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Abstract

Tutte proved that, if two graphs, both with more than two vertices, have the same collec-
tion of vertex-deleted subgraphs, then the determinants of the two corresponding adjacency
matrices are the same. In this paper, we give a geometric proof of Tutte’s theorem using
vectors and angles. We further study the lowest eigenspaces of these adjacency matrices.

1 Introduction

Given the graph G = {V, E}, let Gi be the graph obtained by deleting the i−th vertex vi.
Fix n ≥ 3 from now on. Let G and H be two graphs of n vertices. The main conjecture in
reconstruction theory, states that if Gi is isomorphic to Hi for every i, then G and H are
isomorphic (up to a reordering of V ). This conjecture is also known as the Ulam’s conjecture.

The reconstruction conjecture can be formulated in purely algebraic terms. Consider two
n×n real symmetric matrices A and B. Let Ai and Bi be the matrices obtaining by deleting
the i-th row and i-th column of A and B, respectively.

Definition 1 Let σi be a n − 1 by n − 1 permutation matrix. Let A and B be two n × n
real symmetric matrices. We say that A and B are hypomorphic if there exists a set of
n− 1× n− 1 permutation matrices

{σ1, σ2, . . . , σn},
such that Bi = σiAiσ

t
i for every i. Put Σ = {σ1, σ2, . . . , σn}. We write B = Σ(A). Σ is

called a hypomorphism.

The algebraic version of the reconstruction conjecture can be stated as follows.

Conjecture 1 Let A and B be two n× n symmetric matrices. If there exists a hypomor-
phism Σ such that B = Σ(A), then there exists a n × n permutation matrix τ such that
B = τAτ t.

We start by fixing some notations. If M is a symmetric real matrix, then the eigenvalues
of M are real. We write

eigen(M) = (λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M)).

If α is an eigenvalue of M , we denote the corresponding eigenspace by eigenα(M). Let 1n

be the n-dimensional row vector (1, 1, . . . , 1). We may drop the subscript n if it is implicit.
Put J = 1t1. If A and B are hypomorphic, so are A + tJ and B + tJ .
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Theorem 1 (Tutte) Let B and A be two real n× n symmetric matrices. If B and A are
hypomorphic then det(B − λI + tJ) = det(A− λI + tJ) for all t, λ ∈ R.

In this paper, we will study the geometry related to Conjecture 1. Out main result can
be stated as follows.

Theorem 2 (Main Theorem) Let B and A be two real n × n symmetric matrices. Let
Σ be a hypomorphism such that B = Σ(A). Let t be a real number. Then there exists an
open interval T such that for t ∈ T we have

1. λn(A + tJ) = λn(B + tJ);
2. eigenλn

(A + tJ) and eigenλn
(B + tJ) are both one dimensional;

3. eigenλn(A + tJ) = eigenλn(B + tJ).

A similar statement holds for the highest eigenspaces.

Since the sets of majors of A + tJ and of B + tJ are the same, for every t ∈ T and
λ ∈ R,

det(A + tJ − λI)− det(B + tJ − λI) = det(A + tJ)− det(B + tJ). (1)

If t ∈ T , by taking λ = λn(A + tJ), we obtain

det(A + tJ)− det(B + tJ) = det(A + tJ − λI)− det(B + tJ − λI) = 0.

Since the above statement is true for t ∈ T , det(A + tJ) = det(B + tJ) for every t. By
Equation. 1, we obtain det(B−λI + tJ) = det(A−λI + tJ) for all t, λ ∈ R. This is Tutte’s
theorem, which was proved using rank polynomials and Hamiltonian circuits. I should also
mention that Kocay [1] found a simpler way to deduce the reconstructibility of character-
istic polynomials.

Here is the content of this paper. We begin by presenting a positive semidefinite matrix
A + λI by n vectors in Rn. We then interpret the reconstruction conjecture as a gener-
alization of a congruence theorem in Eulidean geometry. Next we study the presentations
of A + λI under the perturbation by tJ . We define a norm of angles in higher dimensions
and establish a comparison theorem. Our comparison theorem then forces hypomorphic
matrices to have the same lowest eigenvalue and eigenvector.

I would like to thank the referee for his valuable comments.

2 Notations

Unless stated otherwise,

1. all linear spaces in this paper will be finite dimensional real Euclidean spaces;
2. all linear subspaces will be equipped with the induced Euclidean metric;
3. all vectors will be column vectors;
4. vectors are sometimes regarded as points in Rn.

Let U = {u1, u2, . . . um} be an ordered set of m vectors in Rn. U is also interpreted as a
n×m matrix.

1. Let conv U be the convex hull spanned by U , namely,

{
m∑

i=1

αiui | αi ≥ 0,

m∑

i=1

αi = 1}.
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2. Let aff U be the affine space spanned by U , namely,

{
m∑

i=1

αiui |
m∑

i=1

αi = 1}.

3. Let span U be the linear span of U , namely,

{
m∑

i=1

αiui | αi ∈ R}.

Then conv U ⊂ aff U ⊂ span U .

Let A be a matrix. We denote the (i, j)-th entry of A by aij . We denote the transpose of
A by At. Let R+n be the set of vectors with only positive coordinates.

3 Geometric Interpretation

Fix a standard Euclidean space (Rn, (, )).

Definition 2 Let A be a symmetric positive semidefinite real matrix. An ordered set of
vectors V = {v1, v2, . . . vn} is said to be a presentation of A if and only if (vi, vj) = aij.

Regarding vi as column vectors and V as a n × n matrix, V is a presentation of A if and
only if V tV = A. Every positive semidefinite real matrix A has a presentation. In addition,
the presentation V is unique up to a left multiplication by an orthogonal matrix.

Definition 3 Let S and T be two sets of vectors in Rn. S and T are said to be congruent
if there exists an orthogonal linear transformation in Rn that maps S onto T .

So A = σBσt for some permutation σ if and only if A and B are presented by two congruent
subsets in Rn.

Now consider two hypomorphic matrices B = Σ(A). Observe that B + λI = Σ(A + λI).
Without loss of generality, assume A and B are both positive semidefinite. Let U and V
be their presentations respectively. Since Bi = σiAiσ

t
i , U − {ui} is congruent to V − {vi}.

Then the reconstruction conjecture can be stated as follows.

Conjecture 2 (Geometric reconstruction) Let

S = {u1, u2, . . . , un}

and
T = {v1, v2, . . . vn}

be two finite sets of vectors in Rm. Assume that S−{ui} is congruent to T −{vi} for every
i. Then S and T are congruent.

Generically, m = n.

Definition 4 We say that U = {ui}n
1 is in good position if the point 0 is in the interior of

the convex hull of U and the convex hull of U is of dimension n− 1.

Lemma 1 Let A be a symmetric positive semidefinite matrix. The following are equivalent.

1. A has a presentation in good position.
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2. Every presentation of A is in good position.

3. rank(A) = n− 1 and eigen0(A) = Rα for some α ∈ (R+)n.

Proof: Since A is symmetric positive semidefinite, A has a presentation. Let U be a pre-
sentation of A.

If U is in good position, then every presentation obtained from an orthogonal linear trans-
formation is also in good position. Since a presentation is unique up to an orthogonal linear
transformation, (1) ↔ (2).

Suppose U is in good position. Then rank(U) = n − 1. So rank(A) = n − 1. Since 0
is in the interior of the convex hull of U , there exists α = (α1, α2, . . . αn)t such that

0 =
n∑
1

αiui;
n∑
1

αi = 1; αi > 0 ∀ i.

Since rank(U) = n− 1, α is unique. Now Uα = 0 implies

Aα = U tUα = U t0 = 0.

Since rank(A) = rank(U) = n− 1, eigen0(A) = Rα. So (2) → (3).

Conversely, suppose rank(A) = n−1 and eigen0(A) = Rα with α ∈ R+n. Then
∑

i αiui = 0
and the linear span span U is of dimension n − 1. Thus, 0 is in conv U . It follows that
aff U = span U . So dim(conv U) = dim(aff U) = dim(span U) = n − 1. So (3) → (1).
Q.E.D.

Lemma 2 Let U be a presentation of A. Suppose that U is in good position. Let αi be the
volume of the convex hull of {0, u1, u2, . . . , ûi, . . . , un}. Then

α = (α1, α2, . . . , αn)t

is a lowest eigenvector.

The proof can be found in many places. For the sake of completeness, I will give a proof
using the language of exterior product.

Proof: Choosing an orthonormal basis properly, we may assume that every ui ∈ Rn−1.
U becomes a (n− 1)× n matrix. Let x1, x2 . . . xn−1 be the row vectors of U . Consider the
exterior product

x1 ∧ x2 ∧ . . . ∧ xn−1.

Let βi be the i-th coordinate in terms of the standard basis

{(−1)i−1e1 ∧ e2 ∧ . . . ∧ êi ∧ . . . ∧ en | i ∈ [1, n]}.

Put β = (β1, β2, . . . , βn)t. Notice that xi ∧ (x1 ∧ x2 ∧ . . . ∧ xn−1) = 0 for 1 ≤ i ≤ n − 1.
Therefore, (xi, β) = 0 for every i. So Uβ = 0. It follows that

∑n
i=1 βiui = 0. Since 0 is in

the convex hull of {ui}n
1 , βi must be either all negative or all positive. Clearly,

|βi| = |u1 ∧ . . . ∧ ûi ∧ . . . ∧ un| = (n− 1)!αi.

Therefore, we have Uα = 0. Then Aα = U tUα = 0. α is a lowest eigenvector. Q.E.D.
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Theorem 3 Suppose that B = Σ(A). Suppose that A and B have presentations in good
position. Then eigen0(A) = eigen0(B) ∼= R.

Proof: Let U and V be presentations of A and B respectively. Then U and V are in good
position. Notice that the volume of the convex hull of

{0, u1, u2, . . . , ûi, . . . un}
equals the volume of the convex hull of

{0, v1, v2, . . . , v̂i, . . . vn}
By Lemma 2 and Lemma 1, eigen0(A) = eigen0(B) ∼= R. So the lowest eigenspace of A
is equal to the lowest eigenspace of B. Q.E.D.

4 Perturbation by J

Recall that J = 1t
n1n. We know that B = Σ(A) if and only if B + tJ = Σ(A + tJ). Let

us see how presentations of A + tJ depend on t. Let A be a positive definite matrix. Let
U = {ui}n

1 be a presentation of A.

Let aff U be the affine space spanned by U . Then {ui} are affinely independent. Let
u0 be the orthogonal projection of the origin onto aff U . Then (u0, ui − u0) = 0 for every
i. We obtain

U tu0 = ‖u0‖21.

It follows that u0 = ‖u0‖2(U t)−11. Consequently,

‖u0‖2 = (u0, u0) = ‖u0‖41tU−1(U t)−11 = ‖u0‖41tA−11.

Clearly, ‖u0‖2 = 1
1tA−11 . We obtain the following lemma.

Lemma 3 Let A be a positive definite matrix. Let U = {ui}n
1 be a presentation of A. Let

u0 be the orthogonal projection of the origin onto aff U . Then ‖u0‖2 = 1
1tA−11 and

u0 =
1

1tA−11
(U t)−11.

Consider {ui − su0}n
1 . Notice that

(ui−su0, uj−su0) = (ui−u0+(1−s)u0, uj−u0+(1−s)u0) = (ui−u0, uj−u0)+(1−s)2(u0, u0).

Taking s = 0, we have

(ui, uj) = (ui − u0, uj − u0) + (u0, u0).

Therefore

(ui − su0, uj − su0) = (ui, uj)− (u0, u0) + (1− s)2(u0, u0) = (ui, uj) + (s2 − 2s)‖u0‖2.
We see clearly that A + (s2 − 2s)‖u0‖2J is presented by {ui − su0}n

1 . Observe that

span(u1 − su0, u2 − su0, . . . , un − su0)

is of dimension n for all s 6= 1. So A + (s2 − 2s)‖u0‖2J is positive definite for all s 6= 1. If
s = 1, we see that A−‖u0‖2J is presented by {ui − u0}n

1 whose linear span is of dimension
n− 1. We obtain the following lemma.
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Lemma 4 Let A be a symmetric positive definite matrix. Let U be a presentation of A. Let
u0 be the orthogonal projection of the origin onto aff U . Then {ui− su0}n

1 is a presentation
of A + (s2 − 2s)‖u0‖2J . Let t = (s2 − 2s)‖u0‖2. Then A + tJ is positive definite for all
t > −‖u0‖2 and positive semidefinite for t = −‖u0‖2.
Notice that

u0 =
1

1tA−11
(U t)−11 =

1
1tA−11

U(U−1(U t)−1)1 =
1

1tA−11
UA−11.

Theorem 4 Let A be a symmetric positive definite matrix. Let U be a presentation of A.
Let u0 be the orthogonal projection of the origin onto aff U . Then u0 = 1

1tA−11UA−11 and
the following are equivalent.

1. A− ‖u0‖2J has a presentation in good position;

2. u0 is in the interior of conv U ;

3. A−11 ∈ R+n.

Corollary 1 Let A be a real symmetric matrix. There exists λ0 such that for every λ ≥ λ0

there exists a real number t such that A + λI + tJ has a presentation in good position.

Proof: Instead, consider I + sA with s = 1
λ . I + sA is related to A + λI by a constant

multiplication:
λ(I + sA) = λI + A.

Let s0 = 1
‖A‖+1 where ‖A‖ denote the operator norm. Suppose that 0 ≤ s ≤ s0. Then

I + sA is positive definite. For s = 0, (I + sA)−11 ∈ R+n. Since

s → (I + sA)−11

is continuous on (0, s0), there exists a s1 ∈ (0, s0) such that (I + sA)−11 ∈ R+n for every
s ∈ (0, s1]. So for every λ ∈ [ 1

s1
,∞), (A + λI)−11 = λ−1(sA + I)−11 ∈ R+n. Let λ0 = 1

s1
.

So for every λ ≥ λ0, (A + λI)−11 ∈ R+n. By Theorem 4, for every λ ≥ λ0 there exists a t
such that A + λI + tJ has a presentation in good position. Q.E.D.

5 Higher Dimensional Angle and Comparison Theorem

Definition 5 Let U = {u1, u2, . . . un} be a subset in Rn. Rn may be contained in some
other Euclidean space. Let u be a point in Rn. The angle ∠(u,U) is defined to be the region

{
n∑
1

αi(ui − u) | αi ≥ 0}.

Two angles are congruent if there exists an isometry that maps one angle to the other. Let
B be the unit ball in Rn. The norm of ∠(u,U) is defined to be the volume of ∠(u,U) ∩ B,
denote it by |∠(u,U)|.
Let me make a few remarks.

1. Firstly, if two angles are congruent, their norms are the same. But, unlike the 2
dimensional case, if the norms of two angles are the same, these two angles may not
be congruent.

2. Secondly, if {ui − u}n
1 are linearly dependent, then |∠(u,U)| = 0. If u happens to be

in aff U , then |∠(u,U)| = 0.
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3. According to our definition, |∠(u,U)| is always less than half of the volume of B.

4. More generally, one can allow {αi}n
1 to be in a collection of other sign patterns which

correspond to quadrants in two dimensional case. Then the norm of an angle can be
greater than half of the volume of B.

Lemma 5 If ∠(u,U) ⊆ ∠(u, V ), then |∠(u, U)| ≤ |∠(u, V )|. If |∠(u,U)| > 0 and ∠(u,U)
is a proper subset of ∠(u, V ) then |∠(u,U)| < |∠(u, V )|.
Theorem 5 (Comparison Theorem) Let ∠(u,U) be an angle and |∠(u,U)| 6= 0. Sup-
pose that v is contained in the interior of the convex hull of {u} ∪ U . Then |∠(u,U)| <
|∠(v, U)|.
Proof: Without loss of generality, assume u = 0. Suppose |∠(0, U)| > 0. Let U =
{u1, u2, . . . un}. Then U is linearly independent. Since v is in the interior of conv(0, U), v
can be written as

n∑

i=1

αiui

with αi ∈ R+ and
∑n

i αi < 1.

Let U ′ = {ui−v}n
1 . It suffices to prove that ∠(0, U) is a proper subset of ∠(0, U ′). Let x be

a point in ∠(0, U) with x 6= 0. Then x =
∑

i xiui for some xi ≥ 0 with
∑

i xi > 0. Define
for each i

yi = xi + αi

∑
xi

1−∑
αi

The reader can easily verify that
∑

yi(ui − v) = x. Observe that yi > xi ≥ 0. So ∠(0, U)
is a proper subset of ∠(0, U ′). It follows that

|∠(0, U)| < |∠(0, U ′)| = |∠(v, U)|.

Q.E.D.

Theorem 6 Let U = {u1, u2, . . . , un} ⊂ Rm for some m ≥ n. Suppose that |∠(u,U)| > 0.
Suppose that the orthogonal projection of u onto aff U is in the interior of conv U . Let v
be a vector such that (u− v, u− ui) = 0 for every i. If u 6= v then |∠(u,U)| > |∠(v, U)|.
Proof: Without loss of generality, assume that u = 0. Then U is linearly independent and
v ⊥ ui for every i. Let u0 be the orthogonal projection of u onto aff U . By our assumption,
u0 is in the interior of conv U and ‖u0‖ 6= 0. Let

v′ = (1−
√
‖v‖2
‖u0‖2 + 1)u0.

Then

‖v′ − u0‖2 = (
‖v‖2
‖u0‖2 + 1)‖u0‖2 = ‖v‖2 + ‖u0‖2.
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Notice that v ⊥ ui and u0 ⊥ ui − u0. We obtain

(ui − v′, uj − v′) =(ui − u0 +

√
‖v‖2
‖u0‖2 + 1u0, uj − u0 +

√
‖v‖2
‖u0‖2 + 1u0)

=(ui − u0, uj − u0) + (
‖v‖2
‖u0‖2 + 1)‖u0‖2

=(ui − u0, uj − u0) + (u0, u0) + (v, v)
=(ui, uj) + (v, v)
=(ui − v, uj − v).

(2)

Hence ∠(v, U) ∼= ∠(v′, U). Notice that 1 −
√

‖v‖2
‖u0‖2 + 1 < 0. So the origin sits between v′

and u0 which is in the interior of conv U . Therefore, 0 is in the interior of ∠(v′, U). By the
Comparison Theorem, |∠(v′, U)| > |∠(0, U)|. Consequently, |∠(v, U)| > |∠(0, U)|. Q.E.D.

Theorem 7 Suppose that B = Σ(A). Let λ0 be as in Cor. 1 for both B and A. Fix
λ ≥ λ0. Let t1 and t2 be two real numbers such that A + λI + t1J and B + λI + t2J have
presentations in good position. Then t1 = t2.

Proof: We prove by contradiction. Without loss of generality, suppose that t1 > t2. Let U
be a presentation of A + λI + t1J . Then U is in good position. So 0 is in the interior of
conv U . Let V be a representation of B + λI + t2J . Then V is in good position. So 0 is in
the interior of conv V and dim(span V ) = n− 1. Let v0 ⊥ span V and ‖v0‖2 = t1 − t2. Let
V ′ = {vi + v0}n

1 . Clearly, V ′ is a presentation of B + λI + t1J .

By Thm. 6, for every i,

|∠(0, V \{vi})| > |∠(−v0, V \{vi})| = |∠(0, V ′\{vi + v0})|.

Since B + λI + t1J = Σ(A + λI + t1J), V ′\{vi + v0} is congruent to U\{ui} for every i.
Therefore |∠(0, V ′\{vi + v0})| = |∠(0, U\{ui})|. Since 0 is in the interiors of the convex
hulls of U and of V , we have

V ol(B) =
n∑

i=1

|∠(0, V \{vi})| >
n∑

i=1

|∠(0, V ′\{vi + v0})| =
n∑

i=1

|∠(0, U\{ui})| = V ol(B).

This is a contradiction. Therefore, t1 = t2. Q.E.D.

6 Proof of the Main Theorem

Suppose B = Σ(A). Suppose λ0 satisfies Cor. 1 for both A and B. So for every λ ≥ λ0

there exist real numbers t1 and t2 such that A+λI +t1J has a presentation in good position
and B + λI + t2J has a presentation in good position. By Theorem 7, t1 = t2. Because of
the dependence on λ, put t(λ) = t1 = t2. By Theorem 3,

eigen0(A + λI + t(λ)J) = eigen0(B + λI + t(λ)J) ∼= R.

Since 0 is the lowest eigenvalue of A + λI + t(λ)J and B + λI + t(λ)J , λ is the lowest
eigenvalue of A + t(λ)J and B + t(λ)J . In addition,

eigen−λ(A + t(λ)J) = eigen−λ(B + t(λ)J) ∼= R.
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Now it suffices to show that t([λ0,∞)) covers a nonempty open interval.

By Lemme 4 and Lemma 3,

t(λ) = −‖u0‖2 = − 1
1t(A + λI)−11

.

So t(λ) is a rational function. Clearly, t([λ0,∞)) contains a nonempty open interval T . For
t ∈ T , we have λn(A + tJ) = λn(B + tJ) and eigenλn(A + tJ) = eigenλn(B + tJ) ∼= R.
This finishes the proof of Theorem 1. Q.E.D.

Tutte’s proof involves certain polynomials associated with a graph. It is algebraic in na-
ture. The main instrument in our proof is the comparison theorem. Presumably, there is a
connection between the geometry in this paper and the polynomials defined in Tutte’s pa-
per. In particular, given n unit vectors u1, u2, . . . un, can we compute the function |∠(0, U)|
explicitly in terms of U tU = A? This question turns out to be hard to answer. The norm
|∠(0, U)| as a function of A may be closely related to the functions studied in Tutte’s paper
[2].
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