0. Our proofs are operator-theoretic and independent of the group.

1. Introduction

About 60 years ago, Godement published a paper on square integrable positive definite functions on
a locally compact group ( [1]). In his paper, Godement proved that every continuous square integrable
positive definite function has an L2-positive definite square root. He also proved, among others, that the
inner product between two positive definite L2-functions must be nonnegative. Godement’s results and
proofs were quite elegant. The purpose of this paper is to extend Godement’s theorem to matrix-valued
positive definite functions on unimodular groups. Obviously, the diagonal of matrix-valued positive
definite functions must all be positive definite. Yet, there is not much to say about the off-diagonal
entries and their relationship with diagonal entries. So Godement’s results do not carry easily to the
matrix-valued case. In this paper, we generalize Godement’s theorems to matrix-valued positive definite
functions ([1] and Ch 13.[2]). Our results, we believe, are new.

Let Mn(C) be the set of n × n matrices. For a matrix A, let [A]ij be the (i, j)-th entry of A. Let
G be a unimodular group. A continuous function Φ : G → Mn(C) is said to be positive definite if for
any {Ci ∈ Cn}li=1 and {xi ∈ G}li=1,

l∑
i,j=1

(Ci)
tΦ(x−1

i xj)Cj ≥ 0.

Take x1 = e and x2 = g. The above inequality implies that Φ(g) = Φ(g−1)
t

(See for example, Prop.
2.4.6 [7]). When n = 1, our definition agrees with the definition of continuous positive definite functions.
We denote the set of continuous matrix-valued positive definite functions by P(G,Mn).

Definition 1.1. Let L1
loc(G,Mn) be the set of Mn-valued locally integrable functions on G. Let Φ ∈

L1
loc(G,Mn) act on u ∈ Cc(G,Cn) by [λ(Φ)(u)(x)]i =

∑n
j=1

∫
[Φ(g)]ij [u(g−1x)]jdg. We write λ(Φ)(u)(x) =
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Φ(g)u(g−1x)dg. Clearly, λ(Φ)u is continuous. We say that Φ is positive definite if

〈λ(Φ)(u), u〉 =

n∑
i=1

∫
G

[λ(Φ)u(g)]i[u(g)]idg ≥ 0

for all u ∈ Cc(G,Cn).

We denote the set of matrix-valued positive definite functions by P(G,Mn). Clearly, P(G,Mn) ⊃
P(G,Mn) (see Prop 13.4.4 [2]).

Definition 1.2. A matrix-valued function Φ(x) is said to be square integrable, or simply L2 if [Φ]ij is in
L2(G) for all (i, j). We denote the set of matrix-valued square integrable function by L2(G,Mn). Define

〈Φ,Ψ〉 =

∫
G

TrΦΨ
t
dg.

Put P2(G,Mn) = L2(G,Mn) ∩ P(G,Mn) and P2(G,Mn) = L2(G,Mn) ∩P(G,Mn).

Let Φ,Ψ ∈ L1
loc(G,Mn). Define the convolution

[Φ ∗Ψ]ij =

n∑
k=1

[Φ]ik ∗ [Ψ]kj

whenever the right hand side is well-defined, i.e., the convolution integral converges absolutely.

Theorem [A] Let G be a unimodular locally compact group. Let Φ ∈ P2(G,Mn). Then there ex-
ists a Ψ ∈ P2(G,Mn) such that Φ = Ψ ∗Ψ.

Theorem [B] Let G be a unimodular locally compact group. Let Φ,Ψ ∈ P2(G,Mn). Then 〈Φ,Ψ〉 ≥ 0.

Theorem [C] Let G be a unimodular locally compact group. Let Φ,Ψ ∈ P2(G,Mn). Then 〈Φ,Ψ〉 = 0
if and only of Φ ∗Ψ = 0.

Our motivation comes from the theory of unitary representations of Lie groups. There are represen-
tations that appear as a space of “invariant distributions ”in a unitary representation (π,Hπ). To
construct a Hilbert inner product for the invariant distributions, one is often led to investigate whether

(1)

∫
G

(π(g)u, u)dg ≥ 0

when (π(g)u, u) is L1, u ∈ Hπ and G is unimodular ([6] [4]). For G = R, the affirmative answer to
this question is a direct consequence of Bochner’s theorem, namely, the integral of a L1 positive definite
function on R is nonnegative. In his thesis [1], Godement raised this question for G unimodular. It is
known that for G amenable, the Inequality (1) is always true (Prop 18.3.6 [2]). An amenable group is
characterized by the fact that the unitary dual is weakly contained in L2(G). Therefore for G nilpotent,
the Inequality (1) holds.

Consider the other extreme, namely, G semisimple and noncompact. The inequality (1) is false in
its full generality. Yet, applying the result of this paper, we show that Inequality (1) holds if Hπ can be
written as a tensor product of two L2-representations of G and u is finite in the tensor decomposition.
See Theorem 7.1. In Cor. 7.1, we give a result about a certain integral related to Howe’s correspondence
([5]). It is more general than the results given in [4].
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2. Convolution Algebras

Let G be a unimodular locally compact group. A matrix-valued function on G is said to be in Lp if
each entry is in Lp(G). Let Φ ∈ L1(G,Mn). Define ‖Φ‖L1 =

∑
‖[Φ]ij‖L1 . Then L1(G,Mn) becomes a

Banach algebra. We have

L1(G,Mn) ∗ L1(G,Mn) ⊆ L1(G,Mn); Cc(G,Mn) ∗ Cc(G,Mn) ⊆ Cc(G,Mn).

L2(G,Mn) ∗ L2(G,Mn) ⊆ BC(G,Mn).

Here BC(G,Mn) is the space of bounded continuous functions.

For each u, v ∈ L2(G,Cn), define the standard inner product 〈u, v〉 =
∫
G

∑
i[u(g)]i[v(g)]idg. Obviously

L1(G,Mn) acts on L2(G,Cn) by λ. Then map

λ : L1(G,Mn)→ B(L2(G,Cn))

defines a bounded Banach algebra isomorphism. Notice that if Φ ∈ L2(G,Mn) and u ∈ L1(G,Cn), then
λ(Φ)u ∈ L2(G,Cn).

We define the ∗ operation on Lloc(G,Mn) by letting

[Φ∗(g)]ij = [Φ(g−1)]ji.

For u, v ∈ Cc(G,Cn), we have 〈λ(Φ)u, v〉 = 〈u, λ(Φ∗)v〉. If Φ is positive definite in Lloc(G,Mn), then

〈λ(Φ)u, u〉 = 〈λ(Φ)u, u〉 = 〈u, λ(Φ)u〉 = 〈λ(Φ∗)u, u〉.
Hence 〈λ(Φ− Φ∗)u, u〉 = 0. Let u = v + tw (t ∈ R). Then

0 = 〈λ(Φ− Φ∗)(v + tw), v + tw〉 = 〈λ(Φ− Φ∗)v, tw〉+ 〈λ(Φ− Φ∗)tw, v〉.

We obtain 〈λ(Φ− Φ∗)v, w〉 = 〈λ(−Φ + Φ∗)w, v〉 = 〈w, λ(−Φ∗ + Φ)v〉 = 〈λ(Φ− Φ∗)v, w〉. Hence 〈λ(Φ−
Φ∗)v, w〉 must be real for all v, w ∈ Cc(G,Cn). It follows that Φ∗ = Φ. We have

Lemma 2.1. Let Ψ,Φ ∈ P2(G,Mn). Then Φ = Φ∗, Ψ = Ψ∗ and 〈Φ,Ψ〉 = Tr(Φ ∗Ψ(e)).

Proof: The last statement follows from
(2)

Tr(Φ ∗Ψ(e)) =
∑
i,j

∫
G

[Φ]ij(g)[Ψ]ji(g
−1)dg =

∑
i,j

∫
G

[Φ]ij(g)[Ψ]ij(g)dg =

∫
G

TrΦ(g)Ψ(g)tdg = 〈Φ,Ψ〉.

Definition 2.1 (Ch 13. [2]). Let Φ ∈ L2(G,Mn). We say that Φ is moderated if λ(Φ) on Cc(G,Cn) is
a bounded operator in the L2 norm, i.e., there is a M such that

‖λ(Φ)u‖ ≤M‖u‖
for any u ∈ Cc(G,Cn).

When Φ is moderated, λ(Φ)|Cc(G,Cn) can be extended to a bounded operator on L2(G,Cn) which

coincides with the operator λ(Φ)|L2(G,Cn). To see this, let ui → u under the L2-norm with ui ∈
Cc(G,Cn). Since λ(Φ) is bounded on Cc(G,Mn), {λ(Φ)ui}∞i=1 yields a Cauchy sequence in L2(G,Mn).
Therefore λ(Φ)ui converges to an L2-function v ∈ L2(G,Cn) . In particular, (λ(Φ)ui)(g) converges in
L2-norm to v(g) on any compact subset K. On the other hand, (λ(Φ)ui)(g) converges to λ(Φ)u(g)
uniformly on G, in particular, on K. Hence (λ(Φ)u)(g) = v(g) for g ∈ K almost everywhere. It follows
that v(g) = λ(Φ)u(g) almost everywhere. Therefore λ(Φ)u ∈ L2(G,Cn). In short, if Φ is moderated,
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and u ∈ L2(G,Cn), then λ(Φ)(u) ∈ L2(G,Cn). We retain λ(Φ) to denote the bounded operator on
L2(G,Cn). The following is obvious.

Lemma 2.2. Φ is moderated if and only if [Φ]ij are all moderated in L2(G).

Let M(G,Mn) be the space of moderated L2 functions on G. Lemma 13.8.4 [2] asserts that M(G) ∗
M(G) ⊆M(G) and λ|M(G) : M(G)→ B(L2(G)) is an algebra homomorphism. Therefore, we obtain

Lemma 2.3. Let Φ,Ψ ∈ L2(G,Mn). If Φ and Ψ are moderated, then Φ ∗ Ψ is also moderated. In
addition λ(Φ ∗Ψ) = λ(Φ)λ(Ψ).

3. Matrix-Valued Positive Definite Functions

Let G be a unimodular locally compact group. Let us recall some basic result from [2]. Let Φ,Ψ ∈
P(G,Mn). We define an ordering Φ � Ψ if Ψ − Φ ∈ P(G,Mn). An immediate consequence is that
Tr(Φ)(e) ≤ Tr(Ψ)(e). Clearly, Φ � Ψ if and only if

〈λ(Φ)u, u〉 ≤ 〈λ(Ψ)u, u〉 (∀ u ∈ Cc(G,Cn)).

For two bounded operators X and Y in B(H), we say that X � Y if Y − X is positive (Ch 2.4 [7]).
Y −X is positive implies that Y −X is self-adjoint (Prop. 2.4.6 [7]). If Φ and Ψ are moderated, then
Φ � Ψ if and only if λ(Φ) � λ(Ψ).

Theorem 3.1 ( Prop. 16 [1]). Let Φ,Ψ be two moderated elements in P2(G,Mn). Suppose that Φ∗Ψ =
Ψ ∗ Φ. Then 〈Φ,Ψ〉 ≥ 0. Let

Φ1 � Φ2 � . . . � Φn � . . .
be an increasing sequence of moderated positive definite functions in L2(G,Mn). Suppose that Φi mutu-
ally commute. If supi ‖Φi‖L2 <∞, then Φ = lim Φi exists in P2(G,Mn).

The n = 1 case is proved as Prop. 16 in [1]. See also 13.8.5, 13.8.4 [2].

Proof of Theorem 3.1: Φ ∗ Ψ = Ψ ∗ Φ implies that λ(Φ)λ(Ψ) = λ(Ψ)λ(Φ) as bounded operators on
L2(G,Cn). Since λ(Φ) and λ(Ψ) are both positive, they must be self-adjoint. Hence λ(Φ)λ(Ψ) must be
positive and self-adjoint. In other words, λ(Φ ∗Ψ) is positive on L2(G,Cn). In particular, it is positive
with respect to Cc(G,Cn). Hence Φ ∗ Ψ, as a matrix-valued continuous function, is positive definite.
Φ ∗Ψ(e) must be a positive semi-definite matrix. By Lemma 2.1 〈Φ,Ψ〉 = Tr(Φ ∗Ψ)(e) ≥ 0.

Let Φ1 � Φ2 � . . . � Φn � . . . be an increasing sequence of moderated positive definite functions
in L2(G,Mn). For j ≥ i, notice that ‖Φj‖2 = ‖Φi‖2 + 〈Φi,Φj−Φi〉+ 〈Φj−Φi,Φi〉+‖Φj−Φi‖2 ≥ ‖Φi‖2.
Since supi ‖Φi‖L2 < ∞, the sequence {‖Φi‖} is an increasing sequence bounded from above. In partic-
ular, it is a Cauchy sequence. Notice that for j ≥ i

‖Φj − Φi‖2 = ‖Φj‖2 − ‖Φi‖2 − 〈Φi,Φj − Φi〉 − 〈Φj − Φi,Φi〉 ≤ ‖Φj‖2 − ‖Φi‖2.
This implies that {Φi} is a Cauchy sequence in L2(G,Mn). Let Φ be the L2-limit of {Φi}. For every
u = (up) ∈ Cc(G,Cn), since λ(up) is a bounded operator on L2(G), we obtain

([Φi]p,q ∗ uq, up)→ ([Φ]p,q ∗ uq, up).
It follows that

0 ≤ 〈λ(Φi)u, u〉 → 〈λ(Φ)u, u〉.
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Therefore Φ is positive definite. �

Theorem 3.2 (Thm. 17 [1]). Suppose that Φ is a moderated element in P2(G,Mn) such that Φ � Θ with
Θ a continuous positive definite function. Then there is a unique moderated element Ψ in P2(G,Mn)
such that Φ = Ψ ∗ Ψ in L2. In particular, Φ equals a continuous positive definite function almost
everywhere and ‖Ψ‖2 ≤ Tr(Θ(e)).

In particular, if Φ is continuous and moderated in P2(G,Mn) , its square root Ψ exists and is unique.

The n = 1 case is established by Godement. Our proof follows from the proof of Theorem 13.8.6
in [2] for the scalar-valued positive definite L2 functions. The original idea of Godement is to construct
an increasing sequence of positive definite moderated elements Ψk in L2(G) that approaches the square
root. In Dixmier’s book, Ψk = ‖λ(Φ)‖pk( Φ

‖λ(Φ)‖ ). Here {pk(t)} is an increasing sequence of nonnegative

polynomials on [0, 1] such that pk(t)→
√
t on [0, 1] and pk(0) = 0. We shall supply a proof of this fact

before we carry out the proof of Theorem 3.2.

Lemma 3.1. There exists a sequence of polynomials

0 ≤ p1(t) ≤ p2(t) ≤ . . . ≤ pk(t) ≤ . . . ≤
√
t (t ∈ [0, 1]),

such that pk(t)→
√
t uniformly on [0, 1].

Proof: Consider the function t−
1
2 , (t ∈ [0, 1]). Let qk(t) be the k-th Taylor polynomial at t = 1.

Clearly

qk+1(t) = qk(t) +
( 1

2 )( 3
2 ) . . . ( 2k+1

2 )

(k + 1)!
(1− t)k+1.

Let pk(t) = tqk(t). Clearly pk(t) is an increasing sequence of non-negative continuous functions with
limit

√
t over the interval [0, 1]. By Taylor’s theorem, pk(t) →

√
t uniformly on [ε, 1]. On [0, ε],√

t− pk(t) <
√
t ≤
√
ε. Hence pk(t)→

√
t uniformly on [0, 1]. �

Proof of Theorem 3.2: Let Φ be a moderated element in P2(G,Mn) such that Φ � Θ with Θ a
continuous positive definite function. Without loss of generality, suppose the operator norm ‖λ(Φ)‖ = 1.
For any polynomial p(t) =

∑r
i=0 ait

i, define

p(Φ) =

r∑
i=0

ai

i︷ ︸︸ ︷
Φ ∗ Φ ∗ . . . ∗ Φ .

Let Ψk = pk(Φ) with pk(t) defined in the last lemma. Essentially by functional calculus, we will have

λ(Ψk) � λ(Ψk+1), λ(Ψk)λ(Ψk) � λ(Φ).

It follows that Ψk � Ψk+1 and Ψk ∗Ψk � Φ � Θ. By taking the value at e, we have Tr(Ψk ∗Ψk(e)) ≤
Tr(Θ(e)). By Lemma 2.1, ‖Ψk‖ is bounded by

√
TrΘ(e). Since {Ψk} mutually commutes and is an

increasing sequence, by Theorem 3.1, the L2-limit of Ψk exists. Put Ψ = limk→∞Ψk. By Theorem 3.1,
Ψ ∈ P2(G,Mn). We have

Ψ ∗Ψ(g) = lim
k→∞

Ψk ∗Ψk(g),

pointwise. Since limk→∞ λ(Ψk ∗Ψk − Φ) = 0 in the operator norm, for u ∈ Cc(G,Cn), we have

lim
k→∞

λ(Ψk ∗Ψk)u = λ(Φ)u
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in L2(G,Cn). However, the pointwise limit of the left hand side is obviously λ(Ψ ∗ Ψ)u. Hence
λ(Ψ ∗ Ψ − Φ)u = 0 for every u ∈ Cc(G,Cn). Hence Ψ ∗ Ψ(g) = Φ(g) almost everywhere. In par-
ticular, Φ(g) is equal to a continuous positive definite function almost everywhere.

Now λ(Φ) = λ(Ψ)2 on Cc(G,Cn). For any u ∈ Cc(G,Cn), we have

‖λ(Ψ)u‖2 = 〈λ(Ψ)u, λ(Ψ)u〉 = 〈λ(Ψ)2u, u〉 = 〈λ(Φ)u, u〉 ≤ ‖λ(Φ)‖‖u‖2.

Hence λ(Ψ) is bounded on Cc(G,Cn) and the function Ψ is moderated. By Lemma 2.3, λ(Φ) = λ(Ψ)2,
as bounded self-adjoint operators on L2(G,Cn). Since λ(Ψ) is positive, λ(Ψ) is unique as a bounded
operator on L2(G,Cn). In particular, λ(Ψ) is uniquely defined on Cc(G,Cn). Then Ψ must be unique.
�

4. Square Roots: Proof of Theorem A

Let G be a unimodular locally compact group. Let Φ ∈ P2(G,Mn). Now we would like to give a proof
of Theorem A. Our proof is somewhat different from the proof of Theorem 13.8.6 given in [2]. The basic
idea is the same, namely, to construct a sequence of moderated continuous positive definite functions
Φk → Φ. Let Ψk be the square root of Φk. Then the square root of Φ can be obtained as the L2-limit
of Ψk. The construction is canonical. In our proof, the continuity of Φk is given by Theorem 3.2. We
do not use Cor. 13.7.11 in [2] which requires several more pages of argument. We also wish to point out
a major difference. In the scalar case λ(Φk) acts on L2(G) and in our case λ(Φk) acts on L2(G,Cn) not
on L2(G,Mn).

Proof of Theorem [A]: Let x ∈ G. Let ρ(x) act on L2(G,Cn) by (ρ(x)u)(g) = u(gx). The action ρ
is simply the right regular action. Hence ρ(x) is a unitary operator on L2(G,Cn). If Φ ∈ Lloc(G,Mn),
then obviously

(3) ρ(x)λ(Φ)ρ(x−1) = λ(Φ)

on Cc(G,Cn).

Let Φ ∈ P2(G,Mn). Then λ(Φ)|Cc(G,Cn) is a positive symmetric operator densely define on L2(G,Cn),
by the definition of positive definiteness of Φ. Let Λ(Φ) be the Friedrichs extension of λ(Φ)|Cc(G,Cn).
Then Λ(Φ) is an (unbounded) positive and self-adjoint operator (Ch. 5.6. [7]). By Equation (3), we
must have ρ(x)Λ(Φ)ρ(x−1) = Λ(Φ).

Let Λ(Φ) =
∫∞

0
tdP be the spectral decomposition. Here P is a projection-valued measure on the Borel

subsets of R. In other words, for every B a Borel subset of R, there is a projection P (B) on L2(G,Cn).
Then ρ(x)Λ(Φ)ρ(x−1) =

∫∞
0
td[ρ(x)Pρ(x−1)]. Notice here that ρ(x) is unitary. Hence ρ(x)P (B)ρ(x−1)

remains a projection. The uniqueness of the spectral decomposition of self-adjoint operators implies that
ρ(x)P (B)ρ(x−1) = P (B). Since P (B) is bounded, we have ρ(x)P (B) = P (B)ρ(x) for any Borel subset
B and for any x ∈ G.

Let [Φ]∗j be the j-th column vector of Φ. Fix a Borel subset B. Define ΦB by letting the j-th col-
umn vector to be [ΦB ]∗j = P (B)[Φ]∗j . Clearly ΦB ∈ L2(G,Mn).

Claim 1: λ(ΦB) = P (B)λ(Φ) on Cc(G,Cn).
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Proof: Let u ∈ Cc(G,Cn). Then

[λ(Φ)u](g) =
∑
j

∫
x∈G

[Φ]∗j(gx
−1)[u]j(x)dx =

∑
j

∫
x∈G

(ρ(x−1)[Φ]∗j)(g)[u]j(x)dx.

For any x ∈ G, we have

(P (B)ρ(x−1)[Φ]∗j)(g) = (ρ(x−1)P (B)[Φ]∗j)(g) = (P (B)[Φ]∗j)(gx
−1).

Since P (B) is a bounded operator on L2(G,Cn), [Φ]∗j ∈ L2(G,Cn) and [u]j(x) ∈ L1(G), we have

[P (B)(λ(Φ)u)](g) =P (B)

∫ ∑
j

(ρ(x−1)[Φ]∗j)(g)[u]j(x)dx

=

∫ ∑
j

(P (B)ρ(x−1)[Φ]∗j)(g)[u]j(x)dx

=

∫ ∑
j

(ρ(x−1)P (B)[Φ]∗j)(g)[u]j(x)dx

=

∫ ∑
j

(P (B)[Φ]∗j)(gx
−1)[u]j(x)dx

=

∫ ∑
j

([ΦB ]∗j)(gx
−1)[u]j(x)dx

=

∫
ΦB(gx−1)u(x)dx

=(λ(ΦB)u)(g)

(4)

Our claim is proved.

Observe that P (B)λ(Φ) = P (B)Λ(Φ) on Cc(G,Cn) and P (B)Λ(Φ) is positive and bounded. There-
fore λ(ΦB) = P (B)λ(Φ) is bounded on Cc(G,Cn) and positive with respect to Cc(G,Cn). Hence ΦB
is moderated and positive definite. We must have λ(ΦB) = P (B)Λ(Φ) on L2(G,Cn). In addition if
B1 ⊃ B2

λ(ΦB1
− ΦB2

) = (P (B1)− P (B2))Λ(Φ)

on Cc(G,Cn) and the right hand side is positive and self adjoint. Hence ΦB1
� ΦB2

. Similarly ΦB1
� Φ.

For each positive integer k, define Φk = Φ[0,k]. We then obtain an increasing sequence of moderated
positive definite functions

Φ1 � Φ2 � . . . � Φk � . . . (� Φ).

Due to the way [Φk]∗j are defined, Φk → Φ in L2-norm. We have

Lemma 4.1. Let G be a unimodular group. Every Φ ∈ P2(G,Mn) is a L2-limit of an increasing sequence
of mutually commutative moderated elements in P2(G,Mn).

The n = 1 case was proved by Godement as Prop. 14 in [1].

Since Φk is moderated in P2(G,Mn) with Φk � Φ, by Theorem 3.2, there is a moderated element
Ψk ∈ P2(G,Mn) such that Φk = Ψk ∗ Ψk almost everywhere. Without loss of generality, suppose that
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Φk = Ψk ∗ Ψk pointwise. Notice that both λ(Φk) and λ(Ψk) can be regarded as positive bounded self-
adjoint operators on the Hilbert space L2(G,Cn). By Lemma 2.3, as bounded self-adjoint operators on
L2(G,Cn), λ(Φk) = λ(Ψk)2. We have

(5) λ(Ψk) =

∫ k

0

√
tdP (t).

In particular, λ(Ψk) is uniquely defined on Cc(G,Cn). Therefore Ψk is unique and satisfies Equation 5.
By functional calculus, {λ(Ψk)} mutually commute and yield an increasing sequence of positive bounded
self-adjoint operators on L2(G,Cn). Restricted to Cc(G,Cn), it is easy to see that {Ψk} must mutually
commute and

Ψ1 � Ψ2 � . . . � Ψk � . . . .

Observe that ‖Ψk‖2 = Tr(Ψk ∗ Ψk(e)) ≤ Tr(Φ(e)). By Theorem 3.1, {Ψk} converges in L2(G,Mn).
Let Ψk → Ψ in L2(G,Mn). By Theorem 3.1, Ψ ∈ P2(G,Mn). Notice that Ψk ∈ L2(G,Mn). Then
Φk = Ψk ∗Ψk converges uniformly to Ψ ∗Ψ. Since Φk|K → Φ|K in L2(K,Mn) for any compact set K,
Φ|K = Ψ ∗ Ψ|K almost everywhere. Therefore Φ = Ψ ∗ Ψ almost everywhere. Since Φ is continuous,
Φ = Ψ ∗Ψ. Theorem A is proved. �

5. Nonnegative Integral: Proof of Theorem B

Let G be a unimodular group. Let Φ,Γ ∈ P2(G,Mn). We want to prove that

〈Φ,Γ〉 ≥ 0.

The main idea of the proof here is essentially due to Godement ( Prop.18 [1]). We start with the follow-
ing lemma.

Lemma 5.1. Let G be a unimodular group. Every Φ in P2(G,Mn) is a limit of an increasing sequence
of moderated elements in P2(G,Mn) under the L2 norm.

Proof: By Lemma 4.1, it suffices to show that every moderated element Φ in P2(G,Mn) is the L2

limit of an increasing sequence of moderated elements in P2(G,Mn). Without loss of generality, suppose
that ‖λ(Φ)‖ = 1. Let rk(t) be the k−th Taylor polynomial of 1

t at t = 1. We define qk(t) = t2rk(t).
Then qk(t) is an increasing sequence of nonnegative polynomial functions on [0, 1] such that qk(t) → t
uniformly on [0, 1] (c.f. Lemma 3.1).

Let Φk = qk(Φ). Then λ(Φk) = qk(λ(Φ)) is an increasing sequence of positive self-adjoint operators
that approaches λ(Φ). Obviously, Φk(g) is positive definite. Since λ(Φ) extends to a bounded operator
on L2(G,Cn), λ(Φk) also extends to a bounded operator on L2(G,Cn). Hence Φk is moderated. Since
Φ ∗ Φ is continuous, Φk = qk(Φ) is always continuous. Therefore, {Φk} is an increasing sequence of
continuous moderated positive definite functions.

Notice that λ(Φk), λ(Φ) all mutually commute. Since λ(Φk) � λ(Φ), (λ(Φk))k � (λ(Φ))k. Hence
Φk ∗ Φk � Φ ∗ Φ. This implies Tr(Φk ∗ Φk(e)) ≤ Tr(Φ ∗ Φ(e)). By a similar argument in the proof
of Theorem 3.1, ‖Φk‖ ≤ ‖Φ‖. By Theorem 3.1, let Ψ be the L2-limit of Φk. For any u ∈ Cc(G,Mn),
λ(Ψ)u = limk→∞ λ(Φk)u pointwise, and limk→∞ λ(Φk)u = λ(Φ)u in L2-norm. It follows that Ψ = Φ
almost everywhere. Therefore Φk → Φ in L2-norm.
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We have obtained an increasing sequence of moderated elements in P2(G,Mn) such that Φk → Φ
in L2-norm. �

Lemma 5.2. Let Φ1 be a moderated element in P2(G,Mn) and Φ2 ∈ P2(G,Mn). We have

〈Φ1,Φ2〉 ≥ 0.

Proof: Suppose that Φ2 = Ψ ∗Ψ with Ψ ∈ P2(G,Mn). Then

〈Φ1,Φ2〉 = Tr(Φ1 ∗ Φ2(e)) = Tr(Φ1 ∗Ψ ∗Ψ(e)) = 〈λ(Φ1)Ψ,Ψ〉 =

n∑
i=1

〈λ(Φ1)[Ψ]∗i, [Ψ]∗i〉.

Notice that λ(Φ1) is a bounded positive self adjoint operator. We have 〈Φ1,Φ2〉 ≥ 0. �

Proof of Theorem B: For Φ,Γ ∈ P2(G,Mn), let Φα be a sequence of moderated element in P2(G,Mn)
with L2-limit Φ and Γβ be a sequence of elements in P2(G,Mn) with L2-limit Γ. Then we have

〈Φ,Γ〉 = lim
α,β→∞

〈Φα,Γβ〉 ≥ 0.

Theorem B is proved. �

6. Zero Integral

Let Φ,Ψ ∈ P2(G,Mn). If Φ ∗Ψ = 0, we have 〈Φ,Ψ〉 = Tr(Φ ∗Ψ(e)) = 0. Now we would like to show
that the converse is also true.

Theorem 6.1. Let G be a unimodular locally compact group. Let Φ,Ψ ∈ P2(G,Mn). If 〈Φ,Ψ〉 = 0,
then Φ ∗Ψ = 0.

Proof: By Lemma 4.1, let Φm be an increasing sequence of moderated elements in P2(G,Mn) such that
‖Φm−Φ‖ ≤ 1

m . By Lemma 5.1, let Ψp be an increasing sequence in P2(G,Mn) such that ‖Ψp−Ψ‖ ≤ 1
p .

Then

0 = 〈Φ,Ψ〉 = 〈Φ− Φm,Ψ〉+ 〈Φm,Ψ〉 ≥ 〈Φm,Ψ〉 ≥ 〈Φm,Ψp〉 ≥ 0.

Hence all the inequalities here must be equalities. Suppose that Ψp = Θp ∗ Θp with Θp ∈ P2(G,Mn).
Then

0 = 〈Φm,Ψp〉 = Tr(Φm ∗Θp ∗Θp(e)) =
∑
i

〈λ(Φm)[Θp]∗i, [Θp]∗i〉.

Since λ(Φm) is a positive operator on L2(G,Cn), 〈λ(Φm)[Θp]∗i, [Θp]∗i〉 = 0. Thus λ(Φm)[Θp]∗i = 0
in L2(G,Cn). It follows that Φm ∗ Θp = 0 in L2(G,Mn). Since Φm ∗ Θp(g) is a continuous function,
Φm ∗Θp(g) = 0 for all g ∈ G. Hence Φm ∗Ψp(g) = Φm ∗Θp ∗Θp(g) = 0. Since Φm → Φ and Ψp → Ψ in
L2(G,Mn), we have Φm ∗Ψp(g)→ Φ ∗Ψ(g). Therefore Φ ∗Ψ(g) = 0 for all g. �

Corollary 6.1. Let G be a locally compact unimodular group. Let Φ,Ψ ∈ P2(G,Mn). Then 〈Φ,Ψ〉 ≥ 0
and 〈Φ,Ψ〉 = 0 if and only if Φ ∗Ψ = 0.
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7. Applications in Representation Theory

Let G be a unimodular group. We call a unitary representation (π,H) of G Lp if there is a cyclic
vector u in H such that (π(g)u, u) is Lp. A Lp unitary representation has a G-invariant dense subspace
with Lp-matrix coefficients.

Theorem 7.1. Let G be a unimodular locally compact group and (π,H) be a unitary representation of
G. Suppose that (π1,H1) and (π2,H2) are two L2-unitary representations of G such that

(π,H) ∼= (π1 ⊗ π2,H1⊗̂H2).

Let u =
∑n
i=1 u

(i)
1 ⊗ u

(i)
2 such that matrix coefficients with respect to {u(i)

1 } and {u(i)
2 } are all L2. Then∫

G

(π(g)u, u)dg =

n∑
i,j=1

∫
G

(π1(g)u
(i)
1 , u

(j)
1 )(π2(g)u

(i)
2 , u

(j)
2 )dg ≥ 0.

Proof: Observe that Φ1 defined by [Φ1]ij = (π1(g)u
(i)
1 , u

(j)
1 ) is square integrable and positive definite.

Similarly, Φ2 ∈ L2(G,Mn) defined by [Φ2]ij = (u
(i)
2 , π2(g)u

(j)
2 ) is square integrable and positive definite.

This theorem follows easily from Theorem B. �

Now we shall apply our result to Howe’s correspondence ([5]). Let (G(m), G′(n)) be a dual reduc-
tive pair in Sp. Let (G′(n1), G′(n2)) be two G′-groups diagonally embedded in G′(n) with n1 + n2 = n.
Then (G(m), G′(ni)) is a dual reductive pair in some Sp(i) such that (Sp(1), Sp(2)) are diagonally em-

bedded in Sp. Let ωi be the oscillator representation of S̃p(i). Let ω be the oscillator representation of
Sp. Then ω can be identified with ω1⊗ω2. This identification preserves that actions of G(m) and G′(ni).

Now suppose that the matrix coefficients of ω1|G̃(m) with respect to the Schwartz space are L2. Let π be

an irreducible unitary representation of G̃(m). Suppose that the matrix coefficients for ω∞2 |G̃(m) ⊗ π∞

are all square integrable. Then for any v ∈ π∞, u
(j)
1 ∈ ω∞1 , u

(j)
2 ∈ ω∞2 with j ∈ [1, N ], we have∫

G̃(m)

(ω(g)(
∑

u
(j)
1 ⊗ u

(j)
2 ), (

∑
u

(k)
1 ⊗ u(k)

2 ))(π(g)v, v)dg

=
∑
j,k

∫
G̃(m)

(ω1(g)u
(j)
1 , u

(k)
1 )(ω2(g)u

(j)
2 , u

(k)
2 )(π(g)v, v)dg.

(6)

By Theorem 7.1, this integral must be nonnegative.

Corollary 7.1. Consider a dual reductive pair (G(m), G′(n)) in Sp. Let n = n1+n2. Let (G(m), G′(ni))
be a dual reductive pair in Sp(i). Let ωi be the oscillator representation of Sp(i). Let π be an irre-
ducible unitary representation of G̃(m). Suppose that the matrix coefficients with respect to ω∞1 |G̃(m)

and ω∞2 |G̃(m) ⊗ π∞ are square integrable. Let ξ ∈ ω∞1 ⊗ ω∞2 and u ∈ π∞, then∫
G̃(m)

(ω(g)ξ, ξ)(π(g)u, u)dg ≥ 0.

This Corollary holds for both p-adic groups and real groups. See [6] [3] [4] for the importance of this
integral in Howe’s correspondence ([5]). In particular, under the hypothesis of the Corollary, Howe’s
correspondence preserves unitarity.
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