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Abstract. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let K be a maximal compact subgroup. In this
paper, we give an upper bound for K-finite and k-smooth matrix coefficients of
the regular representation L2(X) where X is a differentiable G-space equipped

with a G-invariant measure, under an assumption about supp(L2(X)) ∩ ĜK .
Furthermore, we show that this bound holds for unitary representations that
are weakly contained in L2(X). Our result generalizes a result of Cowling-
Haagerup-Howe [2]. As an example, we discuss the matrix coefficients of the
O(p, q) representation L2(Rp+q).
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1. Introduction

Let G be a semisimple Lie group with a finite number of connected components
and a finite center. Let (π,Hπ) be a unitary representation of G. One important
problem in harmonic analysis is to decompose (π,Hπ) into a direct integral of
irreducible unitary representations with multiplicities. More precisely, there exists
a Borel measure dσ on the unitary dual Ĝ such that

Hπ =
∫

(σ,Hσ)∈Ĝ

Hσ⊗̂Mσdσ.

Here Ĝ is equipped with the Fell topology and Mσ records the mutiplicity of σ
( [4] [14]). Very often, to determine the direct integral decomposition, one has to
first determine the support of π, namely, the closed subset of Ĝ consisting of all
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representations that are weakly contained in (π,Hπ) ( [4], [14]). Then one can de-
fine a certain transform for each σ ∈ supp(π) to decompose Hπ.

LetX be a (differentiable)G-space that carries aG-invariant measure. Then L2(X)
becomes a unitary representation of G. For many X, determining supp(L2(X)) re-
mains an open problem, especially the discrete part. In this paper, we want to
point a way that may lead to some new development. For a set of vectors S, let
〈S〉 be the complex linear space spanned by S. Let u be a vector in Hπ. If u
is cyclic, that is, 〈π(G)u〉 is dense in Hπ, then the matrix coefficient (π(g)u, u)
determines supp(π) uniquely. The purpose of this paper is to give some basic
estimate of the smooth matrix coefficients of L2(X). Smooth matrix coefficients
here mean the matrix coefficients for smooth vectors. We show that all K-finite
and k-smooth matrix coefficients are bounded above by some function related to
Harish-Chandra’s Ξ function. Our estimate equally applies to representations that
are weakly contained in L2(X), in particular those in supp(L2(X)). We follow the
approach taking by Cowling, Haagerup and Howe in treating the tempered repre-
sentations ( [2]).

Before we state our result, we fix some notations. Fix an Iwasawa decompostion
KAN . Let Σ+ be the set of positive restricted roots from N . Let ρ be the half
sum of positive restricted roots. Let a∗C = HomR(a,C) and a∗ = HomR(a,R). Let
a+ be a closed Weyl chamber defined by Σ+ and by W (G, a) (See Page 124 [9]).
Let λ, λ′ ∈ a∗C. We say that λ is dominated by λ′ if

<(λ′)(H) ≥ <(λ)(H) (∀H ∈ a+).

We write λ � λ′. � defines a partial ordering on a∗C.

Let ĜK be the spherical unitary dual. Then ĜK can be identified with a closed
subset of

a∗C//W (G : a).

Fix a dominant Weyl chamber in a∗ corresponding to a+. We say that λ ∈ a∗C is
dominant if <(λ) is in the dominant Weyl chamber. Identify ĜK with a closed
subset of dominant a∗C. Let Ξ be Harish-Chandra’s basic spherical function.

Fix a maximal torus T in K and a positive root system. Let rK be the rank
of K and lK be the number of positive roots of K. Let ρK be the half sum of the
positive roots. Let Vλ be an irreducible unitary representation of K with highest
weight λ. Let C(k) be the Casimir element in U(k) if k is semisimple. If k contains
a nontrivial center, define C(k) to be the element in the center of the universal
enveloping algebra U(k) satisfying

C(k)|Vλ
= [−(ρK + λ, ρK + λ) + (ρK , ρK)]I

for every Vλ ∈ K̂. Let dλ be the dimension of Vλ.
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Theorem 1.1 (Main Theorem). Let G be a semisimple Lie group with a finite
number of connected components and a finite center. Let X be a G-space endowed
with a G-invariant measure dx. Suppose that supp(L2(X)) ∩ ĜK , as a subset of
dominant a∗C, is dominated by a real λ0. Let (π,Hπ) be a unitary representation
that is weakly contained in L2(X) (see [4], [14]).

1. Let u, v be two K-finite vectors in Hπ. Let S1 be the K-types appearing in
〈π(K)u〉. Let S2 be the K-types appearing in 〈π(K)v〉. Then for any H ∈ a+

and k1, k2 ∈ K, we have

|(π(k1 expHk2)u, v)| ≤ (
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖u‖‖v‖ expλ0(H)Ξ(expH).

(1.1)
2. Let C(k) be the Casimir element in U(k). Let u, v be two k smooth vectors

(See Definition 5.1). Then there exists a positive constant C, independent of
u, v, such that for any k1, k2 ∈ K, H ∈ a+,

|(π(k1 expHk2)u, v)| ≤

C expλ0(H)Ξ(expH)‖(C(k)− 2‖ρK‖2 − 1)lK+rKu‖‖(C(k)− 2‖ρK‖2 − 1)lK+rKv‖.
(1.2)

In particular, these estimates hold for irreducible unitary representations in supp(π).

Note that in many cases, the spherical support supp(L2(X)) ∩ ĜK is easier to
determine than supp(L2(X)).

The proof of the main theorem contains three ingredients. The first ingredient
comes from a uniform bound for the spherical functions in [9]. The second ingre-
dient comes from a paper by Cowling-Haagerup-Howe that bounds the K-finite
matrix coefficients of tempered representations by Ξ(g). The third ingredient comes
from a bound on the dimension of an irreducible unitary representations of K. In
Theorem 6.1, we give a result only assuming that X has a K-invariant measure.

There are bounds for smooth matrix coefficients for unitary representations in [1], [7].
The tempered case, that is λ0 = 0, was treated in [2]. The bound for the smooth
matrix coefficients of tempered representations was treated recently by Sun [13].
The ideas in this paper are quite standard, not new. Nevertheless, we believe
that our estimates can shed lights on the structure of supp(L2(X)), as well as
some other applications. Let us take the example of L2(Rp+q) as a unitary repre-
sentation of O(p, q). The spectral decomposition of L2(Rp+q) was established by
Strichartz in general and others in some special cases. See [12] and the references
therein. Applying our main theorem, we have

Theorem 1.2. Suppose that q ≥ p and pq > 1. Let G = O(p, q) and K = O(p) ×
O(q). Let C(k) be the Casimir operator. Let (π,Hπ) be a unitary representation
that is weakly contained in L2(Rp+q). Let u, v be two k-smooth vectors in Hπ. Let
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λt = (p+q
2 − 2, p+q

2 − 3, . . . , q−p
2 , t). Then for any H ∈ a+, k1, k2 ∈ K, if q− p > 2,

we have
|(π(k1 expHk2)u, v)| ≤

C expλ q−p
2 −1(H)Ξ(expH)‖(C(k)− 2‖ρK‖2 − 1)p2+q2

u‖‖(C(k)− 2‖ρK‖2 − 1)p2+q2
v‖;

(1.3)

if q − p = 0, 1, 2, we have

|(π(g)u, v)| ≤ Cφλ0(g)‖(C(k)− 2‖ρK‖2 − 1)p2+q2
u‖‖(C(k)− 2‖ρK‖2 − 1)p2+q2

v‖.
(1.4)

Here φλ0(g) is the spherical function corresponding to λ0 ∈ a∗C/W (G, a).

Let ε be a small positive number. Our theorem implies that (π(k1 expHk2)u, v)
decays faster that C exp(−1 + ε)(|H1|+ |H2|+ . . .+ |Hp|) if q− p ≥ 2. If q = p+ 1
then (π(k1 expHk2)u, v) decays faster than C exp(−1+ε)(|H1|+|H2|+. . .+ 1

2 |Hp|).
If q = p, then (π(k1 expHk2)u, v) decays faster than C exp(−1 + ε)(|H1|+ |H2|+
. . .+ |Hp−1|). These results are slightly different from what one would expect.

A more intriguing problem is to find a bound for the k-smooth matrix coefficients
from below. Clearly, the k-smooth matrix coefficients of L2(Rp+q) cannot decay ar-
bitrarily fast unless min(p, q) = 1. Having an upper bound, if one can find a bound
from below, one can potentially narrow down the possible τ in supp(L2(Rp+q)),
which is already known. For those X that supp(L2(X)) is not known, we hope
that this approach will yield some new results.

2. Bounds for K-invariant Matrix Coefficients

Let G be a semisimple Lie group with a finite number of connected components and
a finite center. G may be disconnected. Let K be a maximal compact subgroup.
Fix an Iwasawa decomposition KAN . Let Σ+ be the positive restricted roots
corresponding to N . For any λ ∈ a∗C, let φλ(g) be the corresponding spherical
function. φλ(g) is both left and right K-invariant. We have the following (see Ch.
7.8 [9])

1. For λ real, φλ(g) > 0 for all g;
2. For φλ(g) = φwλ(g) for any w ∈W (G : a);
3. |φλ(g)| ≤ φ<λ(g).

Let a+ be a closed positive Weyl chamber satisfying the property that

α(H) ≥ 0, (∀ H ∈ a+, α ∈ Σ+).

a+ determines a dominant Weyl chamber in a∗ by identifying a with a∗. λ ∈ a∗C is
said to be dominant if <λ is in the dominant Weyl chamber. If λ is dominant and
real, we have

φλ(expH) ≤ exp(λ(H))φ0(expH)
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for any H ∈ a+ (see Ch. 7.8 [9]). Here φ0(g) is Harish-Chandra’s Ξ function.
Essentially, the formulae above give bounds for K-invariant functions for each ir-
reducible representation.

Let Ĝ be the unitary dual of G. Let (π,H) be a unitary representation of G.
Let supp(π) or sometimes supp(H) be the support of π, namely the closed subset
of Ĝ consisting of those that are weakly contained in π (See Ch 18.1 [4] or Ch
14.10 [14]). If supp(π) is a subset of supp(π′), we say that π is weakly contained
in π′.

An irreducible admissible representation is said to be spherical if it has a K-fixed
vector. Infinitesimal equivalence classes of spherical admissible representations are
in one-to-one correspondence with

a∗C/W (G : a).

See Ch .IV [6] for example. The unitary spherical dual is often denoted by ĜK .
We parametrize ĜK by a closed subset of dominant λ. We write the corresponding
spherical unitary representation as (πλ,Hλ).

Theorem 2.1. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let (π,H) be a unitary representation of G. Sup-
pose that supp(π) ∩ ĜK is dominated by a real λ0. Then

|(π(k1 expHk2)u, v)| ≤ expλ0(H)Ξ(expH)‖u‖‖v‖

for any k1, k2 ∈ K, H ∈ a+ and K-fixed vectors u, v ∈ H.

The proof will be based on local results about φλ(g) we mentioned earlier and the
direct integral theory (see for example Ch 14. [14]).

Proof. Decompose the unitary representation (π,H) into a direct integral∫
Ĝ

Hs⊗̂Msdµs

where Ms records the multiplicity. Write

u =
∫

ĜK∩supp(π)

usdµs, v =
∫

ĜK∩supp(π)

vsdµs.

Then we have

‖u‖2 =
∫

ĜK∩supp(π)

‖us‖2dµs, ‖v‖2 =
∫

ĜK∩supp(π)

‖vs‖2dµs

(π(g)u, v) =
∫

ĜK∩supp(π)

(π(g)us, vs)dµs.
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Notice that here s are all dominant in a∗C and us, vs are K-invariant. Now by our
assumption, for every H ∈ a+,

|(π(k1 expHk2)u, v)|

≤
∫

ĜK∩supp(π)

|(π(expH)us, vs)|dµs

=
∫

ĜK∩supp(π)

|φs(expH)||(us, vs)|dµs

≤
∫

ĜK∩supp(π)

exp s(H)Ξ(expH)‖us‖‖vs‖dµs

≤
∫

ĜK∩supp(π)

expλ0(H)Ξ(expH)‖us‖‖vs‖dµs

≤ expλ0(H)Ξ(expH)(
∫

ĜK∩supp(π)

‖us‖2dµs

∫
ĜK∩supp(π)

‖vs‖2dµs)
1
2

= expλ0(H)Ξ(expH)‖u‖‖v‖

(2.1)

�

In the case that π is supported on the tempered dual of G, λ0 = 0. So we have

|(π(g)u, v)| ≤ Ξ(g)‖u‖‖v‖.

This is proved in [2].

For u, v in other K-types of H, it is not easy to bound (π(g)u, v) by ‖u‖ and
‖v‖. Even if π is spherical, it is still not clear whether the type of bound in The-
orem 2.1 is true. However, if π is supported on supp(L2(X)) with X a G-space
equipped with a G-invariant measure, we can find such a bound.

3. Bounds for K-finite Matrix Coefficients of L2(X)

Let (π,Hπ) be a unitary representation that is weakly contained in L2(G). Cowl-
ing, Haagerup and Howe obtain a sharp bound on the K-finite matrix coefficients
of π.

Theorem 3.1 (Cowling-Haagerup-Howe [2]). Let G be a semisimple Lie group with
a finite number of connected components and a finite center. Let (π,Hπ) be a
unitary representation that is weakly contained in L2(G). Let ξ and η be two K-
finite vectors. Decompose the K invariant subspaces 〈π(K)ξ〉 and 〈π(K)η〉:

〈π(K)ξ〉 = ⊕τ∈K̂ ⊕m(τ) Hτ , 〈π(K)η〉 = ⊕τ∈K̂ ⊕n(τ) Hτ .

Let dim(Hτ ) = dτ . Then m(τ) ≤ dτ , n(τ) ≤ dτ and

|(π(g)ξ, η)| ≤ (dim〈π(K)ξ〉) 1
2 (dim〈π(K)η〉) 1

2 Ξ(g).
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In particular, if 〈π(K)u〉 ∼= ⊕m(τ)Hτ and 〈π(K)v〉 ∼= ⊕n(σ)Hσ, then

|(π(g)u, v)| ≤ dτdσ‖u‖‖v‖Ξ(g).

Let X be a differentiable G-space equipped with a G-invariant measure dx. Let G
act on L2(X) by

L(g)f(x) = f(g−1x) (g ∈ G, x ∈ X).

We call (L,L2(X)) a regular representation. One of the most important prob-
lems in harmonic analysis is to find the supp(L2(X)). In many cases, the set
supp(L2(X)) ∩ ĜK is relatively easy to find, since ĜK is better understood than
Ĝ. In Theorem 2.1, we find a bound for the K-invariant matrix coefficients, as-
suming that supp(L2(X)) ∩ ĜK is dominated by a λ0 ∈ a∗. Borrowing an idea
from [2], we can show that similar bounds apply to all K-finite matrix coefficients
of L2(X). Now this does not tell you much if X has finite volume because the triv-
ial representation will appear in L2(X). But if X has infinite volume, bounds on
K-finite matrix coefficients can shed lights on the structure of supp(L2(X)). At the
end of this paper, we will use the hyperboloid as an example to illustrate our point.

Theorem 3.2. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let X be a G-space equipped with a G-invariant
measure dx. Suppose that supp(L2(X)) ∩ ĜK is dominated by λ0 ∈ a∗. Let φ, ψ
be continuous K-finite functions. Then for any H ∈ a+,

|(L(k1 expHk2)φ, ψ)| ≤ dim(〈L(K)φ〉) 1
2 dim(〈L(K)ψ〉) 1

2 ‖φ‖2‖ψ‖2 expλ0(H)Ξ(expH).

Before we give the proof, let us recall the following lemma (See [2], for example).

Lemma 3.3. Let φ be a continuous function on a K-homogeneous space X. Suppose
that 〈L(K)φ〉 is finite dimensional. Then

‖φ‖∞ ≤ dim(〈L(K)φ〉) 1
2 ‖φ‖2.

Here L2-norm ‖ ∗ ‖2 is taken over the K-invariant probability measure on X. In
addition, if 〈L(K)φ〉 consists of K-types from the set S ⊂ K̂,

dim(〈L(K)φ〉) ≤
∑
σi∈S

d2
σi
.

Proof of Theorem 3.2: Use the notation from [2]. Let

φ̃(x) = sup
k∈K

|φ(kx)|, ψ̃(x) = sup
k∈K

|ψ(kx)| (x ∈ X).

Consider any K-orbit Kx0 equipped with the K-invariant probability measure.
We have∫

Kx0

|φ̃(kx0)|2d[k] = (sup
k∈K

|φ(kx0)|)2 ≤ dim(〈L(K)φ〉)
∫

Kx0

|φ(kx0)|2d[k].

It follows that
‖φ̃‖22 ≤ dim(〈L(K)φ〉)‖φ‖22.
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Hence ‖φ̃‖2 ≤ dim(〈L(K)φ〉) 1
2 ‖φ‖2. For any H ∈ a+, we have

|(L(k1 expHk2)φ, ψ)|

≤|(L(expH)φ̃, ψ̃)|

≤ expλ0(H)Ξ(expH)‖φ̃‖2‖ψ̃‖2
≤dim(〈L(K)φ〉) 1

2 dim(〈L(K)ψ〉) 1
2 ‖φ‖2‖ψ‖2 expλ0(H)Ξ(expH)

(3.1)

�

Now one can drop the requirement that φ, ψ are continuous.

Corollary 3.4. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let X be a G-space equipped with a G-invariant
measure dx. Suppose that supp(L2(X)) ∩ ĜK is dominated by λ0 ∈ a∗. Let φ, ψ
be two L2 K-finite functions on X. Let S1 be the K-types appearing in 〈L(K)φ〉.
Let S2 be the K-types appearing in 〈L(K)ψ〉. Then for any H ∈ a+, k1, k2 ∈ K,
we have

|(L(k1 expHk2)φ, ψ)| ≤ expλ0(H)Ξ(expH)‖φ‖2‖ψ‖2(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 .

Proof. Choose two sequences of continuous functions

φi → φ ψi → ψ

in L2-norm. Without loss of generality, suppose that

supp(〈L(K)φi〉) = S1, supp(〈L(K)ψi〉) = S2.

Otherwise, we can always project φi and ψi to respective K-types. By Theorem 3.2
and Lemma 3.3, for H ∈ a+, we have

|(L(k1 expHk2)φi, ψi)|

≤dim(〈L(K)φi〉)
1
2 dim(〈L(K)ψi〉)

1
2 ‖φi‖2‖ψi‖2 expλ0(H)Ξ(expH)

≤(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖φi‖2‖ψi‖2 expλ0(H)Ξ(expH).

(3.2)

Taking pointwise limits, we obtain

|(L(k1 expHk2)φ, ψ)| ≤ expλ0(H)Ξ(expH)‖φ‖2‖ψ‖2(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 .

�

4. Bounds for K-finite Matrix Coefficients
Theorem 4.1. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let X be a G-space equipped with a G-invariant
measure dx. Suppose that supp(L2(X))∩ ĜK is dominated by λ0 ∈ a∗. Let (π,Hπ)
be a unitary representation that is weakly contained in L2(X). Let u, v be two
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K-finite vectors in Hπ. Let S1 be the K-types appearing in 〈π(K)u〉. Let S2 be the
K-types appearing in 〈π(K)v〉. Then for any H ∈ a+,

|(π(k1 expHk2)u, v)| ≤ (
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖u‖‖v‖ expλ0(H)Ξ(expH).

Proof. The ideas in this proof are essentially from [2]. For a unitary representation
H of K, let H(Sj) be the direct sum of its σ-isotypic subspaces with σ ∈ Sj .

Since (π,Hπ) is weakly contained in L2(X), (π(g)u, v) can be approximated by
finite sums ∑

i

(L(g)φi, ψi) (φi, ψi ∈ L2(X))

uniformly on compacta, subject to the condition that∑
i

‖φi‖2‖ψi‖2 ≤ ‖u‖‖v‖.

Let PSj be the projector of L2(X) to L2(X)(Sj)(j = 1, 2). we can project φi and
ψi to L2(X)(S1) and L2(X)(S2) resepctively. Without loss of generality, assume
that φi ∈ L2(X)(S1) and ψi ∈ L2(X)(S2). By Cor. 3.4, we have the bound

|(L(k1 expHk2)φi, ψi)| ≤ expλ0(H)Ξ(expH)‖φi‖2‖ψi‖2(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 .

Hence

|
∑

(L(k1 expHk2)φi, ψi)|

≤
∑

|(L(k1 expHk2)φi, ψi)|

≤ expλ0(H)Ξ(expH)‖(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2

∑
‖φi‖2‖ψi‖2.

≤ expλ0(H)Ξ(expH)‖(
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖u‖‖v‖

(4.1)

It follows that

|(π(k1 expHk2)u, v)| ≤ (
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖u‖‖v‖ expλ0(H)Ξ(expH).

�

I shall point out that our estimate clearly holds if π is in the support of L2(X). So
our estimate can be used to exclude those π that are not in the support of L2(X).
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5. Bounds for Smooth Matrix Coefficients

Let (π,Hπ) be a unitary representation weakly contained in L2(X). Now we can
move forward to give a bound for k-smooth matrix coefficients of π. Very recently,
B. Sun found a bound for the tempered representations for a bigger class of group
G ( [13]). Our idea is essentially the same.

Definition 5.1. Let (π,Hπ) be a unitary representation of a Lie group H. We say
that a vector v is h smooth if π(D)v is well-defined in Hπ for any D ∈ U(h).

Fix a maximal torus t and positive roots Σ+ for the Lie algebra k. Let rK be the
dimension of t, lK be the cardinality of Σ+, and ρK be the half sum of positive
roots. Let C(k) be the Casimir operator in U(k). Paramatrize K̂ by the highest
weight λ. Then

C(k)|Vλ
= −‖ρK + λ‖2 + ‖ρK‖2.

Clearly, for each positive root α,

(λ+ ρK , α) ≤ (λ+ ρK , 2ρK) ≤ (λ+ ρK , λ+ ρK) + (ρK , ρK).

If K is not Abelian, by Weyl’s character formula,

dim(Vλ) ≤ (‖λ+ ρK‖2 + ‖ρK‖2)lK .

For all compact K,

dim(Vλ) ≤ (‖λ+ ρK‖2 + ‖ρK‖2 + 1)lK .

So for u ∈ Vλ, we have

dim(Vλ)‖u‖ ≤ ‖(C(k)− 2‖ρK‖2 − 1)lKu‖.

Theorem 5.2. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let K be a maximal compact subgroup of G. Let
rK be the rank of K and lK be the number of positive roots for k. Let C(k) be
the Casimir operator. Let X be a G-space equipped with a G-invariant measure.
Suppose that supp(L2(X))∩ ĜK is dominated by λ0 ∈ a∗. Let (π,Hπ) be a unitary
representation that is weakly contained in L2(X). Let u, v be two k-smooth vectors
in Hπ. Then there exists a positive constant C, independent of u, v, such that for
any k1, k2 ∈ K, H ∈ a+

|(π(k1 expHk2)u, v)| ≤

C expλ0(H)Ξ(expH)‖(C(k)− 2‖ρK‖2 − 1)lK+rKu‖‖(C(k)− 2‖ρK‖2 − 1)lK+rKv‖.
(5.1)

Here in the place of rK one can use any integer greater than rK

2 .
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Proof. Suppose that u, v are k-smooth. Decompse u, v according to the K-types:

u =
∑
λ∈K̂

uλ, v =
∑
λ∈K̂

vλ.

Let g = k1 expHk2 and H ∈ a+. Put ρ0 = ρK . Then

|(π(g)u, v)|

≤
∑
λ,µ

|(π(g)uλ, vµ)|

≤
∑

dµdλ‖uλ‖‖vµ‖Ξ(g) expλ0(H)

=Ξ(g) expλ0(H)[
∑

dλ‖uλ‖][
∑

dµ‖vλ‖]

≤Ξ(g) expλ0(H)[
∑

(‖λ+ ρ0‖2 + ‖ρ0‖2 + 1)lK‖uλ‖][
∑

(‖µ+ ρ0‖2 + ‖ρ0‖2 + 1)lK‖vµ‖]

=Ξ(g) expλ0(H)[
∑

(‖λ+ ρ0‖2 + ‖ρ0‖2 + 1)lK+rK‖uλ‖(‖λ+ ρ0‖2 + ‖ρ0‖2 + 1)−rK ]

[
∑

(‖µ+ ρ0‖2 + ‖ρ0‖2 + 1)lK+rK‖vµ‖(‖µ+ ρ0‖2 + ‖ρ0‖2 + 1)−rK ]

≤Ξ(g) expλ0(H)[
∑

(‖λ+ ρ0‖2 + ‖ρ0‖2 + 1)2lK+2rK‖uλ‖2]
1
2 [

∑
(‖λ+ ρ0‖2 + ‖ρ0‖2 + 1)−2rK ]

1
2

[
∑

(‖µ+ ρ0‖2 + ‖ρ0‖2 + 1)2lK+2rK‖vµ‖2]
1
2 [

∑
(‖µ+ ρ0‖2 + ‖ρ0‖2 + 1)−2rK ]

1
2

=CΞ(g) expλ0(H)[
∑

‖(C(k)− 2‖ρ0‖2 − 1)lK+rKuλ‖2]
1
2 [

∑
‖(C(k)− 2‖ρ0‖2 − 1)lK+rKvµ‖2]

1
2

=CΞ(g) expλ0(H)‖(C(k)− 2‖ρ0‖2 − 1)lK+rKu‖‖(C(k)− 2‖ρ0‖2 − 1)lK+rKv‖
(5.2)

Here C =
∑

(‖µ+ ρ0‖2 + ‖ρ0‖2)−2rK which converges absolutely. �

Of course, the estimate we obtain here can be improved substantially. For the
purpose of this paper, it is sufficient. I shall also point out that for k-smooth
vectors in L2(X), our bound can be established directly by bounding sup norm
by the L2 norm of some derivative. But this bound can not be passed from L2(X)
to (π,Hπ). Therefore, for (π,Hπ), we must bound the K-finite matrix coefficients
first and then pass this bound to all k smooth vectors.

6. X with K-invariant Measure

Sometimes, G-invariant measure does not exist for a G-space X. For example,
whenX is a flag variety, there is no G-invariant measure. Nevertheless,K-invariant
measure always exists. Now suppose that X is equipped with only a K-invariant
measure. Then L2(X) may no longer be a unitary representation of G. We can still
define K-finite and k-smooth matrix coefficients. Suppose that there is a positive
function B(g) such that

|(L(g)φ, ψ)| ≤ B(g)‖φ|2‖ψ‖2,
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for any K-invariant function φ and ψ in L2(X). Then by similar arguments as in
the proofs of Theorem 3.2 and Cor. 3.4 and Theorem 5.2, we obtain

Theorem 6.1. Let G be a semisimple Lie group with a finite number of connected
components and a finite center. Let X be a G-space endowed with a K-invariant
measure dx. Suppose that there is positive function B(g) such that

|(L(g)φ, ψ)| ≤ B(g)‖φ|2‖ψ‖2,

for any K-invariant function φ and ψ in L2(X).

1. Let u, v be two K-finite functions in L2(X). Let S1 be the K-types appearing
in 〈L(K)u〉. Let S2 be the K-types appearing in 〈L(K)v〉. Then we have

|(L(g)u, v)| ≤ (
∑
σ∈S1

(dσ)2)
1
2 (

∑
τ∈S2

(dτ )2)
1
2 ‖u‖2‖v‖2B(g).

2. Let C(k) be the Casimir element in U(k). Let u, v be two k smooth functions
in L2(X). Then there exists a C > 0 such that for any g ∈ G

|(π(g)u, v)| ≤ CB(g)‖(C(k)− 2‖ρK‖2 − 1)lK+rKu‖2‖(C(k)− 2‖ρK‖2 − 1)lK+rKv‖2.

7. Bounds for Smooth Matrix Coefficients of L2(Rp+q)

Now we shall give an example here. Let O(p, q) be the orthogonal group preserving
the standard symmetric form

(x, y) =
p∑

i=1

xiyi −
p+q∑

j=p+1

xjyj (x, y ∈ Rp+q).

Consider L2(Rp+q), a regular representation of O(p, q). R. Strichartz computed
the spectrum of the pseudo Laplacian � on L2(Rp+q) in full generality. Special
cases were treated earlier. See [12] and the references therein. If pq > 1, besides the
continuous spectrum, there are also discrete spectrum. Essentially, this determines
the support of L2(Rp+q). The continuous spectrum comes from degenerate prin-
cipal series and the discrete spectrum comes from some quotients of degenerate
principal series. L2(Rp+q) was later studied by Rallis-Schiffman ( [11]) and Howe
( [3]) under the framework of dual reductive pair (O(p, q), SL2(R)). Howe proved
that

L2(Rp+q) ∼=
∫

s∈ ̂̃
SL2(R)

Hθ(s) ⊗Hsds

Here S̃L2(R) is the double cover of SL2(R), ds is a Borel measure on the unitary
dual of S̃L2(R), and Hθ(s) is an irreducible unitary representation of O(p, q). The
structure of the representation Hθ(s) was studied by Molcanov ( [10]) and later by
Howe and Tan in greater details ( [8]).
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Let G = O(p, q) and K = O(p) × O(q). Suppose that pq > 1. Then the real
rank r = min(p, q). The half sum of positive restricted root

ρ = (
p+ q

2
− 1,

p+ q

2
− 2, . . . , |p− q

2
|).

For the purpose of giving a bound for k-smooth matrix coefficients, we will need
to know supp(L2(Rp+q))∩ ĜK . We will assume that p ≤ q. This assumption won’t
effect our estimation. ĜK is parametrized by certain dominant λ, i.e.,

<(λ1) ≥ <(λ2) ≥ . . . ≥ <(λp) ≥ 0

up to a permutation and sign change. supp(L2(Rp+q)) ∩ ĜK can be described as
follows.

1. the continuous spectrum consists of λit = (p+q
2 − 2, p+q

2 − 3, . . . , q−p
2 , it) with

t ≥ 0;
2. If q−p

2 > 1, then the discrete spectrum consists of

λ q−p
2 −2j−1 = (

p+ q

2
− 2,

p+ q

2
− 3, . . . ,

q − p

2
,
q − p

2
− 2j − 1)

for all integer j ∈ [0, q−p−2
4 ).

If p = q, then there is no discrete spherical spectrum. Hλit will decompose into
Hλit

and Hλ−it
with respect to the group SO0(p, q). If q−p = 1, 2, L2(Rp+q) does

not have any discrete spherical spectrum. By Theorem 2.1, we have

Theorem 7.1. Suppose that q ≥ p and pq > 1. Let λt = (p+q
2 −2, p+q

2 −3, . . . , q−p
2 , t).

Let u, v be two K-invariant vectors in L2(Rp+q). Then for any H ∈ a+, k1, k2 ∈ K,
we have

|(L(k1 expHk2)u, v)| ≤ expλ q−p
2 −1(H)Ξ(expH)‖u‖‖v‖ (q − p > 2)

|(L(g)u, v)| ≤ φλ0(g)‖u‖‖v‖ (q − p = 0, 1, 2).

By Theorem 5.2, we have the following

Theorem 7.2. Suppose that q ≥ p and pq > 1. Let G = O(p, q) and K = O(p) ×
O(q). Let C(k) be the Casimir operator. Let (π,Hπ) be a unitary representation
that is weakly contained in L2(Rp+q). Let u, v be two k-smooth vectors in Hπ. Let
λt = (p+q

2 − 2, p+q
2 − 3, . . . , q−p

2 , t). Then for any H ∈ a+, k1, k2 ∈ K, we have for
q − p > 2

|(π(k1 expHk2)u, v)| ≤

C expλ q−p
2 −1(H)Ξ(expH)‖(C(k)− 2‖ρK‖2 − 1)p2+q2

u‖‖(C(k)− 2‖ρK‖2 − 1)p2+q2
v‖

(7.1)

for q − p = 0, 1, 2

|(π(g)u, v)| ≤ Cφλ0(g)‖(C(k)− 2‖ρK‖2 − 1)p2+q2
u‖‖(C(k)− 2‖ρK‖2 − 1)p2+q2

v‖.

Proof. It is clear that rK = [p
2 ]+[ q

2 ] < p+q and lK < p2−p+q2−q. Our assertion
follows from Theorem 5.2. �
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