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Abstract

Theta correspondence 6 over R is established by Howe (J. Amer. Math. Soc. 2 (1989) 535).
In He (J. Funct. Anal. 199 (2003) 92), we prove that 0 preserves unitarity under certain
restrictions, generalizing the result of Li (Invent. Math. 97 (1989) 237). The goal of this paper
is to elucidate the idea of constructing unitary representation through the propagation of theta
correspondences. We show that under a natural condition on the sizes of the related dual pairs
which can be predicted by the orbit method (J. Algebra 190 (1997) 518; Representation Theory
of Lie Groups, Park City, 1998, pp. 179-238; The Orbit Correspondence for real and complex
reductive dual pairs, preprint, 2001), one can compose theta correspondences to obtain unitary
representations. We call this process quantum induction.
© 2004 Published by Elsevier Inc.

MSC: primary 22E45; 22E46
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1. Introduction

An important problem in representation theory is the classification and
construction of irreducible unitary representations. Let G be a reductive group
and I1(G) be its admissible dual. For an algebraic semisimple group G, the
admissible dual IT(G) is known mostly due to the works of Harish-Chandra, R.
Langlands, and Knapp—Zuckerman (see [17,18]). Let IT,(G) be the set of equivalence
classes of irreducible unitary representations of G, often called the unitary dual of G.
The unitary dual of general linear groups is classified by Vogan [29]. The unitary
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0001-8708/$ - see front matter © 2004 Published by Elsevier Inc.
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dual of complex classical groups is classified by Barbasch [2]. Recently, Barbasch has
classified all the spherical duals for split classical groups (see [3]). The unitary duals
I1,(O(p,q)) and I1,(Sp2,(R)) are not known in general.

In [14], Howe constructs certain small unitary representations of the symplectic
group using Mackey machine. Later, Jian-Shu Li generalizes Howe’s construction of
small unitary representations to all classical groups. In particular, Li defines a
sesquilinear form (, ), that relates these constructions to the theta correspondence
(see [11,20]). It then becomes clear to many people that some irreducible unitary
representations can be constructed through the propagation of theta correspon-
dences (see [15,21,28] and the references within them). So far, constructions can only
be carried out for “complete small orbits™ (see [21]). The purpose of this paper is to
make it work for nilpotent orbits in general, for real orthogonal groups and
symplectic groups.

Consider the group O(p, ¢) and Sp,,(R). The theta correspondence with respect to

O(p,q) = Span(R)
is formulated by Howe as a one-to-one correspondence
0@7 q; 2”) : %(MO@> q)7 (U(p, q; 27’1)) _’%(MSPM(R)’ (D(p, q; 27’1)),

where MO(p, q) and MSp,,(R) are some double coverings of O(p, ¢q) and Sp,,(R),
respectively, and

A(MO(p,q), »(p,q;2n)) SII(MO(p, q)),
R(MSp(R), o(p, q; 2n)) = I1(MSp,(R))

(see [13]). We denote the inverse of 8(p,q;2n) by 6(2n;p,q). For the sake of
simplicity, we define

0(p,q;2n)(m) =0

if n¢ Z(MO(p, q),w(p,q;2n)). We define 6(p, ¢;2n)(0) = 0 and 0 can be regarded as
the NULL representation.
For example, given an “increasing” string

O(p1,q1) = Span, (R) = O(p2, q2) = Span, (R) = -+ = Spay,, (R) = O (P, gm),
@ =p+qr= - =Pt gn (mod?2),
consider the propagation of theta correspondence along this string:
0215 s @) --- 02115 p2, q2)0(p1, qu; 2n ) ().

Under some favorable conditions on ne IT,(O(p1, 1)), one hopes to obtain a unitary
representation in I1,(O(p,,, ¢m))- In this paper, we supply a sufficient condition for
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0215 Py qm) --- 02013 p2, q2)0(p1, q1; 2ny) (1)

to be unitary. We denote the resulting representation of MO(p,,, ¢,) by

O(p1,q1;2n15p2, 425 2125 ... Py G ) (T0)..

We call Q(p1,q1;2n1;p2,¢2; 2125 ... Pm, ¢m) quantum induction. In addition to the
assumption that certain Hermitian forms do not vanish, we must also assume the
matrix coefficients of 7 satisfy a mild growth condition.

Based on the work of Przebinda [26], we further determine the behavior of
infinitesimal characters under quantum induction. In certain limit cases, the
infinitesimal character under quantum induction behaves exactly in the same way
as under parabolic induction. In fact, in some limit cases, quantum induced
representations can be obtained from unitarity-preserving parabolic induction (see
[10]). Finally, motivated by the works of Przebinda and his collaborators, we make a
precise conjecture regarding the associated variety of the quantum induced
representations (Conjecture 2).

There is one problem we did not address in this paper, namely, the nonvanishing
of certain Hermitian forms (,), with neII(Mp,,(R)). In a forthcoming article [10],
we partially address this problem and construct a set of special unipotent
representations in the sense of Vogan [30].

2. Main results
2.1. Notations

In this paper, unless stated otherwise, all representations are regarded as Harish-
Chandra modules. This should cause no problems since most representations in this
paper will be admissible with respect to a reductive group. Thus unitary
representations in this paper would mean unitrizable Harish-Chandra modules.
“Matrix coefficients” of a representation 7 of a real reductive group G will refer to
the K-finite matrix coefficients with respect to a maximal compact subgroup K. A
vector v in an admissible representation © means that v is in the Harish-Chandra
module of m which shall be evident within the context.

Let (Gy, G>) be a reductive dual pair of type I (see [13,20]). The dual pairs in this
paper will be considered as ordered. For example, the pair (O(p,q), Spa(R)) is
considered different from the pair (Sp2,(R), O(p,q)). Unless stated otherwise, we
will, in general, assume that the size of G (V) is less or equal to the size of G»(V>),
i.e., dimp(V,)<dimp(V3). Let (G}, G>) be a dual pair in the symplectic group Sp.
Let Mp be the unique double covering of Sp. Let {1,¢} be the preimage of the
identity element in Sp. For a subgroup H of Sp, let MH be the preimage of H under
the double covering. Whenever we use the notation MH, H is considered to be a
subgroup of certain Sp which shall be evident within the context. Let w(MG, MG,)
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be a Schrédinger model of the oscillator representation of Mp equipped with a dual
pair (MG, MG,). The Harish-Chandra module of w(MG;,MG,) consists of
polynomials multiplied by the Gaussian function. Since the pair (G, G,) is ordered,
we use O(MG;,MG,) to denote the theta correspondence from
R(MG, (MG, MG,)) to Z(MG>, w(MG,, MG,)). We use n to denote the constant
vector

(n,n, ...,n).
The dimension of n is determined within the context. Finally, we say a vector

x = (x1,Xx2,...X%,) <0

k
> x<0 Vk=1
Jj=1

and x<0 if
k
> x<0 vkl
j=1

In this paper, the space of m x n matrices will be denoted by M (m,n). The set of
non-negative integers will be denoted by N. For the group O(p, q), we assume that
p<gq unless stated otherwise. For a reductive group G, II(G), IT1,(G) will be the
admissible dual and the unitary dual, respectively.

We extend the definition of matrix coefficients to the NULL representation. The
matrix coefficients of the NULL representation is defined to be the zero function.

2.2. Theta correspondence in semistable range and unitary representations

Let e lI(MG,). Following [20], for every u,ven and ¢,y ew(MG,, MG,), we
formally define

G@up@u), = [ (MG, MG:)(@).)ww(31)e) . 1)

MG,

Roughly speaking, if the functions
(O(MGy, MG2)(G1), ) (u, w(G1)0) (VoY e @(MGr, MGy); Vi, ve)

are in L'(MG)) and n(¢) = —1, n is said to be in the semistable range of
O(MG,, MG,) (see [7]). We denote the semistable range of 0(MG,, MG,) by
R( MG, MG,).
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Suppose from now on that ne Z,(MG,, MG»). In [7], we showed that if (, ), does
not vanish, then (,), descends into a Hermitian form on 0(MG,, MG;)(n). For
neR( MG, MG,), we define

0.(MG). MG)(r) — {H(MGI,MGz)(n) %f (,).#0,

0 if (,). =0,
0,(MG,, MG,)(m) as a real vector space is just (MG, MG,) ® m modulo the radical
of (,), (see [7,20]). The main object of study in this paper is 0.

If © is in Z,(MG,, MG,) but not in Z(MG,,w(MG,, MG,)), our construction
from [7] will result in a vanishing (,),. Thus 0,(MG,, MG,)(n) “vanishes”. In this
case, 0, =0 trivially. The remaining question is whether (,),#0 if
neR(MG,,w(MG, MG>)). Conjecturally, 0,(MG, MG;) should agree with the
restriction of O(MG,, MG,) on Z,(MG,, MG,) (see [7,19]).

For m a Hermitian representation, it can be easily shown that (), is an invariant
Hermitian form on 0(MGy, MG,)(x) if (, ), does not vanish. This is a special case of
Przebinda’s result in [24]. For © unitary, we do not know whether (,), must be
positive semidefinite in general. Nevertheless, in [9], we have proved the semi-
positivity of (,), under certain condition on the leading exponents of 7 (see [16,32]).
Fix a Cartan decomposition for Sp,,(R) and O(p, ¢). Fix the standard basis of a for
Sp2,(R) and O(p,q) (see 6.1). The leading exponents of an irreducible admissible
representation are in the complex dual of the Lie algebra a of 4.

Theorem 2.2.1. Suppose p + q<2n+ 1. Let 7 be an irreducible unitary representation
whose every leading exponent satisfies

() = (n—"29) + p(0p.9)) <0. ()

Then (,), is positive semidefinite. Thus, Os(p, q;2n)(n) is either unitary or vanishes.

We denote the set of representations in II(MO(p, q)) satisfying (3) by Zs(p, ¢; 2n).
The set Z,(MO(p, q), MSp>,(R)) is written as %,(p, ¢; 2n) in short.

Theorem 2.2.2. Suppose n<p<gq. Let © be an irreducible unitary representation whose
every leading exponent satisfies

(o)~ (P20 n— 1) + p(Span(R)) <0 (4)

Then (,), is positive semidefinite. Thus, either 05(p, q;2n) () is unitary or vanishes.

We denote the set of representations in IT(MSpy,(R)) satisfying (4) by
Rss(2n;p, q). The set B (MSpr,(R), MO(p, q)) is written as Z(2n; p, ¢) in short.
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2.3. Estimates on leading exponents and L(p,n)

In this paper, we establish some estimates on the growth of the matrix coefficients
of 0(p,q;2n)(n) and of 0(2n;p,q)(n) for = in Ry (p,q;2n) and Z,(2n;p,q),
respectively. We achieve this by studying the decaying of the function

np 1
L(a,¢):/ I (@ +6)72|é(b1,ba, ..., by) dby db;...db,
bizbyz-2b21 \ = j=1 ‘

as a function of e R". In general, the decaying of L(a, ¢) depends on the decaying of
¢. In Section 5, we define a map L(p, n) to describe this dependence. The map L(p, n)
is a continuous map from

C(p) = {2<0]1eR?}
to
C(n) = {u<0|ueR"}.

Its algorithm is developed in Section 5. For some special vectors in C(p), L(p,n) is
just a reordering plus an augmentation or truncation. In this paper, we prove

Theorem 2.3.1. Let L(n,p) be defined as in Section 5. Let a(g,) be the middle term of
the KAT K decomposition of g, € Spa(R). Let b(gy) be the middle term of the KATK
decomposition of g1 € O(p, q).

1. Suppose that ne Z(p, q;2n). Suppose < —2p(O0(p,q)) + n and for every leading
exponent v of w, R(v) < A. Then the matrix coefficients of 0s(p, q; 2n)(n) are weakly
bounded by

9P
algo) P20 (0pa) - 152

2. Suppose that meR,(2n;p,q). Suppose i< —2p(Sp(R)) +E4 and for every
leading exponent v of ©, R(v) < /. Then the matrix coefficients of 05(2n; p, q)(n) are
weakly bounded by

b(gy) ) (F+20(Spa(®)-P5%).

The definition of weakly boundedness is given in Section 3.
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2.4. Quantum induction

The idea of composing two theta correspondences to obtain “‘new’ representa-
tions has been known for years. For example, one can compose 0(p, ¢;2n) with
0(2n;p’, q'). The nature of 0(2n; p’, ¢")0(p, ¢; 2n)(7) seems to be inaccessible except for
the cases of stable ranges. In this paper, we treat a somewhat more accessible object,
namely,

0,(2n;p', ¢")0s(p, q; 2n) (7).

Our construction is done through the studies of the Hermitian form (, ),. Due to the
unitarity theorems we proved in [9], under restrictions as specified in Egs. (3) and (4),
quantum induction preserves unitarity. Our main result can be stated as follows:

Theorem 2.4.1 (Main Theorem).

e Suppose
1. ¢=p >n;
2.0 4+q —2n=2n—(p+q) +2>1;
3. p+q=p +q¢ (mod2).
Let ©t be an irreducible unitary representation in Ry(p, q; 2n). Suppose that ().,
does not vanish. Then
. 04(p, q; 2n)(n) is unitary.
2. Os(p, 45 2n)(n) € Ry (2n:p', q').
3. 0,2n;p', q')0s(p, q;2n)(m) is either an irreducible unitary representation or the
NULL representation.

—_—

e Suppose
.20 —p—q+2=p+q-—2n
2. n<p<q.
Let m be a unitary representation in Ry(p, q;2n). Suppose (,),. does not vanish.
Then

1. 05(2n;p, q)(w) is unitary.

2. 0,(2n;p, q)(m) € Ass(p, g3 211").

3. 05(p,q;2n")05(2n; p, q)(w) is either an irreducible unitary representation or the
NULL representation.

The purpose of assuming nwe %, is to guarantee the unitarity of Q(x)(=n). In fact,
for any =, the condition on the sizes of related dual pairs can be computed easily to
define nonunitary quantum induction. In general, the underlying Hilbert space of the
induced representation is “invisible” under quantum induction except for certain
limit cases where quantum induction becomes unitary parabolic induction (see
Section 6 and [10]).

Conjecture 1. Suppose 7 is a unitary representation in Ry.
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® The quantum induction Q(p, q;2n;p', ¢’ )(n) for2n —p —q+2 = p' + ¢ — 2n can be
obtained via unitarity-preserving parabolic induction and cohomological induction
from .

® The quantum induction Q(2n;p,q;2n')(n) for p+q—2n—2 =20 —p — q can be
obtained as a subfactor via unitarity-preserving parabolic induction from .

For the cases p+¢g=2n+1=p'+¢ and p+g=2n+1=2n"+1, by a
Theorem of Adams—Barbasch, Q is either the identity map or vanishes [1]. Our
conjecture holds trivially, i.e., no induction is needed. For the case p+ ¢ +p' +¢' =
4n+2 and p—p' =g — ¢, our result in Section 6 gives some indication that
O(p,q;2n;p',¢') (%) can be obtained from

SO0y )
IndSOS(I’sqcho(PLP)N(n ® l)

Let me make one remark regarding the nonvanishing of (,)_. In [8] we prove

Theorem 2.4.2 (He [8]). Supposep + q<2n+ 1. Let ne Rs(p, q;2n). Then at least one
of

(a )7z7 (7 )n@det

does not vanish.

For me Z,(2n; p, q), the nonvanishing of (,), is hard to detect since it depends on
p,q [1.6,22]. A result of Li says that (,), does not vanish if p,¢>2n. We are not
aware of any more general nonvanishing theorems.

Finally, concerning the associated varieties, Przebinda shows that the associated
varieties behaves reasonably well under theta correspondence under certain strong
hypothesis [25]. We conjecture that quantum induction induces an induction on
associated varieties and wave front sets. The exact description of the associated
variety under quantum induction can be predicted based on [5].

Conjecture 2.

® Under the same assumptions from the main theorem, let n be a unitary
representation in Rs(p,q;2n). Let Oq be the associated variety of n with d a
partition (see [4], Chapter 5). Let Oy be the associated variety of
OWp,q;2m;p', ¢ ) (7)) #0. Then t' = (p' + ¢ — 2n,2n — p — ¢, d").

® Under the same assumptions from the main theorem, let m be a unitary
representation in Rs(2n;p,q). Let Oq be the associated variety of © with d a
partition. Let Oy be the associated variety of Q(2n;p,q;2n')(n)#0. Then f' =
@2n' —p—gq,p+q—2nd).
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We remark that our situation is different from the situation treated in [25] with
some overlaps. The description of the wave front set under quantum induction can
be predicted based on [23].

3. Theta correspondence
Let (O(p,q), Sp2n(R)) be a reductive dual pair in Spy,(,14)(R). Let

T Mpoupig)(R) = Spanip9) (R)

be the double covering. Let {1,e} =;"'(1). Let MO(p,q) =;"'(O(p,q)) and
MSp2(R) =~ (Sp2n(R)). Fix a maximal compact subgroup U of Spyy(,4) (R) such
that

UnSpyu(R)=U(n), UnO(p,q)=0(p) x O(q).

Then MU is a maximal compact subgroup of Mpy,,.4)(R). Let w(p, q;2n) be the
oscillator representation of Mp, (14 (R). The representation w(p,q;2n) or some-
times (2n;p,q) is regarded as an admissible representation of Mpy,(. ) (R)
equipped with a fixed dual pair (O(p,q), Sp2,(R)). Let 2 be the Harish-Chandra
module. Then w(p,q;n) can be restricted to MO(p,q) and MSp,,(R). Howe’s
theorem states that there is a one-to-one correspondence

0(p,q;2n) : R(MO(p, q), o(p, q;2n)) = R(MSp2(R), o(p, q; 2n)).

3.1. MO(p,q) and MSp,,(R)

The groups MO(p,q) and MSp,,(R) are double covers of O(p,q) and Spy,(R).
Depending on the parameter n, p and ¢, they may be quite different.

Lemma 3.1.1. (1) If p + q is odd, then the double cover MSp,,(R) does not split. It is
the metaplectic group Mpy,(R). The representations in Z(Mpa,(R), w(p, q;2n)) are
genuine representation of Mpy,(R).

(2) If p+ q is even, then the double cover MSp,,(R) splits. It is the product of
Span(R) and {1,¢}. The representations in R(MSp,(R), w(p,q;2n)) can be identified
with representations of Spa,(R) by tensoring the nontrivial character of {1,¢}.

(3) In both cases, any representation in

'%(MSPZn(R)vw(pvcﬁ 2n))

can be identified with a representation of Mpy,(R). In the former case, a genuine
representation, and in the latter case, a nongenuine representation.
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We do not know the earliest reference. The details can be worked out easily and
can be found in [1].

Lemma 3.1.2. (1) 4s a group,
MO(p,q)={(¢,9) g€ O(p,q), & = det g"}
(2) ¢ is a character of MO(p,q). Any representations in Z(MO(p,q),»(p, q;2n))

can be identified with representations of O(p,q) by tensoring &.
(3) MSO(p, q) can be identified as group product

SO(p,q) x {1,¢}.

(4) If n is even, MO(p,q)=O(p,q) x {1,¢}.
The details can be found in [1] or [9]. We must keep in mind that for p + ¢ odd,
R(MSp2n(R), 0(p, ¢; 2n)) = 1 genuine (Mpan(R))
and for p + ¢g even

%(MSPZVI(R), co(p, q; 21’1)) CH(SPZn(R))'

3.2. Averaging integral (,),

Let O(p,q) be the orthogonal group preserving the symmetric form defined by

0, 0 I,
L,=10 I, 0
I, 0 0,
Fix a Cartan decomposition with
q-p
A = {diag(ai,as, ...,a,,1, ..., l,afl,agl, ...,a]jl) |a;>0}
and a positive Weyl chamber
q-p
A" = {diag(a,ar...,a,1, ..., 1,a;" a5, ...,a;l) layza>-->a,>1}.

The half sum of the positive restricted roots of O(p, q)
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P
ptq—2p+q—4 gq-—p
0 = .
p(O(p,q)) ( Ty 3 )

Let Sp,(R) be the symplectic group that preserves the skew-symmetric form

defined by
W, = .
I, 0,

Let K be the intersection of Sp,,(R) with the orthogonal group O(2r) which
preserves the Euclidean inner product on R*". Let

A = {a = diag(a,, a, ...,an,afl, ...,a;l) | a; >0},

At ={a=diag(ay,a, ...,an,a; I coha Y azaz-za,=1}.

The half sum of the positive restricted roots of Sp,,(R)

n

—_—
p(Spu(R)) = (n,n—1,...,1).

For each irreducible admissible representation of a semisimple group G of real
rank r, there are number of r-dimensional complex vectors in a* called leading
exponents attached to it. Leading exponents are the main data used to produce the
Langlands classification (see [16,18]).

Definition 3.2.1. An irreducible representation © of O(p,q) is said to be in the
semistable range of 0(p, ¢; 2n) if and only if each leading exponent v of = satisfies

S R(u) + -+ a—2) —n<0 (Gell,p) 5
i=1
i.e.,
R(e) -+ 2p(0(p. ) <0.

An irreducible representation © of Mp,,(R) is said to be in the semistable range of
0(2n;p,q) if and only if every leading exponent v of 7 satisfies

,£ﬂ+w+22K0(dem (6)

HM»

i.e.,
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()~ P2+ 20(Spau(®) <0,

If W is a complex linear space, we use a superscript W° to denote W equipped
with the conjugate complex linear structure. Let ne Z,(MG,, MG,). We define a
complex linear pairing

(Z*®n,2Q@1°)—>C

as follows: for ¢ e 2, ye #° ven, uen,

Goubou, = [ (.0l dy

MO(p.q)

If 7 is unitary, (, ), is an invariant Hermitian form with respect to the action of MG,.

Theorem 3.2.1 (See He [7]). Suppose (n,V) is a unitary representation in the
semistable range of 0( MG, MG,). Then (, ), is well-defined. Suppose R is the radical
of (,), with respect to Q@ V. If (,), does not vanish, then

® 7 occurs in AAMG,,w(MG,, MG,));

® PRVC/ R, is irreducible;

® PRVE/ Ry is isomorphic to (MG, MG,)(n).

® ((MG,MG,)(rn) is a Hermitian representation of MG,.

Thus the Harish-Chandra module of 04(MG;, MG,)(n) can be defined as
PRV Ry

3.3. Oscillator representation

The oscillator representation, also known as the Segal-Shale-Weil representation,
is a unitary representation of the metaplectic group Mp. The construction of the
oscillator representation can be found in the papers of Segal [27], Shale [28] and Weil
[33]. In this section, we give a basic estimate of the matrix coefficients of the
oscillator representation. Proof of Theorem 3.3.1 can also be found in [I2,
Proposition 8.1].

Let g€ Sp2,(R). Let a(g) be the midterm of the KAK decomposition of g such that
aeA". Let H(g) =loga(g). Then

H(g) = diag(H\(g), H2(9), ..., Hu(g), —H1(9), ..., —Ha(9))

is in the Weyl chamber a™.
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Let Mp,,(R) be the double covering of Sp,,(R). The midterm of the KAK
decomposition of Mp,,(R) remains the same. Let (w,, L>(R")) be the Schrédinger
model of the oscillator representation of Mp,,(R) as in [7]. Let

u(x) = exp(=5(x + x5 + - + x7))

be the Gaussian function. The Harish-Chandra module £, are the polynomial
functions multiplied by the Gaussian function as verified in [7]. We write

n
X' = H X7
1

Harish-Chandra’s theory says that the Mp,,(R) action on 2, can be controlled by
the A4 action on fixed K-types of w,.

Theorem 3.3.1. For any a€ A, we have

%tpitl
(wp(a)x*u(x), x =Cup H a; 1 +a) 2
In addition,
n
[(wn(a@)x"u(x), X u(x))|<e | | (ai+a;
i=1
In general, for every ¢, eP,, we have
L 1
[(wn(g), )| <c (9)) 2.

i=1

The proof for the first statement can be found in [7]. We observe that

%+ pi+1

[(@n(@)X*1(x), X)) = |eng H &ty

%

1 b %
ca/;H ai+a;)2(1+a?) 2(1 +a?) 2‘

n 1

<y [ (@472 (7)

i—1

The second statement is proved. The third statement follows immediately from K-
finiteness of ¢ and .
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The estimations on the right-hand side are invariant under Weyl group action,
thus do not depend on the choices of the Weyl chamber a*.

3.4. Growth of matrix coefficients

Definition 3.4.1. Suppose X is a Borel measure space equipped with a norm |[|.|| such
that

® ||x||>0 for all xeX;
® the set {||x||<r} is compact.

Let f(x) and ¢(x) be continuous functions defined over X. Suppose ¢(x) approaches
0 as ||x||— oo. A function f(x) is said to be weakly bounded by the function ¢(x) if
there exists a dy >0 such that for every dg > >0, there exists a C >0 depending on ¢
such that

|f(N)<CH(x)' (vxeX).

The typical case is when f(x) does not decay as fast as ¢(x) but faster than
¢(x)]—(5.

Let © be an irreducible representation of a reductive group G. Let K be a maximal
compact subgroup of G. We adopt the notation from Chapter VIII in [16]. We equip
G with a norm

No|—

g~ [[log(a(g))| = (log a(g),log a(g))?,

where (,) is a real g-invariant symmetric form whose restriction on a is positive
definite.

Example. An irreducible representation 7 of a reductive group G is tempered if and
only if its matrix coefficients are weakly bounded by

a(g)™",
where p is the half sum of positive restricted roots and a(g) is the mid term of the
KAK decomposition with a(g) in the positive Weyl chamber A™ (see [16]).

Theorem 3.4.1. Let © be an irreducible unitary representation of G. Let 2.<0. The
following are equivalent:

1. Every leading exponent v of m has R(v) < A.
2. There is an integer q =0 such that every K-finite matrix coefficient is bounded by a

multiple of (1+ |[log a(g)||)? exp(A(log a(g))).
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3. Every K-finite matrix coefficient ¢(g) of © is bounded by Ca(g)”($ for any 6> 0.
4. Every K-finite matrix coefficient of m is weakly bounded by a(g)”.

See Chapter VIIL.8, 13 [16] or Chapter 4.3 [32] for details. The first three
statements are equivalent without assuming the unitarity of = and 4<0.

4. Twisted integral

Let A" = {a;=ay>--->1}. In this section, we will study the following integrals:

L(a,7) = / f[( 1@ +b?>‘%> b db,

=1\ k=1

and
1
L(a,¢) = / 11 (@ +5)) 2 (b1, b, ..., by) dby by ...db,.
bizby>-2by2175

The domain of a will always be A1 unless stated otherwise. We are interested in the
growth of L(a, ¢) as a goes to infinity. Variables and parameters are assumed to be
real in this section.

4.1. Single variable case a>=1

Lemma 4.1.1. Suppose that a>1. The integral
i
L(a,)) = / (@ +b2)2 db
b>1
converges if and only if 2<0. In addition, L(a, J.) is weakly bounded by &’ if —1<<0
and is bounded by a multiple of a=' if 2. < — 1.

Proof. From classical analysis, the integral

b*lJr/i db

b>1

converges if and only if 1<0. For a fixed @ and any b> 1, b*<a® + b*> < (1 + a?)b>.
Hence
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b db>/

b=1

| 1
(a* + b*)2b* db;/ (14 a*)2b"'b* db.

b>1 b=1

Hence, L(a, ) converges if and only if 21<0.
For a>1,

|-
L(a, ) = /b @+ ) b
=

-
/ (612 _’_a2b2)*§aﬂ+lbl db
ab>1

) 1
:a”/ (1 +b*)2b* db
b=a!

) 1, e 1,
:a”/ (1+5)2b db+a‘/ (1 + 5220 db (8)
bh=>1 a!

For a>1and a'<b<1 and 1# — 1,

| 1
—= b <(1+67) 72 <b.
SP<(+p)

Taking fal,, db, we obtain

1
V2(A+1)

(a* —ah).

: 1 1 1
P g Y<d 2\ 2p db <
(@ —a™) a/(fl(l+b) b* db T

Therefore, for —1<1<0, L(a, Z) is bounded by a multiple of a*; for A< — 1, L(a, )
is bounded by a multiple of a~!. For 1 = —1,

1 1
a'lna<a’ / (1+6*)2p""db<a'Ina.

1
V2 o
Therefore, L(a,—1) is weakly bounded by a~!. [

Lemma 4.1.2. Suppose /.o <0. Suppose f(a) is weakly bounded by a* for any 0> > ).
Then f(a) is weakly bounded by a™.

Combining these two lemmas, we obtain

Theorem 4.1.1. Suppose that a=>1. Suppose ¢(b) is weakly bounded by b* for some
A<0. Then the integral

L{a, p(b)) = / (@ + B 2(b) db

b=1
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converges. In addition, L(a, $) is weakly bounded by & if —1< A and is bounded by a
multiple of a=' if A< — 1.

In conclusion, the growth rate of L(a, ¢ (b)) is a “‘truncation’ of the growth rate of

¢ (b).
4.2. Multivariate b
Let 2 = (41,22, ..., 4y). Let BT = {b;=by>--->b,>1}. Let us consider
' 1
Lla.7) = /B RIS
First, we observe that
e + blg >a2’7"bf72""

for any 5,0, 1]. The 5, is to be determined later. We obtain
5 I
La< [ Ja " b
B =

) P
= / b, b 9)
Bt i

i=

Secondly, we change the coordinates and let

Then
P
bi:Hrj (lzl,,p)
J=i

In addition, B" is transformed into [1, 00)”. The differential

We obtain
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e d
P .
_ ) ) ar
L{a, 7)< a 2 A
[1,o0)” 320 Fi
p P )
:aizle i H r'?f'u“" @
J }
(o) 35T\ J=i Fi
P Y
_ onitA dr;
=a o H rjz‘*‘ ' '—/ (10)
1) G0 Tj

This integral converges if

J
Z ni+2i<0 ().

Theorem 4.2.1. Suppose a>1. If 2<0, then L(a, 1) converges. Furthermore, L(a, 1) is
bounded by a multiple of

aZf:l i

with any y; satisfying the condition

J J
{0<nj<1,z n,»+z 4i<0 (j=1, ..-,p)}-
i=1 i=1

The condition

J J
Sn+d <0 (j=1,...p)
i1 i=1
can be restated as # + 1< 0. Combined with Lemma 4.1.2, we have

Theorem 4.2.2. Suppose ¢(by,bs, ...,b,) on Bt is weakly bounded by b* for some
1<0. Then the function

L(a / <f[ @ +b7)" ) (b) dbi ....db,

i=1

is weakly bounded by a=* with
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P
u zmax{z 17,»|0<11j<1,2—|—11<0}.

i=1

We point out the second ingredient needed to carry out estimations on L(a

namely, the coordinate transform from b to r.

4.3. Multivariate a€|l, o0 )"

19

7¢)7

This case is more complicated since the function L(a, ¢) is no longer of single

variable. Our result here is weaker than the results for single variable a.
First we consider

L(a, 1) /H(H (ap +b7)” )bffdbi
Bt i .

We again set the parameters 7, ; to be in [0, 1]. We have

211,22111
ak+b2 Ab k

Therefore, we obtain

n

/ ﬁ H a/:'?k.fbi—l""?k.i) bl), db;
I«

//\

n
p A,'fnJrZ N
ﬂk,i/ Hb =1 db
. i
B

i
+ 7,
i=1

Now we change the coordinates b into r. We obtain

n P P P P
— M ) —n+ Nyei dl’i
L(a,i)é | I akz,,l k [ | I( ] E/« 1Tk I | r’),,_
k=1 1\ j= !

Loo) i i Jj=i

n » P P n
S I e A 1 () e
k=1 )il i

=i

~.

p
H rzizl i1+ 0 i) @

j ‘
Tj

This integral converges if
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J
i=

</1[ —n+1+ Z nkﬁi) <0 (VI</j<p).
=1

1 =

Since 1, ;€[0, 1], we obtain the following theorem.

Theorem 4.3.1. Suppose ae(l, o0 ). The integral L(a, ) converges if
J
> hi—n+1<0

i=1

for every integer 1 <j<p. In this situation L(a, 1) is bounded by a multiple of
1
a—;t — a;#k’
k=1

where py. = 320 ny; and {n ;} satisfy

nkje[o’ 1} Vkv ia

J n
(xi—n+1+z nk,,-><o V). (13)
i=1 k=1

14

Similarly, we obtain

Theorem 4.3.2. Suppose ae[l, o). Suppose ¢p(b)b™""" on B* is bounded by b* with
2.<0. Then the integral L(a,¢) converges. Furthermore, L(a,¢) is bounded by a
multiple of

n
at = H a;”",
=1
where . =377 my; and {ny.;} satisfy

nk.ie[oa 1} Vkv ia

J

> (Ai + Z m,,) <0 Vi (14)
i k=1

i=1
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5. Algorithm and examples

Suppose 4<0. We are interested in finding the “maximal” » where

V4
My = Z Nk,
i=1

with #, ; satisfying

nk,i€[07 1} Vk7 ia

Z/: (zi + Z nk,,) <0 V. (15)

i=1 k=1

5.1. A Theorem for ae|l, )"

Write (15) as

Z(Zﬂk,i><—zii j. (16)
=1 i=1

i=1

First of all, since 1, ;>0, the sequence

{i ) nk,iUeu,p]}
i=1 k=1

is increasing. However, the sequence

{Z/li |je[l,p]}
i=1

might not be increasing. Therefore, there are redundancies in inequalities (16). Let j;
be the greatest index such that

i—ii :min{—z iﬂje[l,p]}.

i=1

Then we consider j>;. Let j, be the greatest number such that

. J
Z —)i= min{— Z lilje []'1717]}-
i=1 i=1
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If j, = j1, we stop. Otherwise, we can continue on and define a sequence
Jo=0<ji<p<jz<--<p

with

—i. (17)
1

0< i—lg i—ii<~~<
i=1 i=1

Our problem is equivalent to finding {7, ;} such that

p

1

nk.ie[oa 1} Vka ia

Js

> (ii + Z 77k,i> <0 (V).
k=1

i=1
Once we determine the sequence
Jo=0<ji<p<j3<--<p,

we assign numbers in [0, 1] to 5, ; for j;_1 <i<j; such that

Js n Js
SN <> A (18)
i=1 k=1 i=1

Theorem 5.1.1. Suppose ac[l, o). Suppose ¢(b)b™™ on BT is bounded weakly by
b* with 2<0. Then the integral L(a,$) converges. Furthermore, L(a, ) is weakly
bounded by

n
—u —Hye
a”f”ak ,
k=1

where = Y70 ny; and for each j;>0, {n; ;€[0, 1]} satisfy one of the following
1.
Js

Z (ii + i ’7k,i> =0; (19)
k=1

i=1



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

[YAIMA : 2319]

H. He | Advances in Mathematics | (1ii1) 1IE-A0R 23

Js n
Z(ii + Z r]k,,) <0; and ;=1 Vke[l,n],ie[j1+1,j]. (20)
=1

i=1

Proof. It suffices to show that for any 0<7<I1, 1, ; satisfies the conditions in
Theorem 4.3.2. Apparently, we have

lrlk,ie[ov 1] (VZ, k)
and
Js n
S A+ m | <o.
i1 k=1
From (17), for every s>1,
Js n Js
SN A+ m | <11 Z
i=1 k=1 1
We have shown that (14) holds for j = j;. For ji—1 + 1</ <y, since n;;>0,

n

izmﬁzz%

/\
i
i=1

fz]: Ai. (21)

i=1

Thus, (14) holds for all 1<j<p. By Theorem 4.3.2, L(a, ¢) is bounded by a~"* with
e = Y5y M- Hence, L(a, ¢) is weakly bounded by a . [

5.2. L(p,n) and Algorithm for aec A"

Theorem 5.1.1 only assumes ae|[l, o0)". Suppose from now on
acAT ={azay= - =a,>1}.

In order to gain a better control over L(a, ¢), we just need to assign numbers to 1, ;
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to make g, as big as possible, then assign numbers to 1,; to make u, as big as
possible and so on. The only requirement is either (19) or (20). Our algorithm can be
stated as follows.

Definition 5.2.1. Fix j; and assume that {, ; | i<j;—1} are known. We assign numbers
between 0 and 1 to n;; for ji—1 <i<j; in the following way. If (20) holds, assign
ne; = 1 for all k and all j | + 1<i<j;. We are done. If (19) holds, we choose
{miljs—1 + 1<i<js} satisfying (19) and maximizing Zé;jy,1+l 1y, The order of
assigning numbers to {n; ;} for j,_; <i</s is not of our concern. Update (19). If (19)
is trivial, we assign zero to the rest of {n ;[j;—1 + 1 <i</js} and stop. If not, choose

{2 lJs—1 + 1<i<jy} satisfying (19) and maximizing Z;:S:j.\.,wl’h,i‘ Update (19) and

repeat this process. We do this for each j; until we reach i = p. Finally, we compute
p
W = Z N (I<k<n)
=1

and obtain a unique u. Write

L(p,n)(4) = —u.

The domain of L(p,n) are apparently p-dimensional real vectors such that
2<0.
The range of L(p,n) are n-dimensional real vectors such that
u=<0.
L(p,n), in general, does not produce the precise information for the Langlands
parameters under theta correspondence; but for a special class of representations,

L(p,n) will be precise. Now, Theorem 5.1.1 can be restated as follows.

Theorem 5.2.1. Suppose ac A*. Suppose ¢(b)b™™ on BT is bounded weakly by b*
with A<0. Then the integral L(a, 1) converges. Furthermore, L(a, ) is weakly bounded

by a" for = L(p,n)(4).

5.3. Examples

Now let us compute a few examples. Suppose p<n.
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Example 1. For

Example 2. For

Lip,n)(3) = (=p,—p+1,...,—1,0,...,0)
Example 3. For
A:(_%a_%v .,—I’l+%),
L(n,p)(2) = (-n+3—n+3...,—n—3+p)

Example 4. For

6. Dual pair (O(p, q), Sp2,(R)) and estimates on 0,(r)

Let O(p, ¢q) be the orthogonal group preserving the symmetric form defined by

0, 0 1,
by = 0 I q-p 0
1, 0 0,

and Sp»,(R) be the standard symplectic group. We define a symplectic form on
V =M(p+ q,2n) by
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Q(vr,v2) = Trace(vy W31, ,) (Yui,v2€V).

Now as a dual pair in Sp(V, Q), O(p, q) acts by left multiplication and Sp,,(R) acts
by (inverse) right multiplication. We denote both actions on M(p + ¢,2n) by m.

6.1. The dual pair representation o(p,q;2n)

Let x;; be the entries in first # columns of ve V" and y;; be the entries in the second
n columns of v. Let

X:{UEV|y,’J:0}’ Y:{UEV|X[’/‘:O}.

Then X and Y are both Lagrangian subspaces of (7, Q). We realize the Schrédinger
model of Mp(V,Q) on L*(X). Let 2(p,q;2n) be the Harish-Chandra module. We
call the admissible representation

(o(p,q;2n), Z(p, q; 2n))

the dual pair representation.
Now let b = diag(by, by, ...by, 1, ..., 1,b;", ..., b, ). Let

Bt ={b|bi=by>->2b,>1}=0(p,q).

Let a = diag(a;', a5, ...,a," ay, ...,a,). Let

At ={a|lazary= - =a,=21}=Spu(R).
For 1<j<n, let

b,-ei_j, izl,...,p,
m(b)eij = { eij, i=p+1,..,q,
b;lei,jﬁ ZZQ+1a7P+%

m(a)e,-_j:ajeiJ (1:1,,p+q)

These formulae indicate that the embedding m of 4 and B into GL(X) are simply the
left multiplication and the (inverse) right multiplication. In fact,

biaje,;j, izl,...,p,
m(ab)e;; = < aje;, i=p+1,..,q,
bi’laje,j7 i=qg+1,....p+q.

Let b(gy) be the middle term of KAK decomposition of g; with b(g;)e B". Let a(g,)
be the middle term of KAK decomposition of g, with a(g,)e A™. Observe that
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(biaj + bflaj’l)(bi’laj + b,'aj’l) = (b + b7+ af + aj.’z).
From Theorem 3.3.1, we obtain

Theorem 6.1.1. For any ¢, e P (p,q;2n),

[(@(p, g 2n) (m(ab)) ¢, )]

n n —p

<CﬁH(b?+b[2+af+a Ha,+a _.

i=1 j=1 j=1

NI'—*

Furthermore, this estimate holds for m(g1g>) by substituting b(g,) and a(g») into the
right-hand side.

We denote

P n 1
II 11 +67° +a +a7%)2
=1 j=1

by H(a,b).

6.2. Growth control on O4(p, q;2n)(r)

Let (n, V) be an irreducible Harish-Chandra module in %(p,q;2n). We are
interested in the following integral:

/ (o(p,q;2n)(9192) P, ¥) (v, n(g1)u) dgi  (u,ve Vi, Yy e P (p,q;2n)).
MO(p.q)

Our goal is to control the growth of this integral as a function on MSp,,(R). From
Theorems 6.1.1 and 3.4.1, we may as well consider

n _a=p L db;
/B [ (@+a ") 2 H(a,b)b’> ] - (22)
+j:1

i=1 i

Here p, is the half sum of the restricted positive roots of O(p,q):

P ptq—-2p+q—-4 q-p
1 P ) 2 PR B

and (n(g1)u, v) is bounded by a multiple of b(g;)*. We observe that
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- e o db; ap
H (@+a")"7 | Hia,b)p's™ H1 %, <Calg2) 7 Lia.2+2p, — 1),
J= i=

From Theorem 5.2.1, we obtain

Lemma 6.2.1. Let ne%(p,q;2n). Suppose K-finite matrix coefficients of n are
bounded by some Cb(g1)" with

A4 2p(0(p,q)) — n<0.

11

13

15

17

19

Then the matrix coefficients of 0(p, q; 2n)(n) are weakly bounded by

( g2)L(P,n)</1+2p(0(p,q))7n),%.

Recall that me Z(p, ¢;2n) if and only if

() — (n -2 + p(0(p, ) <0

for every leading exponent v of 7. Take
Jr
2=n=Pd (00, ) + (5,0,....0)

with 6 a small positive number. Then matrix coefficients of n are bounded by
multiples of b(g;)":

L(p,n)(4+2p(O(p,q)) —n)

_ L(p,n)(—¥+ p(0(p,) + (5,0, ..,0))
=L(p,n)(-14+6,-2,....,—p)

_ { (_P+57—P+ 1; --~,_170> ---70)7 ”21)’
(—=p+06,—p+1,....,—p+n—1), n<p.

From Lemma 4.1.2, we obtain the following theorem:

Theorem 6.2.1. Suppose that meRy(p,q;2n). Then the matrix coefficients of
0s(p, q; 2n)(n) are weakly bounded by

(_m_ﬂ+q—2
a(g)\ 2T

S

_qar
2

=it nzp),
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(Jﬂ _ptq=2 7p+q72n+2) .
a(g))\V 22 2 (if n<p).

6.3. Growth control on 0(2n;p,q) ()

Let (m, V) be an irreducible Harish-Chandra module in %,(2n;p,q). We are
interested in the following integral:

/ ((p, q;2n)(9192) P, ) (v, (g2)u) dg>  (u,ve Vi d,yew(p,q;2n)).
MSp>,(R)

Our goal is to control the growth of this integral as a function on MO(p, ¢). From
Theorems 6.1.1 and 8.47 in [16], it suffices to consider

L 9P da;
H(a,b)a"a*” a2 L 24
. (a,b)a’a ,11 (aj+a;") m (24)

Here p, is the half sum of the restricted positive roots of Sp,,(R):
py=mn—1,...,1)

and (n(g>)u, v) is bounded by a multiple of a(g>)*. Apparently, the integral (24) can
be controlled by CL(a, . —%®%— 1+ 2p,). From Theorem 5.2.1, we obtain

Lemma 6.3.1. Suppose that meR(2n;p,q), ie., the matrix coefficients of m are
bounded by multiples of a(gz)l for some

+
)v+2p2—¥<0.

Then the matrix coefficients of 05(2n; p, q)(n) are weakly bounded by

b(g: )L(nyp) ()~+2P2*¥) )

Recall that the representation = is in Z(2n; p, q) if and only if

+
R(o) +n+ 1+ p, — <0

for every leading exponent v of 7. Now let
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J=-n—1-p, +p2ﬂ+ (9,0, ...,0),

where 0 is a small positive number. Then the matrix coefficients of = are bounded by
multiples of a(g,)" and

P+q

/1—|—2p2—T:—n—1—|—p2—|—5:(—1+5,—2,...,—n).
Therefore
+
L(n,p)</1+2p2—qu):(—n+5,—n+1,...,—1,0,...,0) (p>n),
+
L(n7p)(i+2p2—qu):(—n+57—n+1,...,—n+p—1) (p<n).

From Lemma 4.1.2, we obtain

Theorem 6.3.1. Suppose that m is in Ru(2n;p,q). Then matrix coefficients of
0(2n;p, q),(n) is weakly bounded by

6.4. Applications to unitary representations

We may now combine our results from [9] with the results we established in the
previous two sections. Let us start with a unitary representation in Z(p, g;2n).

Theorem 6.4.1. Suppose p+ q<2n+ 1. Suppose m is a unitary representation in
Rss(p, q;2n) and (, ), is nonvanishing. Then 0,(p, q;2n)(n) is unitary. Furthermore, the
matrix coefficients of 0(p, q;2n)(n) is weakly bounded by

4 n—p

ptq _ptq=2
> 5y e

a(g>)
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In [9], we have proved that for p +¢ odd we can loose our restrictions from
Rss(p,q;2n) a little bit and unitarity still holds for 60,(p,q;2n)(n). The precise

statement can be stated as follows.

Theorem 6.4.2. Suppose p+ q<2n+1 and p+ q is odd. Suppose m is a unitary
representation in Rs(p, q;2n) such that each leading exponent v of © satisfies

20) - (n- 25220 4 (00,0 <0

If (,), is nonvanishing, then 04(p,q;2n)(n) is unitary. Furthermore, the matrix
coefficients of 0s(p, q; 2n)(n) is weakly bounded by

P n-p

—N—
ptq—1 _ptq=3 g—p+l"_g—p q9-p
7 T e s T

a(g2)

Similarly, we obtain the following theorem regarding 6,(2n; p, q)(n).

Theorem 6.4.3. Suppose that n<p<gq. Suppose that © is a unitary representation in
Rss(2n5p,q). If (), is nonvanishing, then 0s(2n;p, q)(n) is unitary. Furthermore, the
matrix coefficients of 05(2n; p, q)(n) are weakly bounded by

" pon
< -n,—n+1,...,—10, ...,0)
b(g1) :

7. The idea of quantum induction

In this section, we will define quantum induction first. Then we compute the
infinitesimal characters of quantum induced representations. Finally, we give some
indication how the limit of quantum induction will become parabolic induction.

7.1. Quantum induction on orthogonal group

Consider the composition of 0,(p, ¢; 2n) with 05(2n; p', ¢'). Suppose ne R (p, ¢; 2n)
and p+¢<2n+ 1. If (,)_ is nonvanishing, then 0(p,q;2n)(n) is unitary and its
leading exponents satisfy

n



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

[YAIMA : 2319]

32 H. He | Advances in Mathematics | (1ii1) 1IE-A0R
P n—p
ptqg ptq-2 q—p+2"q—p q—p
HDES , e, , e ————
(v) 2 2 2 2 2

The representation 0,(p, ¢; 2n)(n) is in Zs(2n;p', q') if

P n—p

rt+q pt+q-2 q—p+2"q—p  q-p
> e T T

+ (4 1)+ p(Sp(R)) —
This is true if and only if

fp¥+n+l+n—p —;q

We obtain
Theorem 7.1.1. Suppose
q=p >n,

P+dq —2n=2n—(p+q +2=1,

p+q=p+4¢ (mod2).

Let © be an irreducible unitary representation in Ry(p, q;2n). Suppose that (,), does
not vanish. Then 04(p, q;2n)(n) is unitary and

0,(p, q;2n)(n) € Rss(2n;p', q').

Furthermore, 05(2n; p', ¢')0s(p, q; 2n)(n) is either a unitary representation or the NULL
representation.

Definition 7.1.1. Let = be a unitary representation in % (p, ¢; 2n). Suppose that

q=p'>n,
P+qd—2n=2n—(p+q)+2>1,

p+q=p+4¢ (mod2).
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We call

O, q;2nm;p',q') - m—0,2n;p', ¢')0s(p, ¢; 2n) ()

the (one-step) quantum induction.

If one of (,), and (,)g(gomr vanishes, we define our quantum induction
O(p,q;2n;p',q')(n) to be the NULL representation.

7.2. Quantum induction on symplectic group

Next, we consider the composition of 05(2n;p,q) with 0y(p,q;2n"). Suppose
n<p<gq. Let = be a unitary representation in Z(p,q;2n). Suppose (,), is not
vanishing. Then the leading exponents of 0(2n; p, q) satisfy

Rv)<(—n,—n+1,...,—1,0,...,0).
Therefore, 0(2n;p,q) is in Zy(MO(p,q), o(p, q;2n")) if

_l’_
(—n,—n+1,...,—1,0,...,0) —n/—i—p—zq—ﬁ—p(O(p,q))#().

This is true if and only if

—n—n'+p+q—1<0.

Theorem 7.2.1. Suppose 2n' —p —qg=p+q—2n—2 and n<p<gq. Suppose © is a
unitary representation in Rs(2n;p,q). If (,),, does not vanish, then 0;(2n;p,q)(n) is
unitary and it is in R (p, q;2n’). Furthermore, O0,(p, q; 2n")0,(2n; p, q)(n) is a unitary
representation or the NULL representation.

Definition 7.2.1. Let p, ¢, n,n’ be nonnegative integers such that

n<p<g,

p+q—2n-2<2n —p—q.
Let 7 be a unitary representation in Z(2n;p, q). We call
Q(2n:p, q; 2n') : m—04(p, ¢;: 2n')0,(2n; p, q) (m)

the (one-step) quantum induction.

If one of (,), and (, )y, 2upg)x Vanishes, we define our quantum induction

0(2n;p, q;2n') () to be 0. Thus the domain of our quantum induction is Z(2n; p, q).
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7.3. Quantum inductions

We can further define two-step quantum induction and so on. The general
quantum induction

O(p1,q1;2n15p2, q2; 2ma; ... ) (1)

is defined as the composition of 6, under the following conditions:

1. Initial conditions: py + q, <2n; + 1.
7 is a unitary representation in Z(p1, ¢2; 2n1), i.e., its leading exponents satisfy

+
R(v) i+ P 0001, 41)) <0.

2. Inductive conditions: Vj,

nj<pjy1 <Gjt,
Pi+t + Gj1 — 2m;<2njy — iy = i1 + 2,
2n; — pj — qj + 2<pjs1 + g1 — 2my,

i +4q; = pis1 + gj+1 (mod 2).

Theorem 7.3.1. The representation

O(p1,q1;2n15p2, q2; 2ma; ... ) (1)
is either an irreducible unitary representation or the NULL representation.
The general quantum induction

O(2n1;p1, q1;2n2; p2, 423 2135 ... ) ()
is defined as the composition of 0, under the following conditions:

1. Initial conditions: ny <p; <q.
7 is a unitary representation in Z(2n; p1,¢1), i.e., its leading exponents satisfy

(o) - T n s 14 p(Span, (R) <0,
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2. Inductive conditions: Vj,

n;<p;<¢qj,
pi+4qi —2m<2njy —p; —q; +2,
2nj1 — pj— 4 + 2<pjr1 + g1 — 2n,

P+ qj = pjr1 + ¢+ (mod 2).

Theorem 7.3.2. The representation

OQ2ny;p1,q1:2n2; pa, q2; 2n35 ... ) (1)

is either an irreducible unitary representation or the NULL representation.

Our inductive conditions are natural within the frame work of orbit method (see
[6,23,25,31]). The nonvanishing of 6, has been studied in [6,8]. It can be assumed as a
working hypothesis in the framework of quantum induction. Notice that Q is defined
as a composition of ;. Thus, it is not known that Q is exactly the composition of
theta correspondences over R. This problem hinges on one earlier problem
mentioned by Li [19]:

Is (,), nonvanishing if 1€ 2(MG, MGy) N\ R(MGy, MG,)?

Our result in [7] which is derived from Howe’s results in [13] confirms the converse:

nis in Z(MG,, MG,) if (,), does not vanish.

Therefore, if Q(x)(n)#0, Q(*) is the composition of 6.

7.4. Infinitesimal characters

Infinitesimal characters under theta correspondence were studied by Przebinda
[26]. We denote the infinitesimal character of an irreducible representation n by
#(n). Przebinda’s result can be stated as follows.

Theorem 7.4.1 (Przebinda). 1. Suppose p + g<2n+ 1. Then

F(0(p, ¢; 2n)(n)) = 9 (m) ® (n—’ﬂ,n—m— ol [’%} —’%).

2. Suppose 2n+ 1<p + q. Then

P+q Pty Pty [p+qD
A S - )

2(00mp.q)(m) = 5 (W)@ (75 T p-a,

3. Suppose p+q=2norp+q=2n+1. Then #(0(p,q;2n)(n)) = 4 (n).
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Now we can compute the infinitesimal character under quantum induction.

Corollary 7.4.1. Suppose Q(x)(m)#0.

1. If p+ q is even, then

1
Q.2 )(m) =5 @)@ (5T w11 25
) Ptqa , Ptq 1
®< I ”J'
3. If p+ q is even, then
+ +
S(Qp.q:2mp ¢ )(m) = # ()@ (=L -L2L 1 1)
/ / / /!

4. If p + q is odd, then

1

S (Qp.q: 2m5q) () = 5 (m) @ ( R 5)
r+dq r+dq !

®< 2 L 2 2 72

We shall now take a look at some “limit” cases under quantum induction.

Example L. p+q+p +4¢ =4n+2.

In this case,
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Therefore,

J(Qp. q;2n:p',¢')(m)) = I ()

Example Il. 2n—p —g+2=p'+¢ —2nandp—p' =q—¢.
Notice first that

P=r+qd—-q=0'+4)-p+q9 =4m+2-2(p+q).

Therefore

pPop_pP-ortdte_ ptq 1
2 4 2 2

Recall from Proposition 8.22 [16]

Fnd3G) Son, -y (7®1)
=J(n®1)
_ pP-p—1p—-p=-3 pP-pr-3 p-p-1
—f(ﬂ:)@( 2 ) 2 AN 2 ) 2
_ _ptaq, pPrq_ Prq_,Pra._
—J(n)(@(n 7N 7 s 1+ 5 n— n)
= J7(0p,q4;2m;p',q)(n)). (25)

This suggests that Q(p,q;2n;p',¢')(n) as a representation of SOy(p,q) can be
decomposed as direct sum of some parabolically induced unitary representation (see
Conjecture I).

Example III. n+#n'+1=p+q.
In this case,

n’—n—I:p—i—q_n
2 2

From Proposition 8.22 [16] and the corollary,
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S
I (In dS;’Z: Y (n@l))
n—n—1n-n-3 n—n—-3 n-n-—1
_](TC)@< 2 5 2 y ey 2 9 2 )
P+q ptq p+q +q )
- PGy 2Ty n 2, 274 1
f(n)@( L —n en=2 Aoy Thndt
=7(02n;p',q;2n') (). (26)

This suggests that Q(2n;p,q;2n’)(n) can be obtained as subfactors of certain
parabolic induced representation. We prove this connection in [10].

Let me make some final remarks concerning the definition of quantum induction
Q. Notice that Q(p, ¢;2n;p’,q¢')(n) contains distributions of the following form:

/MS ( )w(p’,q’;Zn)(gl)%@ o(p,q;2n) (9192) 2 ® 1(g2)v dga dg)
Pon

MO(p,q)
= / o(p,q;2n)(g2) l/ o' +q,4" + p; 2n)(91)(d; ® b,) dg
MO(p.q) MSpr,(R)

®n(ga)v. (27)

Our discussions in this paper guaranteed absolute integrability of this integral.
Notice that the vectors in [] are in 0(2n;p' + q,q + p')(1).

Definition 7.4.1. Suppose p'+¢=2n, ¢ +p=2n and p+q+p +¢ is even.
Consider the dual pair (O(p’' + ¢,¢ + p), Sp2n(R)). This is a dual pair in the stable
range [14,20]. Then 0(2n;p’ + q,4' + p)(1) is an unitary representation of MO(p' +
4,4 + p) (see [20,34]). Let O(p,q) and O(p’,q’) be embedded diagonally in O(p' +
4,4 +p). Let telI(MO(p,q)). Formally define a Hermitian form (,) on 6(2n;p" +
¢,¢ +p)(1)®n by integrating the matrix coefficients of 0(2n;p' + ¢,¢' + p)(1)
against the matrix coefficients of © over MO(p,q) as in (1). Suppose that (,)
converges. Define 2(p,q;2n;p',¢') (%) to be 0(2n;p' + ¢, 4 + p)(1) ®w modulo the
radical of (,). 2(p,q;2n;p',¢")(n) is thus a representation of MO(p', ¢').

One must assume that p'+ ¢ =p+ ¢ (mod2). Otherwise, 0(2n;p’ +q,q +
p)(1) =0. 2 can be regarded as a more general definition of quantum induction.

It is no longer clear that 2 preserves unitarity.

Theorem 7.4.2. Under the assumptions from Theorem 7.1.1,

2(p,q;2n;p' . q')(m) = O(p, q; 2n: p', ¢') (m).

Similarly, one can define nonunitary quantum induction 2(2n;p, ¢;2n’)(n).
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Definition 7.4.2. Suppose that p+¢g<n+n'+1. Consider the dual pair
(0O(p,q), Spaniaw(R)). Then O(p,q;2n+2n')(1) is a unitary representation of
MSpopiaw (R) (see [14,20,24]). Let nell(MSp,,(R)). Formally, define a Hermitian
form (,) on O(p,q;2n+2r')(1)®n by integrating the matrix coefficients of
0(p,q;2n+ 2n')(1) against the matrix coefficients of = as in (1). Suppose that (,)
converges. Define 2(2n; p, g;2n")(n) to be 0(p, ¢; 2n + 2n’)(1) ® © modulo the radical
of (,). 2(2n; p, q;2n')(n) is a representation of MSp;,(R).

For p + ¢ odd, the MSp in this definition are metaplectic groups. For p + ¢ even,
the MSp in this definition split (see Lemma 3.1.1).

Theorem 7.4.3. Under the assumptions from Theorem 7.2.1,

2(2n;p, q;2n")(m) = Q(2n; p, q; 2n') ().

There is a good chance that 2(x)(n) will be irreducible.
Quantum induction fits well with the general philosophy of induction. On the one
hand, similar to parabolic induced representation Ind$t whose vectors are in

Homp(CF(G),1),
quantum induced 2(p, ¢;2n;p’, ¢')(n) lies in
Homy(pg).0()x0(q)(02n;0" + q,4' + p)(1), 7).

On the other hand, Ind$t has a nice geometric description. It consists of sections of
the vector bundle

G xp1—G/P.

In contrast, quantum induction does not possess this kind of classical interpretation
except for some limit case.

Acknowledgments

I wish to thank Prof. Shou-En Lu for her encouragements and the referee for some
very helpful comments.

References

[1] J. Adams, D. Barbasch, Genuine Representations of the Metaplectic Group, Compositio Math. 113
(1998) 23-66.
[2] D. Barbasch, The unitary dual for complex classical groups, Invent. Math. 89 (1989) 103-176.



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

[YAIMA : 2319]

40 H. He | Advances in Mathematics | (1ii1) 1IE-A0R

[3] D. Barbasch, Unitary spherical spectrum for split classical groups, preprint, 2001.

[4] D. Collingwood, M. McGovern, Nilpotent orbits on Semisimple Lie algebras, Van Nostrand
Reinhold, NY, 1994.

[5] A. Daszkiewicz, W. Kraskiewicz, T. Przebinda, Nilpotent orbits and complex dual pairs, J. Algebra
190 (1997) 518-539.

[6] Hongyu L. He, Howe’s rank and dual pair correspondence in semistable range, MIT Thesis, 1998.

[7] Hongyu He, Theta correspondence I-semistable range: construction and irreducibility, Commun.
Contemp. Math. 2 (2000) 255-283.

[8] Hongyu He, Nonvanishing of certain sesquilinear in Theta correspondence I, AMS J. Representation
Theory (2001) 437-454.

[9] Hongyu He, Unitary representations and Theta correspondence for classical groups of type I, J.
Funct. Anal. 199 (2003) 92-121.

[10] Hongyu He, Unipotent representations and quantum induction, preprint, revised April, 2003. (http://
arXiv.org/abs/math.RT/0210372).

[11] R. Howe, O-series and invariant theory, Proceedings of Symposium on Pure Mathematics, Vol. 33,
AMS Providence, 1979, pp. 275-285.

[12] R. Howe, On a notion of rank for unitary representations of the classical groups, Harmonic Analysis
and Group Representations, Liguori, Naples, 1982, pp. 223-331.

[13] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989) 535-552.

[14] R. Howe, Small unitary representations of classical groups, Group Representations, Ergodic Theory,
Operator Algebras, and Mathematical Physics, Berkeley, CA, 1984, pp. 121-150; Math. Sci. Res.
Inst. Publ., Vol. 6, Springer, Berlin, 1987.

[15] Jing-Song Huang, Jian-Shu Li, Unipotent representations attached to spherical nilpotent orbits,
Amer. J. Math. 121 (1999) 497-517.

[16] A. Knapp, Representation Theory on Semisimple Groups: An Overview Based on Examples,
Princeton University Press, Princeton, NJ, 1986.

[17] A. Knapp, G. Zuckerman, Classification of irreducible tempered representations of semisimple
groups, Ann. Math. 116 (2) (1982) 389-455.

[18] R. Langlands, On the classification of irreducible representations of real algebraic groups,
Mimeographed Notes, Institute for Advanced Study, 1973.

[19] J.-S. Li, Theta correspondence and minimal representations, Park City Notes, 1998.

[20] J.-S. Li, Singular unitary representation of classical groups, Invent. Math. 97 (1989) 237-255.

[21] J.-S. Li, Unipotent representations attached to small nilpotent orbit, Proceedings: Representation
Theory of Real and p- adic Reductive Groups, Seattle, 1997.

[22] C. Moeglin, Howe correspondence for dual reductive pairs: some calculations in the Archimedean
case, J. Funct. Anal. 85 (1989) 1-85.

[23] Shu-Yen Pan, The orbit correspondences for real and complex reductive dual pairs, preprint, 2001.

[24] T. Przebinda, On Howe’s duality theorem, J. Funct. Anal. 81 (1988) 160-183.

[25] T. Przebinda, Characters, dual pairs, and unitary representations, Duke J. Math. 69 (1993) 547-592.

[26] T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996) 93-102.

[27] 1. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian

group, Math. Scand. 13 (1963) 31-43.

[28] D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962) 149-167.

[29] D. Vogan, The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986) 449-505.

[30] D. Vogan, Associated varieties and unipotent representations, in: Harmonic Analysis on Reductive
Groups, Boudoin College, 1989, Progress in Mathematics, Vol. 101, Birkduser, Boston, 1991, pp.
315-388.

[31] D. Vogan, The method of coadjoint orbits for real reductive groups, Representation Theory of Lie
Groups, Park City, 1998, pp. 179-238.

[32] N. Wallach, Real Reductive Groups: I, II, Academic Press, NY, 1992.

[33] A. Weil, Sur certains groupes d’oprateurs unitaires, Acta Math. 111 (1964) 143-211.

[34] Chen-Bo Zhu, Jing-Song Huang, On certain small representations of indefinite orthogonal groups,
Representation Theory 1 (1997) 190-206.


&ast;http://arXiv.org/abs/math.RT/0210372
&ast;http://arXiv.org/abs/math.RT/0210372

	Compositions of theta correspondences
	Introduction
	Main results
	Notations
	Theta correspondence in semistable range and unitary representations
	Estimates on leading exponents and L(p,n)
	Quantum induction

	Theta correspondence
	MO(p,q) and MSp2n(R)
	Averaging integral (,)pi
	Oscillator representation
	Growth of matrix coefficients

	Twisted integral
	Single variable case ages1
	Multivariate b
	Multivariate aisin[1,infin)n

	Algorithm and examples
	A Theorem for aisin[1,infin)n
	L(p,n) and Algorithm for aisinA+
	Examples

	Dual pair (O(p,q),Sp2n(R)) and estimates on thetas(pi)
	The dual pair representation omega(p,q;2n)
	Growth control on thetas(p,q;2n)(pi)
	Growth control on theta(2n;p,q)s(pi)
	Applications to unitary representations

	The idea of quantum induction
	Quantum induction on orthogonal group
	Quantum induction on symplectic group
	Quantum inductions
	Infinitesimal characters

	Acknowledgements
	References


