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Abstract

Theta correspondence y over R is established by Howe (J. Amer. Math. Soc. 2 (1989) 535).

In He (J. Funct. Anal. 199 (2003) 92), we prove that y preserves unitarity under certain

restrictions, generalizing the result of Li (Invent. Math. 97 (1989) 237). The goal of this paper

is to elucidate the idea of constructing unitary representation through the propagation of theta

correspondences. We show that under a natural condition on the sizes of the related dual pairs

which can be predicted by the orbit method (J. Algebra 190 (1997) 518; Representation Theory

of Lie Groups, Park City, 1998, pp. 179–238; The Orbit Correspondence for real and complex

reductive dual pairs, preprint, 2001), one can compose theta correspondences to obtain unitary

representations. We call this process quantum induction.

r 2004 Published by Elsevier Inc.
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1. Introduction

An important problem in representation theory is the classification and
construction of irreducible unitary representations. Let G be a reductive group
and PðGÞ be its admissible dual. For an algebraic semisimple group G; the
admissible dual PðGÞ is known mostly due to the works of Harish-Chandra, R.
Langlands, and Knapp–Zuckerman (see [17,18]). Let PuðGÞ be the set of equivalence
classes of irreducible unitary representations of G; often called the unitary dual of G:
The unitary dual of general linear groups is classified by Vogan [29]. The unitary
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dual of complex classical groups is classified by Barbasch [2]. Recently, Barbasch has
classified all the spherical duals for split classical groups (see [3]). The unitary duals
PuðOðp; qÞÞ and PuðSp2nðRÞÞ are not known in general.

In [14], Howe constructs certain small unitary representations of the symplectic
group using Mackey machine. Later, Jian-Shu Li generalizes Howe’s construction of
small unitary representations to all classical groups. In particular, Li defines a
sesquilinear form ð; Þp that relates these constructions to the theta correspondence

(see [11,20]). It then becomes clear to many people that some irreducible unitary
representations can be constructed through the propagation of theta correspon-
dences (see [15,21,28] and the references within them). So far, constructions can only
be carried out for ‘‘complete small orbits’’ (see [21]). The purpose of this paper is to
make it work for nilpotent orbits in general, for real orthogonal groups and
symplectic groups.

Consider the group Oðp; qÞ and Sp2nðRÞ: The theta correspondence with respect to

Oðp; qÞ-Sp2nðRÞ

is formulated by Howe as a one-to-one correspondence

yðp; q; 2nÞ :RðMOðp; qÞ;oðp; q; 2nÞÞ-RðMSp2nðRÞ;oðp; q; 2nÞÞ;

where MOðp; qÞ and MSp2nðRÞ are some double coverings of Oðp; qÞ and Sp2nðRÞ;
respectively, and

RðMOðp; qÞ;oðp; q; 2nÞÞDPðMOðp; qÞÞ;

RðMSp2nðRÞ;oðp; q; 2nÞÞDPðMSp2nðRÞÞ

(see [13]). We denote the inverse of yðp; q; 2nÞ by yð2n; p; qÞ: For the sake of
simplicity, we define

yðp; q; 2nÞðpÞ ¼ 0

if peRðMOðp; qÞ;oðp; q; 2nÞÞ: We define yðp; q; 2nÞð0Þ ¼ 0 and 0 can be regarded as
the NULL representation.

For example, given an ‘‘increasing’’ string

Oðp1; q1Þ-Sp2n1ðRÞ-Oðp2; q2Þ-Sp2n2ðRÞ-?-Sp2nm
ðRÞ-Oðpm; qmÞ;

p1 þ q1 � p2 þ q2 � ? � pm þ qm ðmod 2Þ;

consider the propagation of theta correspondence along this string:

yð2nm; pm; qmÞyyð2n1; p2; q2Þyðp1; q1; 2n1ÞðpÞ:

Under some favorable conditions on pAPuðOðp1; q1ÞÞ; one hopes to obtain a unitary
representation in PuðOðpm; qmÞÞ: In this paper, we supply a sufficient condition for
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yð2nm; pm; qmÞyyð2n1; p2; q2Þyðp1; q1; 2n1ÞðpÞ

to be unitary. We denote the resulting representation of MOðpm; qmÞ by

Qðp1; q1; 2n1; p2; q2; 2n2;y; pm; qmÞðpÞ:

We call Qðp1; q1; 2n1; p2; q2; 2n2;y; pm; qmÞ quantum induction. In addition to the
assumption that certain Hermitian forms do not vanish, we must also assume the
matrix coefficients of p satisfy a mild growth condition.

Based on the work of Przebinda [26], we further determine the behavior of
infinitesimal characters under quantum induction. In certain limit cases, the
infinitesimal character under quantum induction behaves exactly in the same way
as under parabolic induction. In fact, in some limit cases, quantum induced
representations can be obtained from unitarity-preserving parabolic induction (see
[10]). Finally, motivated by the works of Przebinda and his collaborators, we make a
precise conjecture regarding the associated variety of the quantum induced
representations (Conjecture 2).

There is one problem we did not address in this paper, namely, the nonvanishing
of certain Hermitian forms ð; Þp with pAPðMp2nðRÞÞ: In a forthcoming article [10],

we partially address this problem and construct a set of special unipotent
representations in the sense of Vogan [30].

2. Main results

2.1. Notations

In this paper, unless stated otherwise, all representations are regarded as Harish-
Chandra modules. This should cause no problems since most representations in this
paper will be admissible with respect to a reductive group. Thus unitary
representations in this paper would mean unitrizable Harish-Chandra modules.
‘‘Matrix coefficients’’ of a representation p of a real reductive group G will refer to
the K-finite matrix coefficients with respect to a maximal compact subgroup K : A
vector v in an admissible representation p means that v is in the Harish-Chandra
module of p which shall be evident within the context.

Let ðG1;G2Þ be a reductive dual pair of type I (see [13,20]). The dual pairs in this
paper will be considered as ordered. For example, the pair ðOðp; qÞ;Sp2nðRÞÞ is
considered different from the pair ðSp2nðRÞ;Oðp; qÞÞ: Unless stated otherwise, we
will, in general, assume that the size of G1ðV1Þ is less or equal to the size of G2ðV2Þ;
i.e., dimDðV1ÞpdimDðV2Þ: Let ðG1;G2Þ be a dual pair in the symplectic group Sp:
Let Mp be the unique double covering of Sp: Let f1; eg be the preimage of the
identity element in Sp: For a subgroup H of Sp; let MH be the preimage of H under
the double covering. Whenever we use the notation MH; H is considered to be a
subgroup of certain Sp which shall be evident within the context. Let oðMG1;MG2Þ
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be a Schrödinger model of the oscillator representation of Mp equipped with a dual
pair ðMG1;MG2Þ: The Harish-Chandra module of oðMG1;MG2Þ consists of
polynomials multiplied by the Gaussian function. Since the pair ðG1;G2Þ is ordered,
we use yðMG1;MG2Þ to denote the theta correspondence from
RðMG1;oðMG1;MG2ÞÞ to RðMG2;oðMG1;MG2ÞÞ:We use n to denote the constant
vector

ðn; n;y; nÞ:

The dimension of n is determined within the context. Finally, we say a vector

x ¼ ðx1; x2;yxnÞ!0

if

Xk

j¼1

xjo0 8kX1

and x%0 if

Xk

j¼1

xjp0 8kX1:

In this paper, the space of m � n matrices will be denoted by Mðm; nÞ: The set of
non-negative integers will be denoted by N: For the group Oðp; qÞ; we assume that
ppq unless stated otherwise. For a reductive group G; PðGÞ; PuðGÞ will be the
admissible dual and the unitary dual, respectively.

We extend the definition of matrix coefficients to the NULL representation. The
matrix coefficients of the NULL representation is defined to be the zero function.

2.2. Theta correspondence in semistable range and unitary representations

Let pAPðMG1Þ: Following [20], for every u; vAp and f;cAoðMG1;MG2Þ; we
formally define

ðf#v;c#uÞp ¼
Z

MG1

ðoðMG1;MG2Þðg̃1Þf;cÞðu; pðg̃1ÞvÞ dg̃1: ð1Þ

Roughly speaking, if the functions

ðoðMG1;MG2Þðg̃1Þf;cÞðu; pðg̃1ÞvÞ ð8f;cAoðMG1;MG2Þ; 8u; vApÞ

are in L1ðMG1Þ and pðeÞ ¼ �1; p is said to be in the semistable range of
yðMG1;MG2Þ (see [7]). We denote the semistable range of yðMG1;MG2Þ by
RsðMG1;MG2Þ:
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Suppose from now on that pARsðMG1;MG2Þ: In [7], we showed that if ð; Þp does

not vanish, then ð; Þp descends into a Hermitian form on yðMG1;MG1ÞðpÞ: For

pARsðMG1;MG1Þ; we define

ysðMG1;MG1ÞðpÞ ¼
yðMG1;MG2ÞðpÞ if ð; Þpa0;

0 if ð; Þp ¼ 0;

�
ð2Þ

ysðMG1;MG2ÞðpÞ as a real vector space is just oðMG1;MG2Þ#p modulo the radical
of ð; Þp (see [7,20]). The main object of study in this paper is ys:

If p is in RsðMG1;MG2Þ but not in RðMG1;oðMG1;MG2ÞÞ; our construction
from [7] will result in a vanishing ð; Þp: Thus ysðMG1;MG2ÞðpÞ ‘‘vanishes’’. In this

case, ys ¼ y trivially. The remaining question is whether ð; Þpa0 if

pARðMG1;oðMG1;MG2ÞÞ: Conjecturally, ysðMG1;MG1Þ should agree with the
restriction of yðMG1;MG1Þ on RsðMG1;MG2Þ (see [7,19]).

For p a Hermitian representation, it can be easily shown that ð; Þp is an invariant

Hermitian form on yðMG1;MG2ÞðpÞ if ð; Þp does not vanish. This is a special case of

Przebinda’s result in [24]. For p unitary, we do not know whether ð; Þp must be

positive semidefinite in general. Nevertheless, in [9], we have proved the semi-
positivity of ð; Þp under certain condition on the leading exponents of p (see [16,32]).

Fix a Cartan decomposition for Sp2nðRÞ and Oðp; qÞ: Fix the standard basis of a for
Sp2nðRÞ and Oðp; qÞ (see 6.1). The leading exponents of an irreducible admissible
representation are in the complex dual of the Lie algebra a of A:

Theorem 2.2.1. Suppose p þ qp2n þ 1: Let p be an irreducible unitary representation

whose every leading exponent satisfies

RðvÞ � n� pþ q

2

� �
þ rðOðp; qÞÞ%0: ð3Þ

Then ð; Þp is positive semidefinite. Thus, ysðp; q; 2nÞðpÞ is either unitary or vanishes.

We denote the set of representations in PðMOðp; qÞÞ satisfying (3) by Rssðp; q; 2nÞ:
The set RsðMOðp; qÞ;MSp2nðRÞÞ is written as Rsðp; q; 2nÞ in short.

Theorem 2.2.2. Suppose noppq: Let p be an irreducible unitary representation whose

every leading exponent satisfies

RðvÞ � pþ q

2
� n� 1

� �
þ rðSp2nðRÞÞ%0: ð4Þ

Then ð; Þp is positive semidefinite. Thus, either ysðp; q; 2nÞsðpÞ is unitary or vanishes.

We denote the set of representations in PðMSp2nðRÞÞ satisfying (4) by
Rssð2n; p; qÞ: The set RsðMSp2nðRÞ;MOðp; qÞÞ is written as Rsð2n; p; qÞ in short.
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2.3. Estimates on leading exponents and Lðp; nÞ

In this paper, we establish some estimates on the growth of the matrix coefficients
of yðp; q; 2nÞðpÞ and of yð2n; p; qÞðpÞ for p in Rsðp; q; 2nÞ and Rsð2n; p; qÞ;
respectively. We achieve this by studying the decaying of the function

Lða;fÞ ¼
Z

b1Xb2X?XbpX1

Yn;p
i¼1;j¼1

ða2
i þ b2

j Þ
�1
2

 !
fðb1; b2;y; bpÞ db1 db2ydbp

as a function of aARn: In general, the decaying of Lða;fÞ depends on the decaying of
f: In Section 5, we define a map Lðp; nÞ to describe this dependence. The map Lðp; nÞ
is a continuous map from

CðpÞ ¼ fl!0 j lARpg

to

CðnÞ ¼ fm!0 j mARng:

Its algorithm is developed in Section 5. For some special vectors in CðpÞ; Lðp; nÞ is
just a reordering plus an augmentation or truncation. In this paper, we prove

Theorem 2.3.1. Let Lðn; pÞ be defined as in Section 5. Let aðg2Þ be the middle term of

the KAþK decomposition of g2ASp2nðRÞ: Let bðg1Þ be the middle term of the KAþK

decomposition of g1AOðp; qÞ:

1. Suppose that pARsðp; q; 2nÞ: Suppose l!� 2rðOðp; qÞÞ þ n and for every leading

exponent v of p; RðvÞ%l: Then the matrix coefficients of ysðp; q; 2nÞðpÞ are weakly

bounded by

aðg2ÞLðp;nÞðlþ2rðOðp;qÞÞ�nÞ�q�p

2 :

2. Suppose that pARsð2n; p; qÞ: Suppose l!� 2rðSp2nðRÞÞ þ pþq

2
and for every

leading exponent v of p; RðvÞ%l: Then the matrix coefficients of ysð2n; p; qÞðpÞ are

weakly bounded by

bðg1ÞLðn;pÞ lþ2rðSp2nðRÞÞ�
pþq

2

� �
:

The definition of weakly boundedness is given in Section 3.
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2.4. Quantum induction

The idea of composing two theta correspondences to obtain ‘‘new’’ representa-
tions has been known for years. For example, one can compose yðp; q; 2nÞ with
yð2n; p0; q0Þ: The nature of yð2n; p0; q0Þyðp; q; 2nÞðpÞ seems to be inaccessible except for
the cases of stable ranges. In this paper, we treat a somewhat more accessible object,
namely,

ysð2n; p0; q0Þysðp; q; 2nÞðpÞ:

Our construction is done through the studies of the Hermitian form ð; Þp: Due to the

unitarity theorems we proved in [9], under restrictions as specified in Eqs. (3) and (4),
quantum induction preserves unitarity. Our main result can be stated as follows:

Theorem 2.4.1 (Main Theorem).

� Suppose

1. q0
Xp04n;

2. p0 þ q0 � 2nX2n � ðp þ qÞ þ 2X1;
3. p þ q ¼ p0 þ q0 ðmod 2Þ:

Let p be an irreducible unitary representation in Rssðp; q; 2nÞ: Suppose that ð; Þp
does not vanish. Then

1. ysðp; q; 2nÞðpÞ is unitary.
2. ysðp; q; 2nÞðpÞARssð2n; p0; q0Þ:
3. ysð2n; p0; q0Þysðp; q; 2nÞðpÞ is either an irreducible unitary representation or the

NULL representation.

� Suppose

1. 2n0 � p � q þ 2Xp þ q � 2n;
2. noppq:

Let p be a unitary representation in Rssðp; q; 2nÞ: Suppose ð; Þp does not vanish.

Then

1. ysð2n; p; qÞðpÞ is unitary.
2. ysð2n; p; qÞðpÞARssðp; q; 2n0Þ:
3. ysðp; q; 2n0Þysð2n; p; qÞðpÞ is either an irreducible unitary representation or the

NULL representation.

The purpose of assuming pARss is to guarantee the unitarity of Qð�ÞðpÞ: In fact,
for any p; the condition on the sizes of related dual pairs can be computed easily to
define nonunitary quantum induction. In general, the underlying Hilbert space of the
induced representation is ‘‘invisible’’ under quantum induction except for certain
limit cases where quantum induction becomes unitary parabolic induction (see
Section 6 and [10]).

Conjecture 1. Suppose p is a unitary representation in Rss:
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* The quantum induction Qðp; q; 2n; p0; q0ÞðpÞ for 2n � p � q þ 2 ¼ p0 þ q0 � 2n can be

obtained via unitarity-preserving parabolic induction and cohomological induction

from p:
* The quantum induction Qð2n; p; q; 2n0ÞðpÞ for p þ q � 2n � 2 ¼ 2n0 � p � q can be

obtained as a subfactor via unitarity-preserving parabolic induction from p:

For the cases p þ q ¼ 2n þ 1 ¼ p0 þ q0 and p þ q ¼ 2n þ 1 ¼ 2n0 þ 1; by a
Theorem of Adams–Barbasch, Q is either the identity map or vanishes [1]. Our
conjecture holds trivially, i.e., no induction is needed. For the case p þ q þ p0 þ q0 ¼
4n þ 2 and p � p0 ¼ q � q0; our result in Section 6 gives some indication that
Qðp; q; 2n; p0; q0ÞðpÞ can be obtained from

Ind
SO0ðp0;q0Þ
SO0ðp;qÞGL0ðp0�pÞNðp#1Þ:

Let me make one remark regarding the nonvanishing of ð; Þp: In [8] we prove

Theorem 2.4.2 (He [8]). Suppose p þ qp2n þ 1: Let pARsðp; q; 2nÞ: Then at least one

of

ð; Þp; ð; Þp#det

does not vanish.

For pARsð2n; p; qÞ; the nonvanishing of ð; Þp is hard to detect since it depends on

p; q [1,6,22]. A result of Li says that ð; Þp does not vanish if p; qX2n: We are not

aware of any more general nonvanishing theorems.
Finally, concerning the associated varieties, Przebinda shows that the associated

varieties behaves reasonably well under theta correspondence under certain strong
hypothesis [25]. We conjecture that quantum induction induces an induction on
associated varieties and wave front sets. The exact description of the associated
variety under quantum induction can be predicted based on [5].

Conjecture 2.

* Under the same assumptions from the main theorem, let p be a unitary

representation in Rssðp; q; 2nÞ: Let Od be the associated variety of p with d a

partition (see [4], Chapter 5). Let Of be the associated variety of

Qðp; q; 2n; p0; q0ÞðpÞa0: Then ft ¼ ðp0 þ q0 � 2n; 2n � p � q; dtÞ:
* Under the same assumptions from the main theorem, let p be a unitary

representation in Rssð2n; p; qÞ: Let Od be the associated variety of p with d a

partition. Let Of be the associated variety of Qð2n; p; q; 2n0ÞðpÞa0: Then ft ¼
ð2n0 � p � q; p þ q � 2n; dtÞ:
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We remark that our situation is different from the situation treated in [25] with
some overlaps. The description of the wave front set under quantum induction can
be predicted based on [23].

3. Theta correspondence

Let ðOðp; qÞ;Sp2nðRÞÞ be a reductive dual pair in Sp2nðpþqÞðRÞ: Let

j : Mp2nðpþqÞðRÞ-Sp2nðpþqÞðRÞ

be the double covering. Let f1; eg ¼ j�1ð1Þ: Let MOðp; qÞ ¼ j�1ðOðp; qÞÞ and

MSp2nðRÞ ¼ j�1ðSp2nðRÞÞ: Fix a maximal compact subgroup U of Sp2nðpþqÞðRÞ such
that

U-Sp2nðRÞDUðnÞ; U-Oðp; qÞDOðpÞ � OðqÞ:

Then MU is a maximal compact subgroup of Mp2nðpþqÞðRÞ: Let oðp; q; 2nÞ be the

oscillator representation of Mp2nðpþqÞðRÞ: The representation oðp; q; 2nÞ or some-

times oð2n; p; qÞ is regarded as an admissible representation of Mp2nðpþqÞðRÞ
equipped with a fixed dual pair ðOðp; qÞ;Sp2nðRÞÞ: Let P be the Harish-Chandra
module. Then oðp; q; nÞ can be restricted to MOðp; qÞ and MSp2nðRÞ: Howe’s
theorem states that there is a one-to-one correspondence

yðp; q; 2nÞ :RðMOðp; qÞ;oðp; q; 2nÞÞ-RðMSp2nðRÞ;oðp; q; 2nÞÞ:

3.1. MOðp; qÞ and MSp2nðRÞ

The groups MOðp; qÞ and MSp2nðRÞ are double covers of Oðp; qÞ and Sp2nðRÞ:
Depending on the parameter n; p and q; they may be quite different.

Lemma 3.1.1. (1) If p þ q is odd, then the double cover MSp2nðRÞ does not split. It is

the metaplectic group Mp2nðRÞ: The representations in RðMp2nðRÞ;oðp; q; 2nÞÞ are

genuine representation of Mp2nðRÞ:
(2) If p þ q is even, then the double cover MSp2nðRÞ splits. It is the product of

Sp2nðRÞ and f1; eg: The representations in RðMSp2nðRÞ;oðp; q; 2nÞÞ can be identified

with representations of Sp2nðRÞ by tensoring the nontrivial character of f1; eg:
(3) In both cases, any representation in

RðMSp2nðRÞ;oðp; q; 2nÞÞ

can be identified with a representation of Mp2nðRÞ: In the former case, a genuine

representation, and in the latter case, a nongenuine representation.
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We do not know the earliest reference. The details can be worked out easily and
can be found in [1].

Lemma 3.1.2. (1) As a group,

MOðp; qÞDfðx; gÞ j gAOðp; qÞ; x2 ¼ det gng

(2) x is a character of MOðp; qÞ: Any representations in RðMOðp; qÞ;oðp; q; 2nÞÞ
can be identified with representations of Oðp; qÞ by tensoring x:

(3) MSOðp; qÞ can be identified as group product

SOðp; qÞ � f1; eg:

(4) If n is even, MOðp; qÞDOðp; qÞ � f1; eg:

The details can be found in [1] or [9]. We must keep in mind that for p þ q odd,

RðMSp2nðRÞ;oðp; q; 2nÞÞCPgenuineðMp2nðRÞÞ

and for p þ q even

RðMSp2nðRÞ;oðp; q; 2nÞÞCPðSp2nðRÞÞ:

3.2. Averaging integral ð; Þp

Let Oðp; qÞ be the orthogonal group preserving the symmetric form defined by

Ip;q ¼
0p 0 Ip

0 Iq�p 0

Ip 0 0p

0
B@

1
CA:

Fix a Cartan decomposition with

A ¼ fdiagða1; a2;y; ap; 1;y; 1
zfflfflffl}|fflfflffl{q�p

; a�1
1 ; a�1

2 ;y; a�1
p Þ j ai40g

and a positive Weyl chamber

Aþ ¼ fdiagða1; a2y; ap; 1;y; 1
zfflfflffl}|fflfflffl{q�p

; a�1
1 ; a�1

2 ;y; a�1
p Þ j a1Xa2X?XapX1g:

The half sum of the positive restricted roots of Oðp; qÞ
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rðOðp; qÞÞ ¼ p þ q � 2

2
;
p þ q � 4

2
;y;

q � p

2

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

:

Let Sp2nðRÞ be the symplectic group that preserves the skew-symmetric form
defined by

Wn ¼
0n �In

In 0n

� �
:

Let K be the intersection of Sp2nðRÞ with the orthogonal group Oð2nÞ which

preserves the Euclidean inner product on R2n: Let

A ¼ fa ¼ diagða1; a2;y; an; a�1
1 ;y; a�1

n Þ j ai40g;

Aþ ¼ fa ¼ diagða1; a2;y; an; a�1
1 ;y; a�1

n Þ j a1Xa2X?XanX1g:

The half sum of the positive restricted roots of Sp2nðRÞ

rðSp2nðRÞÞ ¼ ðn; n � 1;y; 1Þ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n

:

For each irreducible admissible representation of a semisimple group G of real
rank r; there are number of r-dimensional complex vectors in a� called leading
exponents attached to it. Leading exponents are the main data used to produce the
Langlands classification (see [16,18]).

Definition 3.2.1. An irreducible representation p of Oðp; qÞ is said to be in the
semistable range of yðp; q; 2nÞ if and only if each leading exponent v of p satisfies

Xj

i¼1

RðviÞ þ ðp þ q � 2iÞ � no0 ð8jA½1; p�Þ ð5Þ

i.e.,

RðvÞ � nþ 2rðOðp; qÞÞ!0:

An irreducible representation p of Mp2nðRÞ is said to be in the semistable range of
yð2n; p; qÞ if and only if every leading exponent v of p satisfies

Xk

i¼1

RðviÞ �
p þ q

2
þ 2n þ 2� 2jo0 ð8kA½1; n�Þ ð6Þ

i.e.,
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RðvÞ � pþ q

2
þ 2rðSp2nðRÞÞ!0:

If W is a complex linear space, we use a superscript W c to denote W equipped
with the conjugate complex linear structure. Let pARsðMG1;MG2Þ: We define a
complex linear pairing

ðPc#p;P#pcÞ-C

as follows: for fAP;cAPc; vApc; uAp;

ðf#v;c#uÞp ¼
Z

MOðp;qÞ
ðf;oðgÞcÞðpðgÞu; vÞ dg:

If p is unitary, ð; Þp is an invariant Hermitian form with respect to the action of MG2:

Theorem 3.2.1 (See He [7]). Suppose ðp;VÞ is a unitary representation in the

semistable range of yðMG1;MG2Þ: Then ð; Þp is well-defined. Suppose Rp is the radical

of ð; Þp with respect to P#V c: If ð; Þp does not vanish, then

* p occurs in RðMG1;oðMG1;MG2ÞÞ;
* P#V c=Rp is irreducible;
* P#V c=Rp is isomorphic to yðMG1;MG2ÞðpÞ:
* ysðMG1;MG2ÞðpÞ is a Hermitian representation of MG2:

Thus the Harish-Chandra module of ysðMG1;MG2ÞðpÞ can be defined as
P#V c=Rp:

3.3. Oscillator representation

The oscillator representation, also known as the Segal–Shale–Weil representation,
is a unitary representation of the metaplectic group Mp: The construction of the
oscillator representation can be found in the papers of Segal [27], Shale [28] and Weil
[33]. In this section, we give a basic estimate of the matrix coefficients of the
oscillator representation. Proof of Theorem 3.3.1 can also be found in [12,
Proposition 8.1].

Let gASp2nðRÞ: Let aðgÞ be the midterm of the KAK decomposition of g such that

aAAþ: Let HðgÞ ¼ log aðgÞ: Then

HðgÞ ¼ diagðH1ðgÞ;H2ðgÞ;y;HnðgÞ;�H1ðgÞ;y;�HnðgÞÞ

is in the Weyl chamber aþ:
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Let Mp2nðRÞ be the double covering of Sp2nðRÞ: The midterm of the KAK

decomposition of Mp2nðRÞ remains the same. Let ðon;L2ðRnÞÞ be the Schrödinger
model of the oscillator representation of Mp2nðRÞ as in [7]. Let

mðxÞ ¼ exp �1
2
ðx2

1 þ x2
2 þ?þ x2

nÞ
� �

be the Gaussian function. The Harish-Chandra module Pn are the polynomial
functions multiplied by the Gaussian function as verified in [7]. We write

xa ¼
Yn

1

xai

i :

Harish-Chandra’s theory says that the Mp2nðRÞ action on Pn can be controlled by
the A action on fixed K-types of on:

Theorem 3.3.1. For any aAA; we have

ðonðaÞxamðxÞ; xbmðxÞÞ ¼ ca;b
Yn

i¼1

a
aiþ1

2
i ð1þ a2

i Þ
�aiþbiþ1

2 :

In addition,

jðonðaÞxamðxÞ; xbmðxÞÞjpc
Yn

i¼1

ðai þ a�1
i Þ�

1
2:

In general, for every f;cAPn; we have

jðonðgÞf;cÞjpc
Yn

i¼1

ðaiðgÞ þ a�1
i ðgÞÞ�

1
2:

The proof for the first statement can be found in [7]. We observe that

jðonðaÞxamðxÞ; xbmðxÞÞj ¼ ca;b
Yn

i¼1

a
aiþ1

2
i ð1þ a2

i Þ
�aiþbiþ1

2

					
					

¼ ca;b
Yn

i¼1

ðai þ a�1
i Þ�

1
2ð1þ a2

i Þ
�bi

2 ð1þ a�2
i Þ�

ai

2

					
					

p ca;b
Yn

i�1

ðai þ a�1
i Þ�

1
2: ð7Þ

The second statement is proved. The third statement follows immediately from K-
finiteness of f and c:
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The estimations on the right-hand side are invariant under Weyl group action,

thus do not depend on the choices of the Weyl chamber aþ:

3.4. Growth of matrix coefficients

Definition 3.4.1. Suppose X is a Borel measure space equipped with a norm jj:jj such
that

* jjxjjX0 for all xAX ;
* the set fjjxjjprg is compact.

Let f ðxÞ and fðxÞ be continuous functions defined over X : Suppose fðxÞ approaches
0 as jjxjj-N: A function f ðxÞ is said to be weakly bounded by the function fðxÞ if
there exists a d040 such that for every d04d40; there exists a C40 depending on d
such that

j f ðxÞjpCfðxÞ1�d ð8xAXÞ:

The typical case is when f ðxÞ does not decay as fast as fðxÞ but faster than

fðxÞ1�d:
Let p be an irreducible representation of a reductive group G: Let K be a maximal

compact subgroup of G: We adopt the notation from Chapter VIII in [16]. We equip
G with a norm

g-jjlogðaðgÞÞjj ¼ ðlog aðgÞ; log aðgÞÞ
1
2;

where ð; Þ is a real g-invariant symmetric form whose restriction on a is positive
definite.

Example. An irreducible representation p of a reductive group G is tempered if and
only if its matrix coefficients are weakly bounded by

aðgÞ�r;

where r is the half sum of positive restricted roots and aðgÞ is the mid term of the

KAK decomposition with aðgÞ in the positive Weyl chamber Aþ (see [16]).

Theorem 3.4.1. Let p be an irreducible unitary representation of G: Let l!0: The

following are equivalent:

1. Every leading exponent v of p has RðvÞ%l:
2. There is an integer qX0 such that every K-finite matrix coefficient is bounded by a

multiple of ð1þ jjlog aðgÞjjÞq expðlðlog aðgÞÞÞ:
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3. Every K-finite matrix coefficient fðgÞ of p is bounded by CaðgÞlþd
for any dg0:

4. Every K-finite matrix coefficient of p is weakly bounded by aðgÞl:

See Chapter VIII.8, 13 [16] or Chapter 4.3 [32] for details. The first three
statements are equivalent without assuming the unitarity of p and l!0:

4. Twisted integral

Let Aþ ¼ fa1Xa2X?X1g: In this section, we will study the following integrals:

Lða; lÞ ¼
Z

Bþ

Yp

i¼1

Yn

k¼1

ða2
k þ b2

i Þ
�1
2

 !
bli

i dbi

and

Lða;fÞ ¼
Z

b1Xb2X?XbpX1

Y
i;j

ða2
i þ b2

j Þ
�1
2fðb1; b2;y; bpÞ db1 db2ydbp:

The domain of a will always be Aþ unless stated otherwise. We are interested in the
growth of Lða;fÞ as a goes to infinity. Variables and parameters are assumed to be
real in this section.

4.1. Single variable case aX1

Lemma 4.1.1. Suppose that aX1: The integral

Lða; lÞ ¼
Z

bX1

ða2 þ b2Þ�
1
2bl db

converges if and only if lo0: In addition, Lða; lÞ is weakly bounded by al if �1plo0

and is bounded by a multiple of a�1 if lo� 1:

Proof. From classical analysis, the integralZ
bX1

b�1þl db

converges if and only if lo0: For a fixed a and any b41; b2pa2 þ b2pð1þ a2Þb2:
Hence
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Z
bX1

b�1bl dbX

Z
bX1

ða2 þ b2Þ�
1
2bl dbX

Z
bX1

ð1þ a2Þ�
1
2b�1bl db:

Hence, Lða; lÞ converges if and only if lo0:
For aX1;

Lða; lÞ ¼
Z

bX1

ða2 þ b2Þ�
1
2bl db

¼
Z

abX1

ða2 þ a2b2Þ�
1
2alþ1bl db

¼ al
Z

bXa�1

ð1þ b2Þ�
1
2bl db

¼ al
Z

bX1

ð1þ b2Þ�
1
2bl db þ al

Z 1

a�1

ð1þ b2Þ�
1
2bl db ð8Þ

For aX1 and a�1pbp1 and la� 1;

1ffiffiffi
2

p blpð1þ b2Þ�
1
2blpbl:

Taking
R 1

a�1 db; we obtain

1ffiffiffi
2

p
ðlþ 1Þ

ðal � a�1Þpal
Z 1

a�1

ð1þ b2Þ�
1
2bl dbp

1

lþ 1
ðal � a�1Þ:

Therefore, for �1olo0; Lða; lÞ is bounded by a multiple of al; for lo� 1; Lða; lÞ
is bounded by a multiple of a�1: For l ¼ �1;

1ffiffiffi
2

p a�1 ln apa�1

Z 1

a�1

ð1þ b2Þ�
1
2b�1 dbpa�1 ln a:

Therefore, Lða;�1Þ is weakly bounded by a�1: &

Lemma 4.1.2. Suppose l0o0: Suppose f ðaÞ is weakly bounded by al for any 04l4l0:
Then f ðaÞ is weakly bounded by al0 :

Combining these two lemmas, we obtain

Theorem 4.1.1. Suppose that aX1: Suppose fðbÞ is weakly bounded by bl for some

lo0: Then the integral

Lða;fðbÞÞ ¼
Z

bX1

ða2 þ b2Þ�
1
2fðbÞ db
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converges. In addition, Lða;fÞ is weakly bounded by al if �1pl and is bounded by a

multiple of a�1 if lo� 1:

In conclusion, the growth rate of Lða;fðbÞÞ is a ‘‘truncation’’ of the growth rate of
fðbÞ:

4.2. Multivariate b

Let l ¼ ðl1; l2;y; lpÞ: Let Bþ ¼ fb1Xb2X?XbpX1g: Let us consider

Lða; lÞ ¼
Z

Bþ

Yp

i¼1

ða2 þ b2
i Þ

�1
2bli

i dbi:

First, we observe that

a2 þ b2
i Xa2Zi b

2�2Zi

i

for any ZiA½0; 1�: The Zi is to be determined later. We obtain

Lða; lÞp
Z

Bþ

Yp

i¼1

a�Zi b
�1þZiþli

i dbi

¼ a
Pp

i¼1
�Zi

Z
Bþ

Yp

i¼1

b
�1þZiþli

i dbi: ð9Þ

Secondly, we change the coordinates and let

ri ¼
bi

biþ1
ði ¼ 1;y; p � 1Þ;

rp ¼ bp:

Then

bi ¼
Yp

j¼i

rj ði ¼ 1;y; pÞ:

In addition, Bþ is transformed into ½1;NÞp: The differential

Yp

i¼1

dbi ¼
Yp

i¼1

Yp

j¼i

rj

 !
dri

ri

¼
Yp

i¼1

bi

dri

ri

:

We obtain
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Lða; lÞp a�
Pp

i¼1
Zi

Z
½1;NÞp

Yp

i¼1

b
Ziþli

i

dri

ri

¼ a�
Pp

i¼1
Zi

Z
½1;NÞp

Yp

i¼1

Yp

j¼i

r
Ziþli

j

 !
dri

ri

¼ a�
Pp

i¼1
Zi

Z
½1;NÞp

Yp

j¼1

r

Pj

i¼1
Ziþli

j

drj

rj

: ð10Þ

This integral converges if

Xj

i¼1

Zi þ lio0 ð8jÞ:

Theorem 4.2.1. Suppose aX1: If l!0; then Lða; lÞ converges. Furthermore, Lða; lÞ is

bounded by a multiple of

a
Pp

i¼1
Zi

with any Zi satisfying the condition

0pZjp1;
Xj

i¼1

Zi þ
Xj

i¼1

lio0 ð j ¼ 1;y; pÞ
( )

:

The condition

Xj

i¼1

Zi þ
Xj

i¼1

lio0 ð j ¼ 1;y; pÞ

can be restated as Zþ l!0: Combined with Lemma 4.1.2, we have

Theorem 4.2.2. Suppose fðb1; b2;y; bpÞ on Bþ is weakly bounded by bl for some

l!0: Then the function

Lða;fÞ ¼
Z

Bþ

Yp

i¼1

ða2 þ b2
i Þ

�1
2

 !
fðbÞ db1ydbp

is weakly bounded by a�m with
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m ¼ max
Xp

i¼1

Zi j 0pZjp1; lþ Z%0

( )
:

We point out the second ingredient needed to carry out estimations on Lða;fÞ;
namely, the coordinate transform from b to r:

4.3. Multivariate aA½1;NÞn

This case is more complicated since the function Lða;fÞ is no longer of single
variable. Our result here is weaker than the results for single variable a:

First we consider

Lða; lÞ ¼
Z

Bþ

Yp

i¼1

Yn

k¼1

ða2
k þ b2

i Þ
�1
2

 !
bli

i dbi

We again set the parameters Zk;i to be in ½0; 1�: We have

a2
k þ b2

i Xa
2Zk;i

k b
2�2Zk;i

i :

Therefore, we obtain

Lða; lÞp
Z

Bþ

Yp

i¼1

Yn

k¼1

a
�Zk;i

k b
�1þZk;i

i

 !
bli

i dbi

¼
Yn

k¼1

a
�
Pp

i¼1
Zk;i

k

Z
Bþ

Yp

i¼1

b

li�nþ
Pn

k¼1

Zk;i

i dbi: ð11Þ

Now we change the coordinates b into r: We obtain

Lða; lÞp
Yn

k¼1

a
�
Pp

i¼1
Zk;i

k

Z
½1;NÞp

Yp

i¼1

Yp

j¼i

r
li�nþ

Pn

k¼1
Zk;i

j

Yp

j¼i

rj

 !
dri

ri

¼
Yn

k¼1

a
�
Pp

i¼1
Zk;i

k

Z
½1;NÞp

Yp

i¼1

Yp

j¼i

r
li�nþ1þ

Pn

k¼1
Zk;i

j

 !
dri

ri

¼
Yn

k¼1

a
�
Pp

i¼1
Zk;i

k

Z
½1;NÞp

Yp

j¼1

r

Pj

i¼1
ðli�nþ1þ

Pn

k¼1
Zk;iÞ

j

drj

rj

: ð12Þ

This integral converges if
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Xj

i¼1

li � n þ 1þ
Xn

k¼1

Zk;i

 !
o0 ð81pjppÞ:

Since Zk;iA½0; 1�; we obtain the following theorem.

Theorem 4.3.1. Suppose aA½1;NÞp: The integral Lða; lÞ converges if

Xj

i¼1

li � n þ 1o0

for every integer 1pjpp: In this situation Lða; lÞ is bounded by a multiple of

a�m ¼
Yn

k¼1

a
�mk

k ;

where mk ¼
Pp

i¼1 Zk;i and fZk;ig satisfy

Zk;iA½0; 1� 8k; i;

Xj

i¼1

li � n þ 1þ
Xn

k¼1

Zk;i

 !
o0 8j: ð13Þ

Similarly, we obtain

Theorem 4.3.2. Suppose aA½1;NÞp: Suppose fðbÞb�nþ1 on Bþ is bounded by bl with

l!0: Then the integral Lða;fÞ converges. Furthermore, Lða;fÞ is bounded by a

multiple of

a�m ¼
Yn

k¼1

a
�mk

k ;

where mk ¼
Pp

i¼1 Zk;i and fZk;ig satisfy

Zk;iA½0; 1� 8k; i;

Xj

i¼1

li þ
Xn

k¼1

Zk;i

 !
o0 8j: ð14Þ
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5. Algorithm and examples

Suppose l!0: We are interested in finding the ‘‘maximal’’ Z where

mk ¼
Xp

i¼1

Zk;i

with Zk;i satisfying

Zk;iA½0; 1� 8k; i;

Xj

i¼1

li þ
Xn

k¼1

Zk;i

 !
o0 8j: ð15Þ

5.1. A Theorem for aA½1;NÞn

Write (15) as

Xj

i¼1

Xn

k¼1

Zk;i

 !
o�

Xj

i¼1

li 8j: ð16Þ

First of all, since Zk;iX0; the sequence

Xj

i¼1

Xn

k¼1

Zk;i j jA½1; p�
( )

is increasing. However, the sequence

�
Xj

i¼1

li j jA½1; p�
( )

might not be increasing. Therefore, there are redundancies in inequalities (16). Let j1
be the greatest index such that

Xj1

i¼1

�li ¼ min �
Xj

i¼1

li j jA½1; p�
( )

:

Then we consider jXj1: Let j2 be the greatest number such that

Xj2

i¼1

�li ¼ min �
Xj

i¼1

li j jA½ j1; p�
( )

:
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If j2 ¼ j1; we stop. Otherwise, we can continue on and define a sequence

j0 ¼ 0oj1oj2oj3o?pp

with

0o
Xj1

i¼1

�lio
Xj1

i¼1

�lio?o
Xp

i¼1

�li: ð17Þ

Our problem is equivalent to finding fZk;ig such that

Zk;iA½0; 1� 8k; i;

Xjs

i¼1

li þ
Xn

k¼1

Zk;i

 !
o0 ð8jsÞ:

Once we determine the sequence

j0 ¼ 0oj1oj2oj3o?pp;

we assign numbers in ½0; 1� to Zk;i for js�1oipjs such that

Xjs

i¼1

Xn

k¼1

Zk;io�
Xjs

i¼1

li: ð18Þ

Theorem 5.1.1. Suppose aA½1;NÞp: Suppose fðbÞb�nþ1 on Bþ is bounded weakly by

bl with l!0: Then the integral Lða;fÞ converges. Furthermore, Lða;fÞ is weakly

bounded by

a�m ¼
Yn

k¼1

a
�mk

k ;

where mk ¼
Pp

i¼1 Zk;i and for each js40; fZk;iA½0; 1�g satisfy one of the following

1.

Xjs

i¼1

li þ
Xn

k¼1

Zk;i

 !
¼ 0; ð19Þ
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2.

Xjs

i¼1

li þ
Xn

k¼1

Zk;i

 !
o0; and Zk;i ¼ 1 8kA½1; n�; iA½ js�1 þ 1; js�: ð20Þ

Proof. It suffices to show that for any 0oto1; tZk;i satisfies the conditions in

Theorem 4.3.2. Apparently, we have

tZk;iA½0; 1� ð8i; kÞ

and

Xjs

i¼1

li þ
Xn

k¼1

Zk;i

 !
p0:

From (17), for every sX1;

Xjs

i¼1

li þ
Xn

k¼1

tZk;i

 !
pð1� tÞ

Xjs

i¼1

lio0:

We have shown that (14) holds for j ¼ js: For js�1 þ 1pjpjs; since Zk;iX0;

Xj

i¼1

Xn

k¼1

tZk;ip
Xjs

i¼1

Xn

k¼1

tZk;i

o �
Xjs

i¼1

li

p �
Xj

i¼1

li: ð21Þ

Thus, (14) holds for all 1pjpp: By Theorem 4.3.2, Lða;fÞ is bounded by a�tm with

mk ¼
Pp

i¼1 Zk;i: Hence, Lða;fÞ is weakly bounded by a�m: &

5.2. Lðp; nÞ and Algorithm for aAAþ

Theorem 5.1.1 only assumes aA½1;NÞn: Suppose from now on

aAAþ ¼ fa1Xa2X?XanX1g:

In order to gain a better control over Lða;fÞ; we just need to assign numbers to Z1;i
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to make m1 as big as possible, then assign numbers to Z2;i to make m2 as big as

possible and so on. The only requirement is either (19) or (20). Our algorithm can be
stated as follows.

Definition 5.2.1. Fix js and assume that fZk;i j ipjs�1g are known. We assign numbers

between 0 and 1 to Zk;i for js�1oipjs in the following way. If (20) holds, assign

Zk;i ¼ 1 for all k and all js�1 þ 1pipjs: We are done. If (19) holds, we choose

fZ1;i j js�1 þ 1pipjsg satisfying (19) and maximizing
Pjs

i¼js�1þ1 Z1;i: The order of

assigning numbers to fZ1;ig for js�1oipjs is not of our concern. Update (19). If (19)

is trivial, we assign zero to the rest of fZk;i j js�1 þ 1pipjsg and stop. If not, choose

fZ2;i j js�1 þ 1pipjsg satisfying (19) and maximizing
Pjs

i¼js�1þ1Z2;i: Update (19) and

repeat this process. We do this for each js until we reach i ¼ p: Finally, we compute

mk ¼
Xp

i¼1

Zk;i ð1pkpnÞ

and obtain a unique m: Write

Lðp; nÞðlÞ ¼ �m:

The domain of Lðp; nÞ are apparently p-dimensional real vectors such that

l!0:

The range of Lðp; nÞ are n-dimensional real vectors such that

m!0:

Lðp; nÞ; in general, does not produce the precise information for the Langlands
parameters under theta correspondence; but for a special class of representations,
Lðp; nÞ will be precise. Now, Theorem 5.1.1 can be restated as follows.

Theorem 5.2.1. Suppose aAAþ: Suppose fðbÞb�nþ1 on Bþ is bounded weakly by bl

with l!0: Then the integral Lða; lÞ converges. Furthermore, Lða; lÞ is weakly bounded

by am for m ¼ Lðp; nÞðlÞ:

5.3. Examples

Now let us compute a few examples. Suppose ppn:
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Example 1. For

l ¼ ð�1
2
;�3

2
;y;�p þ 1

2
Þ;

Lðp; nÞðlÞ ¼ ð�p þ 1
2
;�p þ 1þ 1

2
;y;�1

2
; 0;y; 0Þ:

Example 2. For

l ¼ ð�1;�2;y;�pÞ;

Lðp; nÞðlÞ ¼ ð�p;�p þ 1;y;�1; 0;y; 0Þ:

Example 3. For

l ¼ ð�1
2
;�3

2
;y;�n þ 1

2
Þ;

Lðn; pÞðlÞ ¼ ð�n þ 1
2
;�n þ 3

2
;y;�n � 1

2
þ pÞ:

Example 4. For

l ¼ ð�1;�2;y;�nÞ;

Lðn; pÞðlÞ ¼ ð�n;�n þ 1;y;�n þ p � 1Þ:

6. Dual pair ðOðp; qÞ;Sp2nðRÞÞ and estimates on hsðpÞ

Let Oðp; qÞ be the orthogonal group preserving the symmetric form defined by

Ip;q ¼
0p 0 Ip

0 Iq�p 0

Ip 0 0p

0
B@

1
CA

and Sp2nðRÞ be the standard symplectic group. We define a symplectic form on
V ¼ Mðp þ q; 2nÞ by
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Oðv1; v2Þ ¼ Traceðv1Wvt
2Ip;qÞ ð8v1; v2AVÞ:

Now as a dual pair in SpðV ;OÞ; Oðp; qÞ acts by left multiplication and Sp2nðRÞ acts
by (inverse) right multiplication. We denote both actions on Mðp þ q; 2nÞ by m:

6.1. The dual pair representation oðp; q; 2nÞ

Let xi;j be the entries in first n columns of vAV and yi;j be the entries in the second

n columns of v: Let

X ¼ fvAV j yi;j ¼ 0g; Y ¼ fvAV j xi;j ¼ 0g:

Then X and Y are both Lagrangian subspaces of ðV ;OÞ: We realize the Schrödinger

model of MpðV ;OÞ on L2ðXÞ: Let Pðp; q; 2nÞ be the Harish-Chandra module. We
call the admissible representation

ðoðp; q; 2nÞ;Pðp; q; 2nÞÞ

the dual pair representation.

Now let b ¼ diagðb1; b2;ybp; 1;y; 1; b�1
1 ;y; b�1

p Þ: Let

Bþ ¼ fb j b1Xb2X?XbpX1gDOðp; qÞ:

Let a ¼ diagða�1
1 ; a�1

2 ;y; a�1
n ; a1;y; anÞ: Let

Aþ ¼ fa j a1Xa2X?XanX1gDSp2nðRÞ:

For 1pjpn; let

mðbÞei;j ¼
biei;j; i ¼ 1;y; p;

ei;j; i ¼ p þ 1;y; q;

b�1
i ei;j; i ¼ q þ 1;y; p þ q;

8><
>:

mðaÞei;j ¼ ajei;j ði ¼ 1;y; p þ qÞ

These formulae indicate that the embedding m of A and B into GLðX Þ are simply the
left multiplication and the (inverse) right multiplication. In fact,

mðabÞei;j ¼
biajei;j; i ¼ 1;y; p;

ajei;j; i ¼ p þ 1;y; q;

b�1
i ajei;j; i ¼ q þ 1;y; p þ q:

8><
>:

Let bðg1Þ be the middle term of KAK decomposition of g1 with bðg1ÞABþ: Let aðg2Þ
be the middle term of KAK decomposition of g2 with aðg2ÞAAþ: Observe that
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ðbiaj þ b�1
i a�1

j Þðb�1
i aj þ bia

�1
j Þ ¼ ðb2

i þ b�2
i þ a2

j þ a�2
j Þ:

From Theorem 3.3.1, we obtain

Theorem 6.1.1. For any f;cAPðp; q; 2nÞ;

jðoðp; q; 2nÞðmðabÞÞf;cÞj

pC
Yp

i¼1

Yn

j¼1

ðb2
i þ b�2

i þ a2
j þ a�2

j Þ�
1
2
Yn

j¼1

ðaj þ a�1
j Þ�

q�p
2 :

Furthermore, this estimate holds for mðg1g2Þ by substituting bðg1Þ and aðg2Þ into the

right-hand side.

We denote

Yp

i¼1

Yn

j¼1

ðb2
i þ b�2

i þ a2
j þ a�2

j Þ�
1
2

by Hða; bÞ:

6.2. Growth control on ysðp; q; 2nÞðpÞ

Let ðp;VÞ be an irreducible Harish-Chandra module in Rsðp; q; 2nÞ: We are
interested in the following integral:Z

MOðp;qÞ
ðoðp; q; 2nÞðg1g2Þf;cÞðv; pðg1ÞuÞ dg1 ðu; vAV ;c;cAPðp; q; 2nÞÞ:

Our goal is to control the growth of this integral as a function on MSp2nðRÞ: From
Theorems 6.1.1 and 3.4.1, we may as well consider

Z
Bþ

Yn

j¼1

ðaj þ a�1
j Þ�

q�p
2 Hða; bÞblb2r1

Yp

i¼1

dbi

bi

: ð22Þ

Here r1 is the half sum of the restricted positive roots of Oðp; qÞ:

r1 ¼
p þ q � 2

2
;
p þ q � 4

2
;y;

q � p

2

� �

and ðpðg1Þu; vÞ is bounded by a multiple of bðg1Þl: We observe that
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Yn

j¼1

ðaj þ a�1
j Þ�

q�p

2

Z
Bþ

Hða; bÞblb2r1
Yp

i¼1

dbi

bi

pCaðg2Þ�
q�p

2 Lða; lþ 2r1 � 1Þ:

From Theorem 5.2.1, we obtain

Lemma 6.2.1. Let pARsðp; q; 2nÞ: Suppose K-finite matrix coefficients of p are

bounded by some Cbðg1Þl with

lþ 2rðOðp; qÞÞ � n!0:

Then the matrix coefficients of ysðp; q; 2nÞðpÞ are weakly bounded by

aðg2ÞLðp;nÞðlþ2rðOðp;qÞÞ�nÞ�q�p

2 :

Recall that pARssðp; q; 2nÞ if and only if

RðvÞ � n� pþ q

2

� �
þ rðOðp; qÞÞ%0

for every leading exponent v of p: Take

l ¼ n� pþ q

2
� rðOðp; qÞÞ þ ðd; 0;y; 0Þ

with d a small positive number. Then matrix coefficients of p are bounded by

multiples of bðg1Þl:

Lðp; nÞðlþ 2rðOðp; qÞÞ � nÞ

¼ Lðp; nÞ �pþ q

2
þ rðOðp; qÞÞ þ ðd; 0;y; 0Þ

� �
¼ Lðp; nÞð�1þ d;�2;y;�pÞ

¼
ð�p þ d;�p þ 1;y;�1; 0;y; 0Þ; nXp;

ð�p þ d;�p þ 1;y;�p þ n � 1Þ; nop:

�
ð23Þ

From Lemma 4.1.2, we obtain the following theorem:

Theorem 6.2.1. Suppose that pARssðp; q; 2nÞ: Then the matrix coefficients of

ysðp; q; 2nÞðpÞ are weakly bounded by

aðg2Þ �pþq
2 ;�pþq�2

2 ;y;�q�p
2 ;y;�q�p

2

� �
ðif nXpÞ;
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aðg2Þ �pþq
2

;�pþq�2
2

;y;�pþq�2nþ2
2

� �
ðif nopÞ:

6.3. Growth control on yð2n; p; qÞsðpÞ

Let ðp;VÞ be an irreducible Harish-Chandra module in Rsð2n; p; qÞ: We are
interested in the following integral:Z

MSp2nðRÞ
ðoðp; q; 2nÞðg1g2Þf;cÞðv; pðg2ÞuÞ dg2 ðu; vAV ;f;cAoðp; q; 2nÞÞ:

Our goal is to control the growth of this integral as a function on MOðp; qÞ: From
Theorems 6.1.1 and 8.47 in [16], it suffices to considerZ

Aþ
Hða; bÞala2r2

Yn

j¼1

ðaj þ a�1
j Þ�

q�p
2

daj

aj

: ð24Þ

Here r2 is the half sum of the restricted positive roots of Sp2nðRÞ:

r2 ¼ ðn; n � 1;y; 1Þ

and ðpðg2Þu; vÞ is bounded by a multiple of aðg2Þl: Apparently, the integral (24) can

be controlled by CLða; l� q�p

2
� 1þ 2r2Þ: From Theorem 5.2.1, we obtain

Lemma 6.3.1. Suppose that pARsð2n; p; qÞ; i.e., the matrix coefficients of p are

bounded by multiples of aðg2Þl for some

lþ 2r2 �
pþ q

2
!0:

Then the matrix coefficients of ysð2n; p; qÞðpÞ are weakly bounded by

bðg1ÞLðn;pÞ lþ2r2�
pþq

2

� �
:

Recall that the representation p is in Rssð2n; p; qÞ if and only if

RðvÞ þ nþ 1þ r2 �
pþ q

2
%0

for every leading exponent v of p: Now let
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l ¼ �n� 1� r2 þ
pþ q

2
þ ðd; 0;y; 0Þ;

where d is a small positive number. Then the matrix coefficients of p are bounded by

multiples of aðg2Þl and

lþ 2r2 �
pþ q

2
¼ �n� 1þ r2 þ d ¼ ð�1þ d;�2;y;�nÞ:

Therefore

Lðn; pÞ lþ 2r2 �
p þ q

2

� �
¼ ð�n þ d;�n þ 1;y;�1; 0;y; 0Þ ðp4nÞ;

Lðn; pÞ lþ 2r2 �
p þ q

2

� �
¼ ð�n þ d;�n þ 1;y;�n þ p � 1Þ ðppnÞ:

From Lemma 4.1.2, we obtain

Theorem 6.3.1. Suppose that p is in Rssð2n; p; qÞ: Then matrix coefficients of

yð2n; p; qÞsðpÞ is weakly bounded by

bðg1Þð�n;�nþ1;y;�1;0;y;0Þ ðp4nÞ;

bðg1Þð�n;�nþ1;y;�nþp�1Þ ðppnÞ:

6.4. Applications to unitary representations

We may now combine our results from [9] with the results we established in the
previous two sections. Let us start with a unitary representation in Rssðp; q; 2nÞ:

Theorem 6.4.1. Suppose p þ qp2n þ 1: Suppose p is a unitary representation in

Rssðp; q; 2nÞ and ð; Þp is nonvanishing. Then ysðp; q; 2nÞðpÞ is unitary. Furthermore, the

matrix coefficients of yðp; q; 2nÞðpÞ is weakly bounded by

aðg2Þ
�pþq

2
;�pþq�2

2
;y;�q�p

2
� 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

;�q�p
2
;y;�q�p

2

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{n�p
0
@

1
A
:
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In [9], we have proved that for p þ q odd we can loose our restrictions from
Rssðp; q; 2nÞ a little bit and unitarity still holds for ysðp; q; 2nÞðpÞ: The precise
statement can be stated as follows.

Theorem 6.4.2. Suppose p þ qp2n þ 1 and p þ q is odd. Suppose p is a unitary

representation in Rsðp; q; 2nÞ such that each leading exponent v of p satisfies

RðvÞ � n� pþ q� 1

2

� �
þ rðOðp; qÞÞ%0:

If ð; Þp is nonvanishing, then ysðp; q; 2nÞðpÞ is unitary. Furthermore, the matrix

coefficients of ysðp; q; 2nÞðpÞ is weakly bounded by

aðg2Þ
�pþq�1

2
;�pþq�3

2
;y;�q�pþ1

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

;�q�p
2
y;�q�p

2

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{n�p
0
@

1
A
:

Similarly, we obtain the following theorem regarding ysð2n; p; qÞðpÞ:

Theorem 6.4.3. Suppose that noppq: Suppose that p is a unitary representation in

Rssð2n; p; qÞ: If ð; Þp is nonvanishing, then ysð2n; p; qÞðpÞ is unitary. Furthermore, the

matrix coefficients of ysð2n; p; qÞðpÞ are weakly bounded by

bðg1Þ
�n;�n þ 1;y;�1
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

;0;y; 0
zfflfflffl}|fflfflffl{p�n !

:

7. The idea of quantum induction

In this section, we will define quantum induction first. Then we compute the
infinitesimal characters of quantum induced representations. Finally, we give some
indication how the limit of quantum induction will become parabolic induction.

7.1. Quantum induction on orthogonal group

Consider the composition of ysðp; q; 2nÞ with ysð2n; p0; q0Þ: Suppose pARssðp; q; 2nÞ
and p þ qp2n þ 1: If ð; Þp is nonvanishing, then ysðp; q; 2nÞðpÞ is unitary and its

leading exponents satisfy
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RðvÞ% �p þ q

2
;�p þ q � 2

2
;y;�q � p þ 2

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

;�q � p

2
;y� q � p

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n�p
0
BB@

1
CCA:

The representation ysðp; q; 2nÞðpÞ is in Rssð2n; p0; q0Þ if

�p þ q

2
;�p þ q � 2

2
;y;�q � p þ 2

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

;�q � p

2
;y� q � p

2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n�p
0
BB@

1
CCA

þ ðnþ 1Þ þ rðSp2nðRÞÞ �
p0 þ q0

2
%0:

This is true if and only if

�p þ q

2
þ n þ 1þ n � p0 þ q0

2
p0:

We obtain

Theorem 7.1.1. Suppose

q0
Xp04n;

p0 þ q0 � 2nX2n � ðp þ qÞ þ 2X1;

p þ q ¼ p0 þ q0 ðmod 2Þ:

Let p be an irreducible unitary representation in Rssðp; q; 2nÞ: Suppose that ð; Þp does

not vanish. Then ysðp; q; 2nÞðpÞ is unitary and

ysðp; q; 2nÞðpÞARssð2n; p0; q0Þ:

Furthermore, ysð2n; p0; q0Þysðp; q; 2nÞðpÞ is either a unitary representation or the NULL

representation.

Definition 7.1.1. Let p be a unitary representation in Rssðp; q; 2nÞ: Suppose that

q0
Xp04n;

p0 þ q0 � 2nX2n � ðp þ qÞ þ 2X1;

p þ q ¼ p0 þ q0 ðmod 2Þ:
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We call

Qðp; q; 2n; p0; q0Þ : p-ysð2n; p0; q0Þysðp; q; 2nÞðpÞ

the (one-step) quantum induction.

If one of ð; Þp and ð; Þyðp;q;2nÞðpÞ vanishes, we define our quantum induction

Qðp; q; 2n; p0; q0ÞðpÞ to be the NULL representation.

7.2. Quantum induction on symplectic group

Next, we consider the composition of ysð2n; p; qÞ with ysðp; q; 2n0Þ: Suppose
noppq: Let p be a unitary representation in Rssðp; q; 2nÞ: Suppose ð; Þp is not

vanishing. Then the leading exponents of yð2n; p; qÞ satisfy

RðvÞ%ð�n;�n þ 1;y;�1; 0;y; 0Þ:

Therefore, yð2n; p; qÞ is in RssðMOðp; qÞ;oðp; q; 2n0ÞÞ if

ð�n;�n þ 1;y;�1; 0;y; 0Þ � n0 þ pþ q

2
þ rðOðp; qÞÞ%0:

This is true if and only if

�n � n0 þ p þ q � 1p0:

Theorem 7.2.1. Suppose 2n0 � p � qXp þ q � 2n � 2 and noppq: Suppose p is a

unitary representation in Rssð2n; p; qÞ: If ð; Þp does not vanish, then ysð2n; p; qÞðpÞ is

unitary and it is in Rssðp; q; 2n0Þ: Furthermore, ysðp; q; 2n0Þysð2n; p; qÞðpÞ is a unitary

representation or the NULL representation.

Definition 7.2.1. Let p; q; n; n0 be nonnegative integers such that

noppq;

p þ q � 2n � 2p2n0 � p � q:

Let p be a unitary representation in Rssð2n; p; qÞ: We call

Qð2n; p; q; 2n0Þ : p-ysðp; q; 2n0Þysð2n; p; qÞðpÞ

the (one-step) quantum induction.

If one of ð; Þp and ð; Þysð2n;p;qÞðpÞ vanishes, we define our quantum induction

Qð2n; p; q; 2n0ÞðpÞ to be 0: Thus the domain of our quantum induction isRssð2n; p; qÞ:
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7.3. Quantum inductions

We can further define two-step quantum induction and so on. The general
quantum induction

Qðp1; q1; 2n1; p2; q2; 2n2;yÞðpÞ

is defined as the composition of ys; under the following conditions:

1. Initial conditions: p1 þ q1p2n1 þ 1:
p is a unitary representation in Rssðp1; q2; 2n1Þ; i.e., its leading exponents satisfy

RðvÞ � n1 þ
p1 þ q1

2
þ rðOðp1; q1ÞÞ%0:

2. Inductive conditions: 8j;

njopjþ1pqjþ1;

pjþ1 þ qjþ1 � 2njp2njþ1 � pjþ1 � qjþ1 þ 2;

2nj � pj � qj þ 2ppjþ1 þ qjþ1 � 2nj;

pj þ qj � pjþ1 þ qjþ1 ðmod 2Þ:

Theorem 7.3.1. The representation

Qðp1; q1; 2n1; p2; q2; 2n2;yÞðpÞ

is either an irreducible unitary representation or the NULL representation.

The general quantum induction

Qð2n1; p1; q1; 2n2; p2; q2; 2n3;yÞðpÞ

is defined as the composition of ys under the following conditions:

1. Initial conditions: n1op1pq1:
p is a unitary representation in Rssð2n1; p1; q1Þ; i.e., its leading exponents satisfy

RðvÞ � p1 þ q1

2
þ nþ 1þ rðSp2n1ðRÞÞ%0:
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2. Inductive conditions: 8j;

njopjpqj;

pj þ qj � 2njp2njþ1 � pj � qj þ 2;

2njþ1 � pj � qj þ 2ppjþ1 þ qjþ1 � 2njþ1;

pj þ qj � pjþ1 þ qjþ1 ðmod 2Þ:

Theorem 7.3.2. The representation

Qð2n1; p1; q1; 2n2; p2; q2; 2n3;yÞðpÞ

is either an irreducible unitary representation or the NULL representation.

Our inductive conditions are natural within the frame work of orbit method (see
[6,23,25,31]). The nonvanishing of ys has been studied in [6,8]. It can be assumed as a
working hypothesis in the framework of quantum induction. Notice that Q is defined
as a composition of ys: Thus, it is not known that Q is exactly the composition of
theta correspondences over R: This problem hinges on one earlier problem
mentioned by Li [19]:

Is ð; Þp nonvanishing if pARðMG1;MG2Þ-RsðMG1;MG2Þ?
Our result in [7] which is derived from Howe’s results in [13] confirms the converse:
p is in RðMG1;MG2Þ if ð; Þp does not vanish.

Therefore, if Qð�ÞðpÞa0; Qð�Þ is the composition of y:

7.4. Infinitesimal characters

Infinitesimal characters under theta correspondence were studied by Przebinda
[26]. We denote the infinitesimal character of an irreducible representation p by
IðpÞ: Przebinda’s result can be stated as follows.

Theorem 7.4.1 (Przebinda). 1. Suppose p þ qo2n þ 1: Then

Iðyðp; q; 2nÞðpÞÞ ¼ IðpÞ" n � p þ q

2
; n � p þ q

2
� 1;y; 1þ p þ q

2

h i
� p þ q

2

� �
:

2. Suppose 2n þ 1op þ q: Then

Iðyð2n; p; qÞðpÞÞ ¼ IðpÞ" p þ q

2
� n � 1;

p þ q

2
� n � 2;y;

p þ q

2
� p þ q

2

h i� �
:

3. Suppose p þ q ¼ 2n or p þ q ¼ 2n þ 1: Then Iðyðp; q; 2nÞðpÞÞ ¼ IðpÞ:
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Now we can compute the infinitesimal character under quantum induction.

Corollary 7.4.1. Suppose Qð�ÞðpÞa0:

1. If p þ q is even, then

IðQð2n; p; q; 2n0ÞðpÞÞ ¼IðpÞ" p þ q

2
� n � 1;

p þ q

2
� n � 2;y; 0

� �
" n0 � p þ q

2
; n0 � p þ q

2
� 1;y; 1

� �
:

2. If p þ q is odd, then

IðQð2n; p; q; 2n0ÞðpÞÞ ¼IðpÞ" p þ q

2
� n � 1;

p þ q

2
� n � 2;y;

1

2

� �

" n0 � p þ q

2
; n0 � p þ q

2
� 1;y;

1

2

� �
:

3. If p þ q is even, then

IðQðp; q; 2n; p0; q0ÞðpÞÞ ¼IðpÞ" n � p þ q

2
; n � p þ q

2
� 1;y; 1

� �
"

p0 þ q0

2
� n � 1;

p0 þ q0

2
� n � 2;y; 0

� �
:

4. If p þ q is odd, then

IðQðp; q; 2n; p0; q0ÞðpÞÞ ¼IðpÞ" n � p þ q

2
; n � p þ q

2
� 1;y;

1

2

� �

"
p0 þ q0

2
� n � 1;

p0 þ q0

2
� n � 2;y;

1

2

� �
:

We shall now take a look at some ‘‘limit’’ cases under quantum induction.

Example I. p þ q þ p0 þ q0 ¼ 4n þ 2:
In this case,

n � p þ q

2
¼ p0 þ q0

2
� n � 1:
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Therefore,

IðQðp; q; 2n; p0; q0ÞðpÞÞ ¼IðpÞ

" n � pþq
2
; n � pþq

2
� 1;y; 1þ pþq

2
� n; pþq

2
� n

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2n�p�qþ1

:

Example II. 2n � p � q þ 2 ¼ p0 þ q0 � 2n and p � p0 ¼ q � q0:
Notice first that

p0 � p þ q0 � q ¼ ðp0 þ q0Þ � ðp þ qÞ ¼ 4n þ 2� 2ðp þ qÞ:

Therefore

p0 � p

2
¼ p0 � p þ q0 þ q

4
¼ n � p þ q

2
þ 1

2
:

Recall from Proposition 8.22 [16]

IðInd
SO0ðp0;q0Þ
SO0ðp;qÞGL0ðp0�pÞNðp#1ÞÞ

¼ Iðp#1Þ

¼ IðpÞ" p0 � p � 1

2
;
p0 � p � 3

2
;y;�p0 � p � 3

2
;�p0 � p � 1

2

� �
¼ IðpÞ" n � p þ q

2
; n � p þ q

2
� 1;y; 1þ p þ q

2
� n;

p þ q

2
� n

� �
¼ IðQðp; q; 2n; p0; q0ÞðpÞÞ: ð25Þ

This suggests that Qðp; q; 2n; p0; q0ÞðpÞ as a representation of SO0ðp; qÞ can be
decomposed as direct sum of some parabolically induced unitary representation (see
Conjecture I).

Example III. n þ n0 þ 1 ¼ p þ q:
In this case,

p þ q

2
� n � 1 ¼ n0 � p þ q

2
;

n0 � n � 1

2
¼ p þ q

2
� n � 1:

From Proposition 8.22 [16] and the corollary,
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IðInd
Sp2n0 ðRÞ
Sp2nðRÞGLðn0�nÞNðp#1ÞÞ

¼ IðpÞ" n0 � n � 1

2
;
n0 � n � 3

2
;y;�n0 � n � 3

2
;�n0 � n � 1

2

� �
¼ IðpÞ" p þ q

2
� n � 1;

p þ q

2
� n � 2;y;�p þ q

2
þ n þ 2;�p þ q

2
þ n þ 1

� �
¼ IðQð2n; p0; q0; 2n0ÞðpÞÞ: ð26Þ

This suggests that Qð2n; p; q; 2n0ÞðpÞ can be obtained as subfactors of certain
parabolic induced representation. We prove this connection in [10].

Let me make some final remarks concerning the definition of quantum induction
Q: Notice that Qðp; q; 2n; p0; q0ÞðpÞ contains distributions of the following form:Z

MSp2nðRÞ
oðp0; q0; 2nÞðg1Þf1#

Z
MOðp;qÞ

oðp; q; 2nÞcðg1g2Þf2#pðg2Þv dg2 dg1

¼
Z

MOðp;qÞ
oðp; q; 2nÞcðg2Þ

Z
MSp2nðRÞ

oðp0 þ q; q0 þ p; 2nÞðg1Þðf1#f2Þ dg1

" #

#pðg2Þv: ð27Þ

Our discussions in this paper guaranteed absolute integrability of this integral.
Notice that the vectors in ½�� are in yð2n; p0 þ q; q þ p0Þð1Þ:

Definition 7.4.1. Suppose p0 þ qX2n; q0 þ pX2n and p þ q þ p0 þ q0 is even.
Consider the dual pair ðOðp0 þ q; q0 þ pÞ;Sp2nðRÞÞ: This is a dual pair in the stable
range [14,20]. Then yð2n; p0 þ q; q0 þ pÞð1Þ is an unitary representation of MOðp0 þ
q; q0 þ pÞ (see [20,34]). Let Oðp; qÞ and Oðp0; q0Þ be embedded diagonally in Oðp0 þ
q; q0 þ pÞ: Let pAPðMOðp; qÞÞ: Formally define a Hermitian form ð; Þ on yð2n; p0 þ
q; q0 þ pÞð1Þ#p by integrating the matrix coefficients of yð2n; p0 þ q; q0 þ pÞð1Þ
against the matrix coefficients of p over MOðp; qÞ as in (1). Suppose that ð; Þ
converges. Define Qðp; q; 2n; p0; q0ÞðpÞ to be yð2n; p0 þ q; q0 þ pÞð1Þ#p modulo the
radical of ð; Þ: Qðp; q; 2n; p0; q0ÞðpÞ is thus a representation of MOðp0; q0Þ:

One must assume that p0 þ q0 � p þ q ðmod 2Þ: Otherwise, yð2n; p0 þ q; q0 þ
pÞð1Þ ¼ 0: Q can be regarded as a more general definition of quantum induction.
It is no longer clear that Q preserves unitarity.

Theorem 7.4.2. Under the assumptions from Theorem 7.1.1,

Qðp; q; 2n; p0; q0ÞðpÞDQðp; q; 2n; p0; q0ÞðpÞ:

Similarly, one can define nonunitary quantum induction Qð2n; p; q; 2n0ÞðpÞ:
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Definition 7.4.2. Suppose that p þ qpn þ n0 þ 1: Consider the dual pair
ðOðp; qÞ;Sp2nþ2n0 ðRÞÞ: Then yðp; q; 2n þ 2n0Þð1Þ is a unitary representation of
MSp2nþ2n0 ðRÞ (see [14,20,24]). Let pAPðMSp2nðRÞÞ: Formally, define a Hermitian
form ð; Þ on yðp; q; 2n þ 2n0Þð1Þ#p by integrating the matrix coefficients of
yðp; q; 2n þ 2n0Þð1Þ against the matrix coefficients of p as in (1). Suppose that ð; Þ
converges. Define Qð2n; p; q; 2n0ÞðpÞ to be yðp; q; 2n þ 2n0Þð1Þ#p modulo the radical
of ð; Þ: Qð2n; p; q; 2n0ÞðpÞ is a representation of MSp2nðRÞ:

For p þ q odd, the MSp in this definition are metaplectic groups. For p þ q even,
the MSp in this definition split (see Lemma 3.1.1).

Theorem 7.4.3. Under the assumptions from Theorem 7.2.1,

Qð2n; p; q; 2n0ÞðpÞDQð2n; p; q; 2n0ÞðpÞ:

There is a good chance that Qð�ÞðpÞ will be irreducible.
Quantum induction fits well with the general philosophy of induction. On the one

hand, similar to parabolic induced representation IndG
P t whose vectors are in

HomPðCN

c ðGÞ; tÞ;

quantum induced Qðp; q; 2n; p0; q0ÞðpÞ lies in

Homoðp;qÞ;OðpÞ�OðqÞðyð2n; p0 þ q; q0 þ pÞð1Þ; pÞ:

On the other hand, IndG
P t has a nice geometric description. It consists of sections of

the vector bundle

G �P t-G=P:

In contrast, quantum induction does not possess this kind of classical interpretation
except for some limit case.
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[22] C. Móeglin, Howe correspondence for dual reductive pairs: some calculations in the Archimedean

case, J. Funct. Anal. 85 (1989) 1–85.

[23] Shu-Yen Pan, The orbit correspondences for real and complex reductive dual pairs, preprint, 2001.

[24] T. Przebinda, On Howe’s duality theorem, J. Funct. Anal. 81 (1988) 160–183.

[25] T. Przebinda, Characters, dual pairs, and unitary representations, Duke J. Math. 69 (1993) 547–592.

[26] T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996) 93–102.

[27] I. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian

group, Math. Scand. 13 (1963) 31–43.

[28] D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962) 149–167.

[29] D. Vogan, The unitary dual of GLðnÞ over an Archimedean field, Invent. Math. 83 (1986) 449–505.

[30] D. Vogan, Associated varieties and unipotent representations, in: Harmonic Analysis on Reductive

Groups, Boudoin College, 1989, Progress in Mathematics, Vol. 101, Birkäuser, Boston, 1991, pp.
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