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ASSOCIATED VARIETIES AND HOWE’S N-SPECTRUM

HONGYU HE

Abstract. Let G be a real semisimple group. There are two important invariants associated
with the equivalence class of an irreducible unitary representation of G, namely, the associated

variety of the annihilator in the universal enveloping algebra and Howe’s N -spectrum where N is

a nilpotent subgroup of G. The associated variety is defined in a purely algebraic way. The N -
spectrum is defined analytically. In this paper, we prove some results about the relation between

associated variety and N -associated variety (see Definition 1.2, Theorem. 0.1.) where N is a

subgroup of G. We then relate N -associated variety with Howe’s N -spectrum when N is Abelian
(see Theorem. 0.2). This enables us to compute Howe’s rank in terms of the associated variety (see

Theorems 0.3, 0.4). The relationship between Howe’s rank and the associated variety has been

established by Huang-Li about the same time this paper was firstly written, using the result of
Matomoto on Whittaker vectors. It can also be derived from works of Przebinda and Daszkiewicz-

Kraśkiewicz-Przebinda. Our approach is independent and more self-contained. It does not involve
Howe’s correspondence in the stable range.

Introduction

0.1. Associated Variety and C-Associated Variety. Let D be a noncommutative associative
algebra over C with an identity. Suppose that D has a filtration {Di}i∈Z such that

Di.Dj ⊆ Di+j , [Di,Dj ] ⊆ Di+j−1 (i, j ∈ Z).

Let gr(D) = ⊕Di+1/Di be the associated graded algebra. Clearly, gr(D) is a commutative algebra.
Moreover, gr(D) is a Poisson algebra ( [Gabber]). Now suppose that gr(D) is affine ( [Ei]). Let
spec(D) be the maximal spectrum of gr(D). Let J be a left ideal of D. Then {Dj} induces a
filtration {Dj ∩ J } for J . gr(J ) is an ideal of gr(D). We define the associated variety of J , V(J )
to be the subvariety of maximal ideals of gr(D) containing gr(J ).

Let C be a subalgebra of D with identity. Again C has an induced filtration {C ∩ Dj}. There
is a natural map j : gr(C) → gr(D) which induces a map

j∗ : spec(D) → spec(C).
The first result we prove in this paper states that

j∗(V(J )) ⊆ V(J ∩ C).
See Lemma 1.1.

Now let g be a Lie algebra over R. Let h be a Lie subalgebra. Let D = U(g) be the universal
enveloping algebra equipped with the natural filtration. Then gr(U(g)) = S(g). So spec(U(g)) = g∗C.
Put C = U(h). Then spec(U(h)) = h∗C and the map j∗ is the restriction map from gC to hC. Let J
be a left ideal of U(g). We call V(J ∩ C) the C-associated variety of J .

1This research is partially supported by the NSF grant DMS 0700809.
2keywords: associated variety, wave front set, spectral measure, filtered algebra, unitary representations, classical

groups of type I
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Let M be a g-module. Let N be a subspace of M . Let AnnU(g)(N) be the annihilator of N in
U(g). Then AnnU(g)(N) is a left ideal of U(g). By Lemma 1.1, we have

j∗(V(AnnU(g)(N))) ⊆ V(AnnU(h)(N)).

It is not known if the converse is true. But if g is Z-graded, we have the following.

Theorem 0.1. Let a ∈ g be such that ad(a) is semisimple with real eigenvalues. Let h be the
highest eigenspace. Let ad(a)|h = λI and suppose that λ ≥ 0. Let M be a g-module. Let N be a
subspace that is invariant under the action of a. Then we have

cl(j∗(V(AnnU(g)(N)))) = V(AnnU(h)(N)).

See the proof of Theorem 1.1 and Theorem 1.2. A similiar statement holds for h the subspace
with the lowest weight.

0.2. Associated Variety and Support: Abelian Case. Let G be a Lie group with a finite num-
ber of components. Let (π,H) be a unitary representation of G. All Hilbert spaces in this paper
are assumed to be separable. To apply the theory of associated varieties to unitary representations
of G, we consider the annihilator. Let H∞ be the space of smooth vectors. Clearly U(g) acts on
H∞. Define AnnU(g)(π) to be AnnU(g)(H∞). In Theorem 1.3, we prove that H∞ can be replaced
by any dense subspace of H∞. In particular, for G semisimple and K a maximal compact subgroup,
a canonical choice is the space of smooth K-finite vectors. In addition, if (π,H) is irreducible, then
all K-finite vectors are smooth.

Next, let N be a connected Abelian group. The unitary dual of N can be identified with a subset
of in∗. Here n∗ is the space of real linear functionals of n. Let (π,H) be a unitary representation of
N . Then there is a projection valued measure dµπ on n̂ such that

π ∼=
∫

N̂

dµπ.

Define the support of π to be the complement of the maximal open set U with µπ(U) = 0. Regard
supp(π) as a subset of in∗. In this paper, we prove

Theorem 0.2. Let π be a unitary representation of a connected Abelian group N . Then

cl(supp(π)) = V(AnnU(n)(π)).

Notice that supp(π) ⊂ in∗ and cl(supp(π)) is in n∗C, the complexification of n. See Theorem 2.1
for the proof.

Corollary 0.1. Let (π,H) be a unitary representation of a connected Lie group G. Let N be a
connected Abelian Lie subgroup of G. Suppose that there is a semisimple element a ∈ g such that
ad(a) has only real eigenvalues and n is the highest eigenspace of ad(a). Suppose that the eigenvalue
for ad(a)|n is nonnegative. Then

V(AnnU(n)(π)) = cl(supp(π|N )) = cl(j∗(V(AnnU(g)(π))))

where j : g∗C → n∗C is the canonical projection.
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0.3. Unitary Representations, Howe’s N-Specturm and Associated Variety. We shall now
apply our results to relate the associated variety to Howe’s N -spectrum ( [Howe1]). In particular,
we can read Howe’s rank from the associated variety.

Let G be a connected classical Lie group, and K a maximal compact subgroup of G. Let g be
the Lie algebra of G, and U(g) the universal enveloping algebra of g with complex coefficients. Let
(π,H) be a unitary representation of G. The classical way of studying (π,H) is to analyze the asso-
ciated (g,K)-module, obtained by taking the smooth K-finite vectors in H. When a (g,K)-module
satisfies a certain compatibility condition and is finitely generated, it will be called a Harish-Chandra
module ( [VO89]). Two irreducible unitary representations are isomorphic if and only if their Harish-
Chandra modules are isomorphic as U(g)-modules. In addition, (π,H) is irreducible if and only if
its Harish-Chandra module is an irreducible U(g)-module. So problems concerning irreducible rep-
resentations can often be reduced to problems concerning irreducible Harish-Chandra modules. The
classification of all the irreducible Harish-Chandra modules of a linear connected semisimple group
was carried out by Langlands, Knapp-Zuckerman ( [LA], [KZ]). But Langlands’ classification did
not address the question of unitarity. In [Vogan], Vogan classified the unitary dual of general linear
groups, i.e., classical groups of type II. We call the rest of the classical groups, classical groups
of type I (see Definition 3.1). The unitary dual Ĝ for type I classical groups remains very much
mysterious.

Let V be the Harish-Chandra module of an irreducible representation (π,H). A well-known theorem
of Borho-Brylinski-Joseph stated that the associated variety V(AnnU(g)(V )) is the closure of a single
coadjoint nilpotent orbit. Thus one may focus on the classification of all the unitarizable Harish-
Chandra modules associated with a fixed nilpotent orbit. This problem is quite difficult to solve,
but not hopeless. The rich structure of the nilpotent orbits provides a lot of information about the
unitary representation. Progress has been made in classifying unitary representations with a fixed
associated variety (see for example [HL]).

Let H be a type I subgroup of G ( [Di], [Wallach]). From the direct integral theory, the restriction
of π to H yields a projection-valued measure µH(π) on Ĥ, i.e.,

(1) H =
∫

s∈Ĥ

Hs⊗̂Vs dµπ|H (s) ((πs,Hs) ∈ Ĥ)

where H acts trivially on Vs. dim(Vs) is often called the multiplicity function of π|H . It is defined
almost everywhere. R. Howe called the projection-valued measure µH(π), and the unitary equiva-
lence class it defines, the H-spectrum of π [Howe1]. When Ĥ is well-understood, the H-spectrum
of π should shed some lights on the structure of the representation (π,H). We shall point out that
all classical Lie groups and nilpotent Lie groups are Lie groups of Type I. Lie groups of type I
is not to be confused with type I classical groups, which refer to classical groups that preserve a
nondegenerate sesquilinear form (see Definition 3.1).

In [Howe1], Howe studied the case where G = Sp2n(R) and H is the (Abelian) nilradical Nn of
the Siegel parabolic subgroup Pn. In this case, N̂n can be regarded as the space of real symmetric
bilinear forms. In particular, Howe defined the notion of Nn-rank for a unitary representation π, to
be the highest rank of the support of µNn

(π) regarded as symmetric bilinear forms. Later, Howe’s
ZNk-rank was extended to all the type I classical groups by J.-S. Li( [Li]), to all the type II classical
groups by R. Scaramuzzi [Sc], to exceptional groups by H. Salmasian [S]. This approach of studying
ZNk-spectrum has lead to the classification of the “small”unitary representations for type I classical
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groups [Li].

A natural way to relate V(AnnU(g)(π)) to Howe’s H-spectrum is to relate the H-associated va-
riety, V(AnnU(h)(π)), to the H-spectrum. More precisely, one may study the Lie algebra action of h
(as skew-adjoint differential operators) in the framework of direct integral theory. In general, this is
not an easy task since the direct integral theory is an L2-theory. Nevertheless, for an Abelian group
H, our result is sharp, that is, V(AnnU(h)(π)) is the Zariski closure of the support of the H-spectrum
of π.

Let G be a type I classical group . Let Pk be a maximal parabolic subgroup of G, and Nk its
nilradical. Let ZNk be the center of Nk. Since ZNk is a connected and simply connected Abelian
group, ẐNk can be regarded as the purely imaginary dual of znk. Let j∗ : g∗C → znk

∗
C be the canonical

projection from the complex dual of g to the complex dual of znk. Our results immediately implies
the following
Theorem 0.3. V(AnnU(znk)(π)) is the Zariski closure of j∗(V(AnnU(g)(π))). It is also the Zariski
closure of supp(µZNk

(π)).

See Theorem 3.1 and Theorem 2.1.

0.4. Howe’s Rank and Associated Variety. Finally, We compute Howe’s ZNk-rank for an ir-
reducible unitary representation of a type I classical group, namely, U(p, q), Op,q, O∗(2n), O(n, C),
Sp2n(R), Sp(n, C) and Sp(p, q) in terms of the associated variety. Since gC can always be represented
by a standard matrix Lie algebra, we define the rank of a subset of gC to be the maximal rank of
its elements.

Theorem 0.4. (see also [HL]) Let (π,H) be an irreducible unitary representation of a type I classical
group G. Then

(1) for G = Sp2n(R), U(p, q), ZNk-rank of (π,H) equals min(k, rank(V(AnnU(g)(π))));
(2) for G = Op,q, ZNk-rank of (π,H) equals min(k, rank(V(AnnU(g)(π)))) if k is even, min(k−

1, rank(V(AnnU(g)(π)))) if k is odd;
(3) for G = O∗(2n), Sp(p, q), ZNk-rank of (π,H) equals min(k, 1

2 rank(V(AnnU(g)(π))));
(4) for G = Sp(n, C), ZNk-rank of (π,H) equals min(k, 1

2 rank(V(AnnU(g)(π))));
(5) for G = O(n, C), ZNk-rank of (π,H) equals min(k, 1

2 rank(V(AnnU(g)(π)))) when k is even,
and min(k − 1, 1

2 rank(V(AnnU(g)(π)))) when k is odd.

For (4) and (5), one can substitute 1
2 rank(V(AnnU(g)(π))) by rank(WF(π)). I should remark that

essentially the same statement was proved by Hang and Li when k is the real rank of G ( [HL]). This
theorem can also be derived from the results of Przebinda and Daszkiewicz-Kraśkiewicz-Przebinda
( [Pr], [DKP]). These two approaches involve Howe’s correspondence in stable range ( [Howe], [Li]).
Our approach is independent and more self-contained.

The following is an outline of the paper. In Section 1, we study the associated variety of a left
ideal of a special type of filtered noncommutative algebra. We investigate the relationship between
the associated variety of M and the H-associated variety of M where M is a U(g) module. In Section
2, we study the Lie algebra action under the framework of direct integral for Abelian Lie groups. We
show that for a unitary representation of a connected Abelian Lie group G, the associated variety of
the annihilator is the Zariski closure of the support of its spectral measure. In Section 3, we present
the structure theory of parabolic subgroups for a type I classical group. In Section 4, we compute
the ZNk-rank using associated varieties.
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After I finished this work, it was pointed out by Vogan that there should be a real version of
Theorem 0.1, namely, there must be a strong connection between the wave front set of π and the
wave front set of π restricted to certain subgroups. Let WF(π) be the wave front set of a represen-
tation π of a Lie group G in the sense of Howe [Howe2]. From [Howe2] proposition 2.1, it is easy to
see that

WF(π|ZNk
) = supp(π|ZNk

)

since supp(π|ZNk
) is conic. On the other hand, it is well-known that the associated variety is the

Zariski closure of the wave front set, i.e.,

V(AnnU(g)(π)) = cl(WF(π))

From what we have proved in this paper, we have

cl(supp(π|ZNk
)) = cl(j∗(V(AnnU(g)(π)))).

Therefore
cl(WF(π|ZNk

)) = cl(j∗(cl(WF(π))))

At this moment it is not clear how to relate WF(π|ZNk
) to WF(π). Nevertheless, we make the

following conjecture.

Conjecture: Let G be a connected classical group of type I. Let π be an irreducible unitary
representation of G. Let j∗ : g∗ → zn∗k be the canonical projection. Then

WF(π|ZNk
) = j∗(WF(π)).

This paper is essentially the first part of my Ph.D thesis. I wish to thank my advisor David Vogan
for guidance.

1. Associated Variety under Restriction

A filtered (noncommutative) algebra D over C is an algebra endowed with a filtration {Di}i∈Z
such that

Di.Dj ⊆ Di+j (i, j ∈ Z).

Let gr(D) = ⊕Di+1/Di be the associated graded algebra. An element x ∈ gr(D) is said to be
homogeneous of degree i if there exists an i ∈ Z such that x ∈ Di/Di−1. Let σi : Di → Di/Di−1 be
the natural projection. We call it the symbol map. Then gr(D) = ⊕iσi(Di).

Throughout this paper, our filtered algebra will be assumed to have the following property:
(1) D0 = C1, where 1 is the identity element;
(2) Dn = {0} for every n < 0;
(3) gr(D) is a commutative affine algebra ( [Ei]).

Notice that gr(D) being commutative is equivalent to

[Di,Dj ] ⊆ Di+j−1.

Definition 1.1. Let spec(D) be the maximal spectrum of gr(D). Suppose that I is a (left) ideal
of D. Then I inherits a filtration from D, i.e.,

Ii = Di ∩ I (i ∈ N).
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Let gr(I) = ⊕σi(Ii) be the graded algebra of I. Then gr(I) is an ideal of gr(D). Let V(gr(I)) be
the set of maximal ideals in gr(D) containing gr(I). Define V(I) = V(gr(I)). V(I) is called the
associated variety of I.

Now suppose that C is a subalgebra of D with identity. C inherits a filtration from D. Thus we have
an injection:

j : gr(C) → gr(D)

Automatically, gr(C) becomes an affine, commutative algebra. The associated map on the spaces of
spectrum is

j∗ : spec(D) → spec(C).
If M ∈ spec(D), then j∗(M) = M∩ gr(C) which is again a maximal ideal in gr(C). Let J be a
left ideal of D. Let I = J ∩ C. We would like to study the relationship between V(J ) and V(I).
Strictly speaking, we should have written VD(J ) and VC(I) instead of V(J ) and V(I) to indicate
the difference of the ambient space. However, within the context, it is clear that I is an ideal of C
and J is an ideal of D. And we will only be discussing the associated variety of an ideal. So it is
clear that V(J ) is a subvariety of spec(D) and V(I)) is a subvariety of spec(C).

Lemma 1.1. Let D be a filtered algebra with the properties specified at the beginning of this section.
Let C be a subalgebra of D. Let J be an left ideal in D and I = C ∩ J . Then I is a left ideal of C.
In addition,

j∗(V(J )) ⊆ V(I).

Proof: Obviously, I is a left ideal of C. By definition, gr(I) is a direct sum of homogeneous elements.
Suppose f ∈ gr(I) is homogeneous of degree k. Then there exists U ∈ I ⊆ J , such that σk(U) = f .
This implies that j(f) ∈ gr(J ). Therefore j(gr(I)) ⊆ gr(J ). So j∗(V(J )) ⊆ V(I). Q.E.D.

Corollary 1.1. Let D be a filtered algebra with the properties specified at the beginning of this
section. Let M be a D-module, N a linear subspace of M . Let C be a subalgebra of D. Let AnnD(N)
and AnnC(N) be the annihilators of N in D and C respectively. Then AnnD(N) and AnnC(N) are
left ideals of D and of C respectively. In addition,

j∗V(AnnD(N)) ⊆ V(AnnC(N)).

Now let D = U(g) be the universal enveloping algebra of g with complex coefficients. Since U(g)
has a natural filtration

C.1 ⊆ U1(g) ⊆ U2(g) ⊆ . . . ⊆ Ui(g) ⊆ . . . ,

the associated graded algebra gr(U(g)) can be identified with the symmetric algebra S(g). Thus

spec(U(g)) = g∗C.

Here g∗C is the complex dual of g. Let h be a subalgebra of g. Then j∗ is simply the projection of
g∗C onto h∗C (through restriction). In this setting, we have

Corollary 1.2. Let h be a Lie subalgebra of a Lie algebra g. Let M be a g-module. Let N be a
linear subspace of M . Then

j∗(V(AnnU(g)(N))) ⊆ V(AnnU(h)(N)).
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We are interested in the equalities of the following type:

cl(j∗(V(AnnU(g)(N)))) = V(AnnU(h)(N)).

At this stage, we only have a very limited understanding about the behavior of j∗ for associated
varieties. Nevertheless, we have the following theorem.

Theorem 1.1. Suppose a is a semisimple element in an arbitrary Lie algebra g such that ad(a)
has only real eigenvalues. Let r be the maximal eigenvalue. Suppose r > 0. Let h = gr. Then h is
Abelian. Let M be a g-module, and N a subspace of M such that a.N ⊆ N . Then

V(AnnU(h)(N)) = cl(j∗(V(AnnU(g)(N))))

where cl(j∗(V(AnnU(g)(N)))) is the Zariski closure of j∗(V(AnnU(g)(N))).

Proof: First of all, under the eigendecomposition with respect to ad(a), we have

[gr, gr] = g2r = {0}.
Therefore h = gr is Abelian. Now it suffices to show that

V(AnnU(h)(N)) ⊆ cl(j∗(V(AnnU(g)(N)))).

Suppose that f ∈ Si(h) vanishes on cl(j∗(V(AnnU(g)(N)))). In other words, j(f) = f vanishes on
V(AnnU(g)(N)). Here f is regarded as a linear function on g∗C. Thus by Hilbert’s Nulstellensatz,
there exists n ∈ N, such that fn ∈ gr(AnnU(g)(N)). Therefore,

∃ P ∈ Uni(g) ∩AnnU(g)(N), σni(P ) = fn.

Since ad(a) is semisimple, U(g) is completely reducible as an ad(a)−module. Also notice that N is
an a-module. Thus AnnU(g)(N) is also an ad(a)−module. Now Uni(g) ∩ AnnU(g)(N) possesses an
eigen (weight) decomposition with respect to ad(a):

Uni(g) ∩AnnU(g)(N) = ⊕k∈R(Uni(g) ∩AnnU(g)(N))k.

This implies that every eigencomponent of P with respect to ad(a) is again in AnnU(g)(N).

Since h is Abelian, Sni(h) can be regarded as a subspace of Uni(h), which in turn is a subspace
of Uni(g). In addition, Sni(h) is the highest eigenspace of ad(a)|Uni(g). Let P0 be the eigenprojec-
tion of P ∈ Uni(g) onto Sni(h). Clearly, P0 ∈ AnnU(g)(N). Since the action of ad(a) intertwins the
symbol map

σni : Uni(g) → Sni(g),
by comparing the eigendecompositions for P and σni(P ) = fn, we obtain σni(P0) = fn. Now
P0 ∈ AnnU(h)(N), and

σni(P0) = fn ∈ gr(AnnU(h)(N)).
This implies that f vanishes at V(AnnU(h)(N)). So

V(AnnU(h)(N)) ⊆ cl(j∗(V(AnnU(g)(N)))).

By Cor. 1.2,
V(AnnU(h)(N)) = cl(j∗(V(AnnU(g)(N)))).

Q.E.D.

When r = 0, h will no longer be Abelian. We can define P0 to be the eigenprojection of Uni(g)
onto the highest eigenspace Uni(h) with respect to ad(a). It is still true that σni(P0) = fn and
P0 ∈ AnnU(h)(N). We obtain the following.
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Theorem 1.2. Suppose a is a semisimple element in an arbitrary Lie algebra g such that ad(a) has
only real eigenvalues. Suppose that 0 is the highest eigenvalue of ad(a). Let h be the 0-eigenspace of
ad(a). Let M be a g-module, and N a subspace of M such that a.N ⊆ N . Then

V(AnnU(h)(N)) = cl(j∗(V(AnnU(g)(N))))

where cl(j∗(V(AnnU(g)(N)))) is the Zariski closure of j∗(V(AnnU(g)(N))).

Before we continue on, we want to examine the definition of the annihilator of a unitary repre-
sentation for an arbitrary Lie group G.

Theorem 1.3. Let (π,H) be a unitary representation of a Lie group G. Let M be any dense subset
of the space of smooth vectors H∞. Then

AnnU(g)(H∞) = AnnU(g)(M).

Proof: If D ∈ U(g) and π(D)H∞ = 0, then π(D)M = 0. Thus

AnnU(g)(M) ⊇ AnnU(g)(H∞).

If D ∈ AnnU(g)(M), then

∀ u ∈ M,v ∈ H∞, (π(D)u, v) = 0.

Since g act as skew-adjoint operators, i.e. ,

∀ X ∈ g, π(X)∗ = π(−X),

we have

(π(D)u, v) = (u, π(D∗)v) = 0 (u ∈ M,v ∈ H∞).

Here D → D∗ is the natural real involution defined by

αX1X2 . . . Xn → (−1)nαXnXn−1 . . . X2X1 (Xi ∈ g).

Since M is dense in H∞, M is dense in H. Hence π(D∗)v = 0 for every v ∈ H∞. We have

(π(D)u, v) = (u, π(D∗)v) = 0 (u ∈ H∞, v ∈ H∞).

Thus for every u ∈ H∞, π(D)u = 0. Therefore

D ∈ AnnU(g)(H∞).

This implies that

AnnU(g)(M) ⊆ AnnU(g)(H∞).

Q.E.D.

Definition 1.2. Let (π,H) be a unitary representation of G. Let M be any dense subset of
H∞. Define AnnU(g)(π) = AnnU(g)(M). Let N be a connected closed subgroup of G. Define
AnnU(n)(π) = AnnU(n)(M). We call V(AnnU(n)(π)) ⊆ n∗C the N -associated variety of π.

Let NG(N) be the normalizer of N in G. One can easily see that the N -associated variety is
NG(N)-stable.
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2. Associated Variety and Support of a Unitary Representation: Abelian Case

In this section, we review the basic theory of unitary representations of Abelian groups and
Abelian Lie groups. When G is an Abelian Lie group, the Lie algebra g acts as mutually commuting
(unbounded) skew-self adjoint operators. Both the Lie group action and Lie algebra action can be
represented by spectral integrals. This allows us to relate the associated variety and the support of
a unitary representation π of G.

Theorem 2.1. Suppose that (π,H) is a unitary representation of a connected Abelian Lie group
G. If we identify Ĝ with a subset of ig∗, then

V(AnnU(g)(π)) = cl(suppG(π)).

Let G be a locally compact Abelian group. Let Ĝ be the set of unitary characters of G endowed with
the Pontryagin topology. Then Ĝ is a locally compact Abelian group under pointwise multiplication.

Theorem 2.2 (Stone). If H is a Hilbert space and µ a regular projection-valued Borel measure on
Ĝ, then the equation

(2) Tg =
∫

Ĝ

ξ(g)dµ(ξ) (g ∈ G)

defines a unitary representation T of G on H. Conversely, every unitary representation of G deter-
mines a unique regular projection-valued Borel measure µ on H such that Equation 2 holds.

We define the support of a unitary representation H of G to be the (closed) support of the projection-
valued measure µ. In other words, suppG(π) is the complement of the biggest open subset U of Ĝ such
that µ(U) = 0. Equivalently, suppG(π) is the smallest closed subset K of Ĝ such that µ(K) = id.
Of course if we remove the closedness of suppG(π), suppG(π) is only unique up to a set of measure
zero.

For arbitrary Borel measurable set K ⊆ Ĝ, let

µv(K) = µ(K).v

µu,v(K) = (µ(K)u, v)
Then µv defines a vector-valued regular Borel measure and µu,v defines a complex regular Borel
measure.

Suppose G is a connected Abelian Lie group and g is the (real) Lie algebra of G. Let g∗ be the real
dual of g. Each ξ ∈ Ĝ corresponds to a smooth function ξ(g) on G. We can define

ξ(x) =
d

dt
|t=0ξ(exp(tx)) (x ∈ g).

This defines a map from Ĝ to g∗C. Since ξ(exp(tx))ξ(exp(tx)) = 1, we have ξ(x) + ξ(x) = 0. So
ξ(x) ∈ iR. We denote the pure imaginary dual by ig∗. Then we have defined a map from Ĝ to ig∗.
Now, we want to study the Lie algebra action π of g. This involves integral of unbounded functions.
We recall the following definition of spectral integral.

Definition 2.1. Let (µ, X) be a projection-valued spectral measure on a Hilbert space. Let f : X → C
be a µ-measurable function. Then we may find a sequence {An} of pairwise disjoint measurable sets
such that
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• ∪∞1 An = X;
• f is µ−essentially bounded on each An

Let Pn = µ(An), Hn = range(Pn), Tn =
∫

An
fdµ. Then there exists a unique normal operator

T = ΣTn on ⊕̂Hn. T is often written as
∫

fdµ, called the spectral integral of f .

In the framework of spectral integral, the action of the Abelian Lie group G is presented in Stone’s
theorem as integral of bounded functions. We will first find a presentation of the Lie algebra action
in terms of the spectral integral. Let us recall the following theorems in [Fell-Doran].

Theorem 2.3. If f : Ĝ → C is a µ−measurable function. Let

Tf =
∫

Ĝ

fdµ

Then v ∈ Dom(T ) if and only if ∫
|f(ξ)|2dµv,v(ξ) < ∞.

In this case,

‖Tfv‖2 =
∫
|f(ξ)|2dµv,v(ξ),

(Tfv, u) =
∫

f(ξ)dµv,u(ξ) (u, v ∈ H).

Theorem 2.4. Let f1, f2 be µ-measurable functions on Ĝ. Then in terms of the graphs of linear
operators,

(
∫

f1dµ)(
∫

f2dµ) ⊂
∫

f1f2dµ,

(
∫

f1dµ)∗ =
∫

f1dµ.

We can derive the following

Proposition 2.1. Let (π,H) be a unitary representation of a connected Abelian Lie group G. Let
µ be the projection-valued regular Borel measure from Stone’s theorem. We denote the Lie algebra
g actions by π. Then ∫

Ĝ

ξ(X)dµ(ξ) ⊂ π(X) (X ∈ g).

Here ξ ∈ Ĝ ∼= ig∗.

Proof: Let TX =
∫

Ĝ
ξ(X)dµ(ξ). Suppose u ∈ Dom(TX). It suffices to show that ∀ v ∈ Dom(π(X)),

(TXu, v) = −(u, π(X)v).

In other words,

−(u, π(X)v) =
∫

Ĝ

ξ(X)dµu,v(ξ).

Notice that

−(u, π(X)v) =− (u,
d

dt
|t=0π(exp tX)v)

=
d

dt
|t=0(π(exp(tX)u, v))

=
d

dt
|t=0

∫
Ĝ

ξ(exp(tX))dµu,v(ξ)

(3)
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We would like to interchange the integration and differentiation, obtaining

−(u, π(X)v) =
∫

d

dt
|t=0ξ(exp(tX))dµu,v(ξ)

=
∫

ξ(X)dµu,v(ξ).
(4)

To show that the integration is interchangeable with the differentiation, first we observe that

| d
dt

ξ(exp(tX))| = | d
dt

exp(tξ(X))| ≤ |ξ(X)| (ξ ∈ Ĝ).

For a complex measure λ on Ĝ, we define |λ|(U) to be the supremum of {Σm
j=1|λ(Ej)|}, where {Ej}m

1

is any measurable partition of U . Since

|(µ(U)u, v)|2 = |(µ(U)u, µ(U)v)|2 ≤ ‖µ(U)u‖2‖µ(U)v‖2,
we have

|µu,v|(U)2 ≤ |µu,u|(U)|µv,v|(U) = µu,u(U)µv,v(U).
Therefore

(
∫
|ξ(X)|d|µu,v|(ξ))2 ≤(

∫
|ξ(X)|2dµu,u(ξ))(

∫
dµv,v(ξ))

=(
∫
|ξ(X)|2dµu,u(ξ))‖v‖2.

(5)

From Theorem 2.3, u ∈ Dom(TX) implies that∫
|ξ(X)|2dµu,u(ξ) < ∞

Hence ξ(X) as a function on Ĝ is absolutely integrable with respect to µu,v. But d
dtξ(exp(tX)) is

dominated by |ξ(X)|. Thus integration and differentiation in Equation 4 are interchangeable. We
obtain

(TXu, v) = −(u, π(X)v) (∀ v ∈ Dom(π(X)).
So TXu is a bounded linear functional on Dom(π(X)) and TXu = −π(X∗)u. Since X is skew
self-adjoint, TXu = π(X)u and u ∈ Dom(π(X)). �

Now for X1, X2, . . . , Xn ∈ g, we define

TX1X2...Xn =
∫

Ĝ

ξ(X1)ξ(X2) . . . ξ(Xn)dµ(ξ).

We can extend this definition by linearality to all D ∈ U(g). One can easily obtain the following
corollary concerning the universal enveloping algebra U(g).

Corollary 2.1. Let (π,H) be a unitary representation of a connected Abelian Lie group G, and µ
its projection-valued regular Borel measure. Suppose X1, X2, . . . , Xn ∈ g. Then

TX1TX2 . . . TXn
⊂ π(X1X2 . . . Xn),

TX1X2...Xn ⊃ TX1TX2 . . . TXn .

Since U(g) is commutative, we may identify it with S(g). Thus for every ξ ∈ g∗, D ∈ U(g), ξ(D) is
well-defined. We will also denote ξ(D) by D(ξ), just to indicate the fact that D can be regarded as
a function on g∗.
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Corollary 2.2. If u ∈ Dom(TD) for every D ∈ U(g), then u is smooth. Furthermore,

π(D)u = TDu.

Proof: Suppose u ∈ Dom(TD) for every D ∈ U(g). By Cor. 2.1, u ∈ Dom(π(D)). So u is smooth
and π(D)u = TDu. Q.E.D.

By Theorem 1.3, we may define AnnU(g)(π) to be the annihilator of any smooth dense subset
M of H. In particular, in our context, for G an Abelian Lie group, we choose

M = {
∫

Ĝ

f(ξ)dµu(ξ) | f ∈ Bc(Ĝ), u ∈ H}.

where Bc(Ĝ) is the space of bounded measurable functions with compact support. M here has some
property similar to the G̊arding space.

Theorem 2.5. Let (π,H) be a unitary representation of a connected Abelian Lie group G, µ the
projection-valued regular Borel measure on Ĝ. Then M is dense in H, and M ⊆ H∞. Suppose
D ∈ U(g) = S(g) such that

D(ξ) = 0 (∀ ξ ∈ suppG(π)).
Then D ∈ AnnU(g)(π).

Proof: We will show that M ⊆ Dom(TD) for every D ∈ U(g). ∀ f ∈ Bc(Ĝ), u ∈ H,D ∈ S(g), let
v = (

∫
f(ξ)dµ(ξ))u. Then for every U ⊂ Ĝ measurable, we have

µv,v(U) = (
∫

U

dµ(ξ)v, v) =
∫

U

|f(ξ)|2dµu,u(ξ)

This implies that
dµv,v(ξ) = |f(ξ)|2dµu,u(ξ).

Notice that

(6)
∫
|D(ξ)|2dµv,v(ξ) =

∫
|D(ξ)f(ξ)|2dµu,u(ξ)

converges since f is compactly supported. Thus by Theorem 2.3,

(
∫

f(ξ)dµ(ξ))u ∈ Dom(TD) (∀ D ∈ U(g)).

Therefore
∫

f(ξ)dµu(ξ) ∈ H∞. We have M ⊆ H∞. Approximate the constant function 1Ĝ by
bounded functions {fi}∞1 with compact support. Since the measure µ is regular, u ∈ H can be
approximated by

∫
fi(ξ)dµu(ξ). Therefore M is dense in H. Now suppose

D(ξ) = 0 (∀ ξ ∈ suppG(π)).

Then we have ∀ f ∈ Bc(Ĝ),

π(D)(
∫

f(ξ)dµ(ξ))u = TD(
∫

f(ξ)dµ(ξ))u = (
∫

D(ξ)f(ξ)dµ(ξ))u.

Notice that the integral above is over suppG(π). It must vanish. Hence

D ∈ AnnU(g)(M) = AnnU(g)(π).

Q.E.D.

Theorem 2.6. Under the same assumptions as in Theorem 2.5, if D ∈ AnnU(g)(π), then

D(suppG(π)) = 0.
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Proof: Let D ∈ AnnU(g)(π).

(1) First, we want to show that

µ(zero(D) ∩ suppG(π)) = id.

Suppose not. Then there exist a complex number a 6= 0, a compact K ⊂ suppG(π), µ(K) 6=
0, such that

|D(ξ)− a| < 1
2
|a| (∀ ξ ∈ K).

It follows that

‖
∫

K

D(ξ)dµ(ξ)− aµ(K)‖ =‖
∫

K

(D(ξ)− a)dµ(ξ)‖

≤‖
∫

K

|D(ξ)− a|dµ(ξ)‖

≤‖
∫

K

1
2
|a|dµ(ξ)‖

≤1
2
|a|‖µ(K)‖

(7)

Thus
∫

K
D(ξ)dµ(ξ) 6= 0. On the other hand, for every v ∈ H, by Theorem 2.5

(
∫

K

dµ(ξ))v ∈ M ⊆ ∩D∈U(g)Dom(TD).

We have

0 = π(D)(
∫

K

dµ(ξ))v = TD(
∫

K

dµ(ξ))v = (
∫

K

D(ξ)dµ(ξ))v.

This is a contradiction.
(2) Therefore, we have µ(zero(D) ∩ suppG(π)) = id. Notice that for a connected Abelian Lie

group G, the Gelfand topology is just the induced Euclidean topology. Thus zero(D) = {ξ ∈
Ĝ | D(ξ) = 0} is closed in the Eulidean topology (not necessarily in the Zariski topology).
Therefore zero(D)∩ suppG(π) is closed. According to the minimality of suppG(π), we have

zero(D) ∩ suppG(π) = suppG(π).

Thus zero(D) ⊇ suppG(π). Hence

D(suppG(π)) = 0

Q.E.D.

What we have shown is that for D ∈ U(g),

D(suppG(π)) = 0 ⇐⇒ D ∈ AnnU(g)(π).

But

D ∈ AnnU(g)(π) ⇐⇒ D(V(AnnU(g)(π))) = 0

Thus we have Theorem 2.1.
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3. Structure Theory of the Parabolic subgroups of Classical Groups of Type I

In this section, we summerize some known results about the structure of parabolic subgroups of
a classical group of type I. We also sketch some proofs when they are needed. Notations are mainly
adopted from [Li].

Definition 3.1. A type I classical group G(V ) consists of the following data.
• A division algebra D of a field F with involution ], and a]b] = (ba)];
• A (right) vector space V over D, with a nondegenerate (D-valued) sesquilinear form (, )ε,

ε = ±1, i.e.,
(u, v) = ε(v, u)] (u, v ∈ V )

(uλ, v) = (u, v)λ (u, v ∈ V, λ ∈ D);
• G is the isometry group of (, ), i.e.,

g.(uλ) = (g.u)λ (λ ∈ D,u ∈ V, g ∈ G)

(gu, gv) = (u, v) (u, v ∈ V ).

Here we allow ] to be trivial. We call the identity component of G connected classical group of type
I. For F = C, ] trivial, we obtain all the complex simple groups of type I, namely, Sp2n(C), and
O(n, C). If D = H, F = R, ] the usual involution, we obtain Sp(p, q) and O∗(2n) depending on the
sesquilinear form. For F = R, D = C and ] the usual conjugation, we obtain U(p, q) depending on
the signature of the Hermitian form. For F = R, D = R with trivial involution, we obtain Sp2n(R)
and Op,q(R). If (V, ( , )) is implicitly understood, we write G or G(n) if V ∼= Dn. Let V0 be a linear
subspace of V , we write V ⊥

0 for the subspace of V that is orthogonal to V0 under ( , ). If ( , ) is
nondegenerate on V0, we let G(V0) denote the subgroup of G consisting of elements which act by
identity on V ⊥

0 .

Definition 3.2. A flag F of V = Dn is a sequence of strictly increasing (D-)linear subspaces of V

0 = V0 $ V1 $ V2 $ . . . $ Vk $ V

such that
V ⊥

i = Vk+1−i.

Suppose dim(Vi) = di. F is said to be a flag of type

I = (0 < d1 < d2 < . . . < dk < n) (di ∈ N).

We denote the space of flags of type I by BI . We fix once for all a maximal set of linearly
independent vectors

{e1, e2, . . . , er, e
∗
1, e

∗
2, . . . , e

∗
r} (ei, e

∗
i ∈ V )

such that
(ei, ej) = 0 = (e∗i , e

∗
j ), (ei, e

∗
j ) = δij

where r is the real rank of G. For each integer 1 ≤ k ≤ r, we let Xk be the linear span of {e1, . . . , ek},
and X∗

k be the linear span of {e∗1, . . . , e∗k}. We set Wk = Xk⊕X∗
k . We define a map τ ∈ G as follows

τ(ei) = e∗i , τ(e∗i ) = εei (i ∈ [1, r]),

τ |W⊥
r

= id.

Let I0 = {0 < 1 < 2 < . . . < r ≤ n− r < n− r + 1 < . . . < n− 1 < n}. We fix a flag

F0 = {0 $ X1 $ . . . $ Xr ⊆ X⊥
r $ . . . $ X⊥

1 $ V }.
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For an arbitrary λ = (λ1, . . . λr) ∈ (R+)r, we define a linear isomorphism A(λ) ∈ GLD(V ) as follows,

A(λ)ei = λiei; A(λ)e∗i = λ−1
i e∗i (i ∈ [1, r])

A(λ)u = u (u ∈ W⊥
r ).

It is easy to check that A(λ) ∈ G(V ). Let A be the group consisting of all A(λ). Then A is a
maximal split Abelian subgroup of G(V ).

For h = (h1, . . . , hr) ∈ Rr, we define a(h) ∈ EndD(V ) such that

a(h)ei = hiei, a(h)e∗i = −hie
∗
i (i ∈ [1, r])

a(h)u = u (u ∈ W⊥
r ).

It is easy to see that the Lie algebra a of A consists of all a(h). Let ∆(g, a) be the restricted root
system. For α ∈ ∆(g, a), let gα be the root space. Then we have

τ(gα) = g−α (α ∈ ∆(g, a)).

Lemma 3.1. The isotropic group P0 = GF0 is a minimal parabolic subgroup of G. Its Levi factor
MA =P0 ∩ τ(P0)

={g ∈ G(V ) | g.Xi = Xi, g.X∗
i = X∗

i , g.W⊥
r = W⊥

r }

={g ∈ G(V ) | g.(eiD) = eiD, g.(e∗i D) = e∗i D, g.W⊥
r = W⊥

r }.
(8)

Similarly, we can define a flag FI of type

I = {0 < i1 < i2 . . . < il < n}
by

Vj = Xij (j ≤ l + 1
2

)

Vj = X⊥
il+1−j

(j ≥ l + 1
2

).

Lemma 3.2. PI = GFI are all the parabolic subgroups containing P0. If G 6= O1,1, O(2, C) (in
these two cases, no proper parabolic subgroup exists), the maximal parabolic subgroups correspond to
I = {0 < k ≤ n− k < n}.

Proof: Obviously PI ⊇ P0. Now we observe that for G 6= O(1, 1), O(2, C), PI and PI′ are different
if I 6= I ′. The cardinality of all the I is 2r. But the cardinality of parabolic groups containing P0

is also 2r. Thus PI exhaust all the parabolic subgroups containing P0.

Observe that PI ⊇ PI′ if and only if I ′ is a refinement of I. Therefore the maximal parabolic
subgroups correspond to I = {0 < k ≤ n− k < n}. Q.E.D.

We denote the maximal parabolic subgroup P{0<k≤n−k<n} by Pk.

Lemma 3.3. The Levi factor MIAI can be given by

PI ∩ τ(PI) = {g ∈ G(V ) | g.Xij
= Xij

; g.X∗
ij

= X∗
ij

, j ∈ [1,
l + 1

2
]}.

For Pk maximal parabolic, let MkAkNk be the Langlands decomposition. Then Ak is 1-dimensional
and

Ak = {a(t), t ∈ R+ | a(t)|Xk
= t; a(t)|X∗

k
= t−1; a(t)|W⊥

k
= 1},

MkAk = {g ∈ G(V ) | g.Xk = Xk; g.X∗
k = X∗

k} ∼= GLD(k)×G(W⊥
k ).
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Now we fix an hk ∈ ak, such that hk is identity on Xk, and −1 on X∗
k , and zero on W⊥

k . Then V
can be decomposed into eigenspaces of hk:

V−1 = X∗
k , V1 = Xk, V0 = W⊥

k .

Thus g can be decomposed into eigenspaces of hk as follows.

(9) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

where
g0 = {x ∈ g | x.Xk ⊆ Xk;x.X∗

k ⊆ X∗
k ;x.W⊥

k ⊆ W⊥
k }

g1 = {x ∈ g | x.Xk = 0; x.W⊥
k ⊆ Xk;x.X∗

k ⊆ W⊥
k }

g2 = {x ∈ g | x.Xk = 0; x.W⊥
k = 0;x.X∗

k ⊆ Xk}
g−i = τ(gi) (i = 1, 2).

Moreover,
g0 = mk ⊕ ak g1 ⊕ g2 = nk.

Since our argument is valid for every k ≤ r, gi will denote the i-eigenspace of ad(hk) for a fixed
(implicit) k. Notice that

x ∈ g2 ⇐⇒ x|Xk⊕W⊥
k

= 0; (x.u, v) + (u, x.v) = 0 (∀ u, v ∈ X∗
k).

If we define a sesquilinear form on X∗
k to be

Bx(u, v) = (x.u, v) (u, v ∈ X∗
k),

then
Bx(u, v) = −εBx(v, u)].

Therefore g2 can be identified with a space of sesquilinear forms (, )−ε on X∗
k . Similarly, g∗2 can be

identified with a space of sesquilinear forms (, )−ε on Xk.

Lemma 3.4. g1 is an irreducible g0-module. Suppose g2 6= {0}. Then g2 is the center of g1 ⊕ g2.

By Theorem 1.1, we have the following theorem.

Theorem 3.1. Let g be a real classical Lie algebra of type I. Let M be a g-module. Let j∗ be the
canonical projection from g∗C onto g2

∗
C. Then

V(AnnU(g2)(M)) = cl(j∗(V(AnnU(g)(M)))).

By Theorem 1.2, we have the following theorem.

Theorem 3.2. Let Pk = MkAkNk be as in Lemma 3.3. Let lk = mk ⊕ ak. Let V be a pk-module.
Let p∗ be the canonical projection from p∗kC onto l∗kC. Then

V(AnnU(lk)(V )) = cl(p∗(V(AnnU(pk)(V )))).

We end this section with the following lemma.

Lemma 3.5. Pk acts on g∗2 with finitely many orbits. The orbits are uniquely determined by the
rank and the signature of the corresponding sesquilinear form.

Here g∗2 is the dual space of g2. It is not to be confused with g−2. Following [Howe1], define the
rank of any subset S of g∗2 regarded as sesquilinear form to be the maximal rank of the elements of
S.
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4. Howe’s N-spectrum and N-associated variety

Let G be a Lie group with a finite number of connected components, H be a closed subgroup.
Let Ĝ be the unitary dual of G. Suppose that G and H are type I groups ( [Di]). Take a unitary
representation (π,H) of G and consider its restriction to H. According to the direct integral theory,
π|H uniquely determines a projection-valued Borel measure µH(π) on Ĥ. R. Howe called such a
measure the H−spectrum of π [Howe1]. Under the Fell topology, the (closed) support of µH(π) is
called the geometric H-spectrum [Howe1]. Let NG(H) be the normalizer of H in G. Since (π,H) is
a unitary representation of NG(H), supp(µH(π)) is NG(H)-stable.

To study H-spectrum, we have to have a well-understood unitary dual Ĥ. For H nilpotent or
solvable of type I, Ĥ is well-understood to some extent. For H connected Abelian, Ĥ can be iden-
tified with a subset of ih∗. In this section, we will deal with Abelian H and we identify Ĥ with a
subset of ih∗.

Let G be a type I classical group as in the last section. Let Nk be the nilradical of Pk and ZNk be
the center of Nk. Then

nk = g1 ⊕ g2, znk = g2

where g1 and g2 are defined as eigenspaces of ad(hk). The main problem in this section is to study
the relationship between Howe’s ZNk-spectrum and the associated variety V(AnnU(g)(π)).

Recall that g1 ⊕ g2 = nk and g2 = znk. By Theorem 2.1 and Theorem 3.1, we have

Theorem 4.1. Let (π,H) be a unitary representation of a type I classical group G. Then the ZNk-
associated variety of π is the Zariski closure of the geometric ZNk-spectrum of π. Furthermore,

V(AnnU(znk)(π)) = cl(j∗(V(AnnU(g)(π))))

where j∗ is the projection from g∗C to zn∗kC. So

cl(suppZNk
(π)) = cl(j∗(V(AnnU(g)(π)))).

Since g is a reductive linear Lie algebra, g∗ can be identified with g by an invariant bilinear form.
For any subset S of g∗, we define rank(S) to be the max{rankD(X) | X ∈ S}. Now for a type I
classical group G(V ), for every x ∈ g, we define a sesquilinear form Bx such that

Bx(u, v) = (x.u, v) (u, v ∈ V )

Then
Bx(u, v) = −εBx(v, u)]

Thus g can be identified with a space of sesquilinear forms. Clearly, the rank of the sesquilinear
form Bx is exactly the rank of the x.

Recall that the parabolic subgroup Pk acts on zn∗k with finitely many orbits and that zn∗k can be
identified with a subspace of sesquilinear forms. Howe and Li defined the ZNk-rank to be the maxi-
mal rank of supp(µZNk

(π)) regarded as sesqulinear forms. Notice that for each x ∈ HomD(Xk, X∗
k)

the rank of the linear transform x is the same as the rank of the bilinear form Bx. In the rest of
this paper, we will compute the Howe’s ZNk-rank using associated variety.

If we regard g as a subset of HomD(V, V ), then j∗ can be regarded as the (eigen)-projection with



18 HONGYU HE

respect to ad(hk), from g onto g−2
∼= τ(znk) (see Equ. 9). We have the following list regarding g−2

and its complexification:
(1) G = U(p, q), zn∗k is the space of k × k skew-Hermitian matrices, its complexification is the

space of k × k complex matrices;
(2) G = O(p, q), zn∗k is the space of k × k real skew-symmetric matrices, its complexification is

the space of k × k complex skew-symmetric matrices;
(3) G = Sp2n(R), zn∗k is the space of k × k real symmetric matrices, its complexification is the

space of k × k complex symmetric matrices;
(4) G = O∗(2n), zn∗k is the space of sesquilinear forms on Hk, such that

(u, v) = (v, u)] (u, v ∈ Hk)

Let (u, v) = A(u, v) + jB(u, v) with A and B complex-valued. Then

A(v, u) + jB(v, u) = (A(u, v) + jB(u, v))] = A(u, v)− jB(u, v)

Therefore
A(u, v) = A(v, u) B(u, v) = −B(v, u).

Now B(u, v) is a (right) C-bilinear form. If we fix a basis {(ei, jei)}k
1 for Hk, zn∗k can be

identified with

{
(

U V
−V̄ Ū

)
| U t = −U, V̄ = V t}.

Thus the complexification of zn∗k can be identified with the space of 2k × 2k complex skew-
symmetric matrices.

(5) G = Sp(p, q), zn∗k can be identified with a space of 2k× 2k symmetric matrices, its complex-
ification is the space of 2k × 2k complex symmetric matrices.

(6) G = O(n, C), zn∗k is the space of k×k complex skew-symmetric matrices. It can be identified
with

{
(

A −B
B A

)
| At = −A,Bt = −B,A,B ∈ EndR(Rk)}.

Therefore znk
∗
C can be identified with

{
(

A −B
B A

)
| At = −A,Bt = −B,A,B ∈ EndC(Ck)}.

(7) G = Sp(n, C), zn∗k can be identified with

{
(

A −B
B A

)
| At = A,Bt = B,A,B ∈ EndR(Rk)}

and znk
∗
C can be identified with

{
(

A −B
B A

)
| At = A,Bt = B,A, B ∈ EndC(Ck)}.

For any S ⊆ znk
∗
C, we write rankC(S) for the maximal rank of the elements in S in this setting. We

call it the C-rank of S. Thus, we have

rank(supp(µZNk
(π))) = rankC(supp(µZNk

(π))) (G = U(p, q), O(p, q), Sp2n(R));

2rank(supp(µZNk
(π))) = rankC(supp(µZNk

(π))) (G = Sp(n, C), O(n, C), Sp(p, q), O∗(2n)).

In this setting, taking the Zariski closure of a subset of sesquilinear form would not change C-rank
of such a subset. Since V(AnnU(znk)(π)) is the Zariski closure of supp(µZNk

(π)),

rankC(V(AnnU(znk)(π))) = rankC(supp(µZNk
(π))).
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By Theorem 4.1, we have

rankC(supp(µZNk
(π))) = rankC(j∗(V(AnnU(g)(π)))).

To compute Howe’s ZKk-rank, we will have to compute rankC(j∗(V(AnnU(g)(π)))).

Let us first recall the following theorem.

Theorem 4.2 (Borho-Brylinski-Joseph). Suppose g is a reductive Lie algebra, M a simple g-module.
Then V(AnnU(g)(M)) is the closure of a single coadjoint orbit.

So for a connected reductive group G and an irreducible unitary representation π, V(AnnU(g)(π))
is the closure if a single coadjoint orbit. Now concerning a linear reductive Lie group G with
finitely many components, we can employ Mackey machine to show that for any irreducible unitary
representation (π,H) of G, π splits into finitely many irreducible representations when restricted to
the identity component G0, namely,

π = π1 ⊕ π2 ⊕ . . .⊕ πs

Furthermore, G/G0 permutes these irreducible factors. A more careful examination shows that the
Harish-Chandra modules of πi’s are related by the algebra isomorphisms of U(g) defined by the
adjoint action of G/G0. Thus V(AnnU(g)(πi)) are related by automorphisms of g defined by G/G0.
In fact, V(AnnU(g)(π)) is exactly the union of G/G0-orbit of any chosen V(AnnU(g)(πi)). More
precisely, we have

V(AnnU(g)(π)) =
⋃

xG0∈G/G0

Ad(x)(V(AnnU(g)(π1)))

Thus, for the rest of this paper, even though some of the classical Lie group G is not connected, we
may prove our results for the identity component G0 first. Then all the results can be generalized
to G.

Now identify g∗C with gC via an invariant bilinear form. According to [CM], each nilpotent or-
bit in a (complex) simple Lie algebra g(m) ⊆ EndC(Cm) is parameterized by certain partition
λ = (λ1, λ2, . . . , λl > 0) of m. We denote the adjoint orbit corresponding to λ by Oλ. Then

rankC(Oλ) = m− l.
Lemma 4.1. Let S ⊆ g(m). Then

rankC(j∗(S)) ≤ min(rk, rankC(S))

where rk = rankC(zn∗k). In particular,

rankC(j∗(Oλ)) ≤ min(rk, rankC(Oλ)).

Now we restrict our attention to the non-complex groups, O(p, q), U(p, q), Sp2n(R), O∗(2n), Sp(p, q).
We will deal with complex groups at the end. We treat Type A, C and Type B, D Lie algebras
differently. We will follow the convention in [CM] regarding the order of nilpotent orbits.

Theorem 4.3 (Type A,C gC). Let Oλ be a complex nilpotent orbit in a type A or C simple Lie
algebra g(m) parametrized by λ. Then rankC(j∗(Oλ)) = min(k, rankC(Oλ)).

Proof: If rankC(Oλ) ≥ k, then λ ≥ (1m−2k, 2k). Thus

cl(Oλ) ⊇ cl(O(1m−2k,2k)).

Recall that g−2 ⊆ O(1m−2k,2k). Therefore

cl(j∗(Oλ)) ⊇ j∗(cl((Oλ))) ⊇ j∗(cl(O(1m−2k,2k))) ⊇ j∗(g−2) ⊇ g−2.
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Hence rankC(j∗(Oλ)) = k. If rankC(Oλ) = s < k, then

cl(Oλ) ⊇ cl(O(1m−2s,2s)).

Thus
cl(j∗(Oλ)) ⊇ j∗(cl((Oλ))) ⊇ j∗(cl(O(1m−2s,2s))).

But rankC(cl(O(1m−2s,2s)) ∩ g−2) = s, because the elements in g−2 of rank s are all contained in
O(1m−2s,2s). Therefore

rankC(j∗(Oλ)) ≥ rankC(j∗(cl(O(1m−2s,2s))) ∩ g−2) = rankC(cl(O(1m−2s,2s))) ∩ g−2) = s.

Combined with Lemma 4.1, we have

rankC(j∗(Oλ)) = min(k, rankC(Oλ))

Q.E.D.

Theorem 4.4 (Type B,D gC). Let Oλ be a complex nilpotent orbit in a type B or D simple Lie
algebra parametrized by λ. Then rankC(j∗(Oλ)) is always even and it is equal to min(rk, rankC(Oλ)).
Here rk = rankC(zn∗k).

Proof: For O(p, q), the C-rank of a real skew-symmetric form is always even. For O∗(2n), the
C-rank of an H-sesquilinear form is also even. Thus rankC(j∗(Oλ)) is always even. Recall that
the partitions corresponding to Type B,D nilpotent orbits satisfy that even parts occur with even
multiplicity. In other words, if we delete the first column in the Young diagram, then odd parts
occur with even multiplicity. Therefore, rankC(Oλ) has to be even as well. The rest of the proof is
the same as the proof for type A,C groups. Q.E.D.

Now we want to deal with complex groups O(n, C) and Sp(n, C). In these cases, gC is not sim-
ple. However, once we regard g as a real matrix Lie algebra, gC is still a matrix algebra. Thus the
C-rank of V(AnnU(g)(π)) is still valid. Recall that

cl(WF(π)) = V(AnnU(g)(π)).

Here WF (π) ⊆ g.

Theorem 4.5. Let π be an irreducible representation of O(n, C) or Sp(n, C). Then

rankC(j∗(V(AnnU(g)(π)))) = min(rk, rankC(V(AnnU(g)(π))))

where rk = rankC(zn∗k).

Proof: Notice that

cl(j∗(WF(π))) = cl(j∗(cl(WF(π)))) = cl(j∗(V(AnnU(g)(π)))).

Since g is already a complex linear space, for any S ⊆ g∗ ⊆ g∗C,

rankC(S) = 2rank(S).

It suffices to show that

rank(j∗(WF(π))) = min(rank(znk), rank(WF(π))).

Since WF(π) is a finite union of nilpotent orbits in g∗, the statement above is just a corollary of
Theorem 4.4 and 4.5. Q.E.D.

Finally, we come to a conclusion that for Sp2n, U(p, q), Howe’s ZNk-rank of (π,H) equals

min(k, rank(V(AnnU(g)(π))));
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for O(p, q), Howe’s ZNk-rank of (π,H) equals

min(k, rank(V(AnnU(g)(π))))

for k even, and
min(k − 1, rank(V(AnnU(g)(π))))

for k odd; for Sp(p, q), O∗(2n), Howe’s ZNk-rank of (π,H) equals

min(k,
1
2
rankC(V(AnnU(g)(π))));

for Sp(n, C), Howe’s ZNk-rank of (π,H) equals min(k, rank(WF(π))); for O(n, C), Howe’s ZNk-rank
of (π,H) equals min(k, rank(WF(π))) when k is even, and min(k− 1, rank(WF(π))) when k is odd.
Thus Theorem 0.4 is proved.
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