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Abstract

In this paper, we discuss the positivity of the Hermitian form (,), introduced by Li in
Invent. Math. 27 (1989) 237-255. Let (G1, G,) be a type I dual pair with G| the smaller group.
Let 7 be an irreducible unitary representation in the semistable range of (MG, MG,) (see
Communications in Contemporary Mathematics, Vol. 2, 2000, pp. 255-283). We prove that
the invariant Hermitian form (, ), is positive semidefinite under certain restrictions on the size
of G, and a mild growth condition on the matrix coefficients of n. Therefore, if (,), does not
vanish, 0(MG,, MG,)(n) is unitary.

Theta correspondence over R was established by Howe in (J. Amer. Math. Soc. 2 (1989)
535-552). Li showed that theta correspondence preserves unitarity for dual pairs in stable
range. Our results generalize the results of Li for type I classical groups (Invent. Math. 27
(1989) 237). The main result in this paper can be used to construct irreducible unitary
representations of classical groups of type I.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let (Gy, G,) be an irreducible reductive dual pair of type I in Sp (see [7,11]). The
dual pairs in this paper will be considered as ordered. For example, the pair
(O(p,q), Sp2n(R)) is considered different from the pair (Sp2,(R), O(p, q)). We will in
general assume that the size of G;(V7) is less or equal to the size of G2(V>). In other
words, dimp (V) <dimp(V>). Let Mp be the unique double covering of Sp. Let {1, ¢}
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be the preimage of the identity element in Sp. For a subgroup H of Sp, let MH be the
preimage of H under the double covering. Whenever we use the notation MH, H is
considered as a subgroup of certain Sp. Let (MG, MG>) be a Schrédinger model
of the oscillator representation of Mp. The Harish-Chandra module of
o(MG,, MG>) consists of polynomials multiplied by the Gaussian function.

Since the pair (Gj, G,) is ordered, we use 0(MG;, MG,) to denote the theta
correspondence from Z(MG,, (MG, MG,)) to #(MG,, o(MG, MG,) (see [8]). In
this paper, whenever we talk about “K-finite matrix coefficients” or ““K-finite
vectors” of a representation n of a real reductive group G, “K’ is used as a generic
term for a specified maximal compact subgroup of G. Throughout this paper, we will
mainly work within the category of Harish-Chandra modules. A representation of a
real reductive group refers to an admissible representation unless stated otherwise.
Throughout this paper, a vector in an admissible representation = means that v is in
the Harish-Chandra module of = which shall be evident within the context.

Let V' be a vector space of finite dimension. Let W be a subspace of V. A direct
complement of W in V' is a subspace U such that

vew=".

Now suppose V' is equipped with a nondegenerate sesquilinear form (,). The
orthogonal complement of W in V consists of

{veV|(v,w) =0 Vwe W}.

It is denoted by W'.
Let 7 be an irreducible admissible representation of MG, such that n(¢) = —1. nis
said to be in the semistable range of (MG, MG») if the function

(0(MGy, MG>)(31)$, ) (w,x(31)0) (V.Y €0( MGy, MG:): Vu, ver)

is in L'=°(MG) for all sufficiently small nonnegative 6 (i.e., 6€[0, ¢| for some ¢>0).
We denote the semistable range by Z(MG,, (MG, MG,)). Suppose from now on
that « is in Z;(MG/,o(MG,, MG,)). For each ¢,y e (MG, MG,) and u,vemn, we
define an averaging integral

/ (0(MGy, MG) (1), ) (u, n(d)v) i
MG,

and denote it by (¢®v,Yy®u),. Thus, (,), becomes a real bilinear form on
w(MG, MG,) ®n. Our definition of (), differs slightly from the original definition
of Li in [11]. Let goe MG, act on o(MG, MG,) ® 7 by (MG, MG>)(§2) ®Id. In
[5], we show that if (,)_ 0 then (,), descends into a sesquilinear form on the K-finite
dual representation of (MG, MG)(n). For = unitary, (,), is an invariant
Hermitian form on (MG, MG,)(n).

For 7 unitary, a conjecture of Li says that (, ), will always be positive semidefinite
(see [11]). If Li’s conjecture holds and (,),#0, then (MG, MG,)(n) is unitary. In
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this paper, we will prove that (,), is positive semidefinite under certain restrictions.
This partly confirms the conjecture of Li. The nonvanishing of certain (, ), is proved
in [4] and in [6].

We adopt the notations from [5,11,12]. Let (G1(V7), G2(V2)) be a dual pair of
type 1. Suppose V> = V@ V3 such that

(1) (,), restricted onto V¥ is nondegenerate;
@ vy = (1)
(3) 1) is a direct sum of two isotropic subspaces:

V) =X)@Ys.

Obviously, V9 will always be of even dimension. Let X° = Homp(V1, X3). The
oscillator representation w(MGy(Vy), MGy(VY)) can be modeled on L?(X°). The
action of MG, on L*(X°) is equivalent to the regular action of G; on L*(X?)
tensoring with a unitary character ¢ of MG;. The generic orbits of G; on X° are
classified abstractly in Theorems 4.1 and 4.2.

Later in this paper, the oscillator representation w(MG;(Vy), MGy(VY)) is
denoted as w(M°Gy, M°GY) to indicate the fact that MG,(V;) in (MG (1)),
MG(V>)) might be different from MG,(V;) in (MG, (V1), MGy(V?Y)). For the same
reason, the oscillator representation w(MG(V1), MG>(V})) is denoted by
o(M'G, M'G)).

Theorem 1.1 (Main Theorem). Let (Gy, Gy) be a dual pair. Let E(g) be Harish-
Chandra’s basic spherical function of Gy. Suppose w is an irreducible unitary
representation of MG, in the semistable range of O(MGy, MG,). Suppose

1. for any x,yeG, the function E(xgy) is integrable on Gy, for every generic
pe Homp(Vy, XY) (see Definition 4.1);

2. the tensor product my = w(M'Gy, M'G,) @ n®¢E, considered as a representation of
Gy, is weakly contained in L*(Gy) (see [14]).

Then (,), is positive semidefinite. If (,), does not vanish, then (MG, MG,)(rn) is
unitary.

T

Remarks.

1. o(M'Gy, M'G))), m and € are all projective representations of Gy. The fact that 7o
becomes a unitary representation of Gy is explained in Part II.
2. The first condition roughly requires that

dimp(X) >M.

The precise statement depends on the groups involved. The function = (g)|G14 isin

L'(G,,) implies that E(xgy)|Gl¢ is in L'(Gy,) for any x,ye Gy and vice versa. In
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fact, Z(g) is bounded by a multiple of Z(xgy) and vice versa. Furthermore,
for any compact subset Y of G, there exists a constant C, such that for any
x,yeY,

Z(xgy)<CE(g9) (9eG). (1)

One can prove this by studying the compact picture of the basic spherical
principle series representation (see [9, Chapter VII.1]). Since this remark may have
already been in the literature and a proof will incur a new set of notations, we
choose not to give the proof.

3. The growth of matrix coefficients of w(MG;(V}), MG>(V%)) can be determined
easily. Thus, the second condition can be converted into a growth condition on
the matrix coefficients of 7 (see Corollary 5.1).

4. Conditions 1 and 2 imply that = is in Z(MG,w(MG;, MG,)). Therefore,
(,), is an invariant Hermitian form on 6(MG;, MG,)(n). The unitarity of
0(MG,, MG,)(n) follows since (,), is positive semidefinite.

This paper is organized as follows. In Part I, we prove some positivity theorems in
the sense of Godement [3]. In Part II, we construct the dual pair (G, G;) in terms of
homomorphisms and study various subgroups and liftings concerning the tensor
decomposition

(MG, MGy)=o(M"G;, M’ GY) @ o(M'Gi, M'G)).

This tensor decomposition is termed as the mixed model in [11]. The interpretation
of this tensor product is not completely trivial since MG, M°G; and M'G; may be
different double coverings of Gj. In Part II, we essentially redo part of Section 4 in
[11] just to be safe. In Part III, we study (o(M°Gy, M°GY), L*(X°)) and classify all
the generic Gj-orbits in X°. This enables us to reduce our averaging integral
(¢ ®@u, ¢ ®u), to an integral on G-orbits:

[ s atmm(om dxdglcl
0eG\X° Gy xe@
We study each generic orbit integral
/ d(g7'x)p(x) (1, mo(g)u) dx dg
G1 xe@
in full generality and convert it into an integral on the isotropic group G,
/ (o (g)uo, uo) dg.
Gix

Next, we apply the positivity theorem (Theorem 2.3) to show that this integral

is nonnegative. Thus (,), is positive semidefinite. Finally, we take the pair
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(O(p,q), Span(R)) as an example and state our main theorem in terms of leading
exponents of 7.

2. Part I: positivity theorems

Let G be a real reductive Lie group. Let K be a maximal compact subgroup of G.
For any unitary representation (n, H) of G and any ceK, let H, be the K-isotypic
subspace of H. Let d(c) be the dimension of . Let S be a subset of K. We denote

@ H,

geS

by H(S).
2.1. A generic theorem

Theorem 2.1. Let G be a real reductive Lie group. Let K be a maximal compact
subgroup of G. Let E(g) be Harish-Chandra’s basic spherical function with respect to
K. Let H be a closed unimodular Lie subgroup of G. Suppose that Z(g)|y is in L'(H).
Let ¢ be a positive definite function in L***(G)(S) for some finite subset S of K and any
£>0. Then [y, ¢(h) dh=0.

Here L**#(G)(S) is defined with respect to the left regular action of G.

Proof. By the GNS construction, we construct a unitary representation (o, #) such
that ¢(g) = (a(g)n, n) for some cyclic vector 1 in H#°(S). Since ¢ is a positive definite
function in L>*¢(G) for any £>0, by Theorem 1 in [1], ¢ is weakly contained in
L*(G). Thus, there exists a sequence of convex linear combinations of diagonal
matrix coefficients of L?(G)(S),

~ N\ N~ ! I
aitg) = > a (L), > a =1, (uer2(6)(5),0!">0)

such that

A4i(g)— ¢(9)

uniformly on compacta. Let C.(G)(S) be the space of continuous and compactly

supported functions in L?(G)(S). Since C.(G)(S) is dense in L>(G)(S), we choose ul@
to be in C.(G)(S). Notice that

li
! !
Ai(e) =" alllul 172~ b(e) = |Inl

=1



H. He | Journal of Functional Analysis 199 (2003) 92-121 97
Hence {4;(e)}Z, is a bounded set. Suppose 4;(¢)<C. From Theorem 2 in [1],

(Lo o) 1< ||Lz<zd ):

geS

It follows that

li
i) = > o (L) ")
=1
/ 1/2
[ ! —_
< Y a3 Zd(@) Z(g)
=1 gesS
1/2
<C<Z d(o—)> Z(g). (2)
cges

We have proved that ¢(g) can be approximated by positive definite functions
A;(g) such that 4;(g) are uniformly bounded by a fixed multiple of Z(g).
Now consider the restrictions of ¢(g) to H. From (22.2.3) in [2], for (L(g)ul(l), u,(l))

with u,@ a compactly supported continuous function,

/ (L(hu” ,u"y dh=0.
H

Thus, [, Ai(h) dh>0. But 4;(g)|,; are bounded by a fixed multiple of an integrable
function u( )| - By the dominated convergence theorem,

d(h)ydh = lim | A(h)dh=0. O
H

1= 0 H

2.2. First variation

Theorem 2.2. Let G be a real reductive Lie group. Let K be a maximal
compact subgroup of G. Let H be a closed unimodular Lie subgroup of G. Let Z(g)
be the basic spherical function of G of Harish-Chandra. Suppose that Z(g)| is in
L'(H). Suppose (n, #) is an irreducible unitary representation weakly contained in
L*(G) (see [1]). Let

U—Z/d) ))u dx,
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where

® u is a K-finite vector in H;

® M is a smooth manifold,

® ¢, is continuous and is supported on a compact set X;c M,

® v.: M — G is smooth except a codimension 1 subset and the closure of y,(X;) is
compact.

Then
/ (r(h)v, v) dh 0.
H

The basic idea is to control the function (n(g)v, v) by a convergent integral of left
and right translations of Z(g).

Proof. From the proof of Theorem 2.1, we have a sequence of K-finite compactly
supported continuous positive definite functions

Am(g) = (n(g)u, u)
uniformly on any compact subset and
[4m(9)| < CE(9)-
This implies that
|4 (xgy)| < CE(xgy).

By the compactness of supp(¢;) and the unitarity of x,

k
(n(g)o,0) =) /M |, PG 0 (g (), m (0 () u) dx dy.

ij=1

Since the closure of y;(X;) is compact, the closure of y_/(Xj)flgyi(X,’) is compact for
every g€ G. By the inequality 1, for any m,

k
S [ R TIA6) ) dxdy

ij=1

k

CY [ @Ie0)IEG ) ) dvdy
1 JMxM

N N
‘\Tli

Ci

[

9) (3)
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for some C; >0. Furthermore,

k
S [ R OIAN0) an(x) s dy= (g

ij=1

pointwisely as m— oco. By the dominated convergence theorem,

k —_—
/H (=(h)o,v) dh = lim /H 3 /M BB A0 () iy i

m— oo &
ij=1

But
Anle) =35 o) (Ll lD).
=1
For each /,
k
L3 [ B0 (L () ) )l ) ey
H =1 JMxm
j - 0 - ()
-/ (L(h) [Z | L dxHZ | oL dedh
>0 (4)

because Zle S (pi(x)L(y,(x))u%) dx is a continuous and compactly supported
function on G. Hence for every m,

k
/H 3 /M BB A 1) () dsdy 0.
ij=1 x
It follows that

/ (n(h)v,v) dh=0. O
H

2.3. Second variation

Theorem 2.3. Let G be a real reductive Lie group. Let K be a maximal
compact subgroup of G. Let H be a closed unimodular Lie subgroup of G. Let Z(g)
be the basic spherical function of G of Harish-Chandra. Suppose that E(g)|y is in
L'(H). Suppose (n, #) is an irreducible unitary representation weakly contained in
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L*(G) (see [1,14]). Let

U_Z/ ¢i(x X))u; dx,

where

® u; are K-finite vectors in H;

® M is a smooth manifold,

® , is continuous and is supported on a compact subset X;< M,

® ). M—G is smooth except a codimension 1 subset and the closure of v;(X;) is
compact.

Then

/ (r(h)v, v) dh 0.
H

The only difference from Theorem 2.2 is

U—Z/ oi(x X))u; dx

instead of

U—Z/qb ))u dx.

Proof. Let V' be the linear span of
{n(k)u;|ie[l,n],keK}.
Since u; are K-finite, V' is a finite-dimensional representation of K. Let u be

a K-cyclic vector in V. Let C(K) be the space of continuous functions on K.
Consider the action of C(K) on u:

f)u:/Kf(k)n(k)udk.

Apparently, n(C(K))u = V. Let

u,-:/f,-(k)n(k)udk.
K
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Then

Apply Theorem 2.2 to functions ¢;(x)f;(k) on M x K and
7F(x,k)eM x K—y;(x)keG.

The conclusion follows immediately. [

Conjecture 1. Let G be a real reductive group. Let K be a maximal compact subgroup
of G. Let E(g) be Harish-Chandra’s basic spherical function. Let H be a subgroup of G
such that Z(g)|y is in L'(H). Let ¢(g) be a positive definite continuous function
bounded by E(g). Then [, ¢(h) dh=0.

3. Part II: dual pairs and mixed model

The basic theory on the mixed model of the oscillator representation is
gcovered in [11] with reference to an unpublished note of Howe. We redo part of
Section 4 of [11] with emphasis on the actions of various coverings of G| regarding
the mixed model

o(MGy, MGy) =o(M°G, M’ GY) @ o(M'Gi, M'G)).
Let 77 be a vector space over D equipped with a sesquilinear form (,),, 7>
be a vector space over D equipped with a sesquilinear form (,),. Suppose one
sesquilinear form is #-Hermitian and the other is #-skew Hermitian. Let G; be the

isometry group of (,),. Let V = Homp(V,V>) be the space of D-linear
homomorphisms from Vi to V5.

3.1. Setup

Let ¢, eV, v;,uy eV, and v, € V>. We define a unique ¢*(v;) such that

(¢™(v2), 01); = (v2, B (1)),
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It is easy to verify that ¢™ e Homp(V>, V7). Thus, we obtain a % operation from V to
V* = Homp(V>, V7). Let aeR. Then

((@g)*(v2),01); = (v2,a¢p(v1)), = a(va, p(v1)), = a(¢*(v2),v1), = (ad*(v2),v1),;.
Therefore, the sk-operation is real linear.

Let tr(%) be the real trace of a real linear endomorphism. Since 7 and V* are real
vector spaces, we can now define a real bilinear form Q on V as follows

Q) = 1r(V*¢).

We observe that

= (" (v),01)] = —(or, P"W (1)),
Define a s*-operation on Endp (V) by
(A*ur,v1); = (uy, A(v1)), (VY A€Endp(V1)).
Then, (¢™)* = —y*¢. It follows that
Q. §) = (™) = tr((§™)7) = tr(—y*d) = —Q(¢,¥).
It is easy to verify that Q is nondegenerate. Therefore, 2 is a real symplectic form

on V.
Next we define the action of G} on V' as follows

(919)(01) = (g7 ' v1).

We observe that
(91¥)*(9190) (1), 01),

= ((919) (1), (919) (1)),

= ((g; 'w),¥(gy'v1)),

= (V" P9y w). g7 '01),;

= (W d)g; 'ur,v1);. (6)
It follows that

Qg1d, g1¥) = tr((g1)*(919)) = (g™ dgr") = r(Y*¢) = Q(¢, ).
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Therefore, G, is in Sp(V, Q). We define the action of G, on V similarly by

(920)(v1) = g29(v1).

One can verify that G, also preserves Q. In addition, the action of G; commutes with
the action of G,.

3.2. Subgroups

Let V) be a D-linear subspace of V5 such that

® (,), restricted to V) is nondegenerate;
® There exist isotropic subspaces Xy and Y9 such that

XYev)="ry;.

Let ¥} be the space of vectors perpendicular to V) with respect to (,),. Write

X° = Homp(V1,Xy), Y°= Homp(Vy, YY),

V' = Homp(Vy, V}), V°= Homp(Vy,VY).
For any ¢,y e X?,
(*dvr,ur); = (Ppv1,Yu1), =0 (v, u1€V).

Thus, Q(, ) = tr(¢*Y) = 0. X° is an isotropic subspace of (V,Q). For the same
reason, Y? is also an isotropic subspace of (¥, Q). Furthermore, we have

v=v'er’ 1r=x"g@y’

Let GY be the subgroup of G, such that GY restricted to V7} is trivial. Then GY is
isomorphic to Gy(V?Y). Let G5 be the subgroup of G, such that G, restricted to V3 is
trivial. Then G} is isomorphic to G»(V3}).

Let Q° be the restriction of Q on ¥°. Let Q' be the restriction of 2 on V. Then
Sp(V°,Q% and Sp(V’,Q) can be embedded into Sp(V,Q) diagonally. Let
GL(X°, Y°) be the subgroup of Sp(V?,Q°) stabilizing X° and Y°. Since G, and
GY act on V', we obtain a dual pair

(G1, G =Sp(V°, Q).

We denote this embedding by i°. On the other hand, since G and G} act on V', we
obtain another dual pair

(GlaGé)ESp(V,a‘Q,)
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We denote this embedding by /. Now the group G, is embedded into Sp(V, Q) by
i x i'. We denote this embedding by i.

3.3. Metaplectic covering and compatibility

For any symplectic group Sp, there is a unique nonsplit double covering MSp. We
call this the metaplectic covering. Let ¢ be the nonidentity element in MSp whose
image is the identity element in Sp. For any subgroup G of Sp, let MG be the
preimage of G under the metaplectic covering. Then every MG contains e.

Let MOSp(V°,Q°%), M'Sp(V',2') and MSp(V,Q) be the metaplectic coverings of
Sp(V°,Q%), Sp(V',2) and Sp(V,Q), respectively. Let M°, M’ and M be the
covering maps, respectively. When we consider Sp(7°,Q°) as a subgroup of
Sp(V,Q), we obtain a group MSp(V°,Q°). On the other hand, Sp(¥?,Q°) has its
own metaplectic covering, namely, M°Sp(V°, Q%).

Lemma 3.1 (compatibility). The group MSp(V°,Q°) is isomorphic to M°Sp(V°, Q°).

Proof. It suffices to show that MSp(V°, Q") does not split. Suppose MSp(V°, Q)
splits. Let K be a maximal compact subgroup of Sp(V,Q) such that K° =
KnSp(V°, Q% is a maximal compact subgroup of Sp(¥?,Q%). Then MK? splits. On
the other hand, K can be identified with a unitary group U. The metaplectic covering
of U can be represented by

{(¢,9) | & = detg,ge U}.

For the subgroup K, we see that MK° must be the nontrivial double covering of K°.
It does not split. We reach a contradiction. [

This lemma basically asserts that if a smaller symplectic group is embedded in a
bigger symplectic group canonically, then the metaplectic covering on the smaller
group is compatible with the metaplectic covering on the bigger group. Let

0 (MG, M°GY) = M°Sp(V°, Q%)
be the lifting of . Let
7 (MG, MG)sMSp(V',2)
be the metaplectic lifting of /. Let
i1 (MG, MG,)= MSp(V,Q)

be the lifting of i. According to the compatibility lemma, we may consider
MOSp(V°, Q"% and M'Sp(V', Q') as subgroups of MSp(V, Q). These two subgroups
intersect. The intersection is {1,¢}.
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Consider the natural multiplication map
FiMOSp(V0, Q% x M'Sp(V', Q') MSp(V, Q).
Its kernel is {(1,1), (¢,¢)}. If ge Gy, then
i(g) = (*(9),(9) e Sp(V°, Q%) x Sp(V', @) =Sp(V. Q).
The covering group MG, is then isomorphic to the quotient

{j(¢°,9)16°eM°Gy,g' e M'Gy, M°(¢°) = g = M'(¢")}/{(1,1), (e,)}.

Lemma 3.2. Each element in MG can be expressed as j(¢°,qg') with
(¢ eM G g'eM'GI, M°(¢°) = M'(¢))
up to a factor of
{(1,1), (e, 6)}-
Lemma 3.3. A4s a group,

M°G={(g.9) | M(g) = M'(¢'),ge MGy,g'e M'Gi}/{(1, 1), (&,¢)}.

3.4. Oscillator representation as tensor product
Theorem 3.1. The representation
(MG, M"@) @ w(M'G, M'G))
restricted to
{i(¢°.9) 19" eM’Gi,g' e M'GI, M°(¢") = g = M'(¢))}
descends into (MG, MG3)| 6, -
Proof. Suppose ge MG,. Then g can be written as
(¢°,9") 19" e MG g’ e MGy, M°(¢°) = M'(¢)
up to a multiplication by
{(1,1), (&, €)}.
It is easy to see that

o(MGy, MG>)(1,1) = id = o(M° G, M’ GY)(e) ® o(M' Gy, M' G)) ().
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It follows that

o(MGy, MG,)(g) = o(M°Gi, M°G9)(¢") @ w(M' Gy, M'G))(¢).
Our theorem is proved. [

Let = be an irreducible unitary representation of MG; in the semistable
range of O(MG;,MG,) such that =(¢) = —1. Identify the representation
CU(MG] , MGz)C ®n with

o(M°G, M°GY)° ® (o(M'Gi, M'Gy)° ®).

From Lemma 3.3, ¢’e M°G, can be represented by a pair (§,¢’) up to a
multiplication of (g, ¢). Since

o(M'Gy, M'G)) (e)n(e) = id,
we can write
(0(M'G, M'Gy)*®m)(¢°) = (MG, M'G,)*(¢") @(9)-
The proof of Theorem 3.1 shows that
o(M'G,M'G,) ®n
can be regarded as a unitary representation of M°G;.
3.5. Schrddinger model of w(M°G,, M°GY)

Recall 7' =X°®Y? and both X° Y are Lagrangian in (V°,Q°). Let
GL(X°, Y°) be the subgroup of Sp(V?, Q%) stabilizing X° and Y°. Then

GL(X°, Y*)~GL(X")=GL(Y").

Let L*(X°) be a Schrodinger model of w(M°Gy, M°GY) (see [5,13]). The group
M°GL(X?, Y°) acts on L*(X?) naturally. Since G is a subgroup of GL(X?, Y?), an
element in the group M°G, can be written as

(&,9)|geGi,teC

such that the operator
(@(M°Gy, M"GY)(&,9))(x) = (g7 'x) (xeX, peLl?(X7))

is unitary.
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Consider
/MOG (@(M°Gy, M°G)) (&, 9)b, 1) (u, (0(M' Gy, M' Gy @) (&, g)v) dg d&  (7)

with u,vew(M'Gy, M'G)) ® . Since the group action of G on L?(X?) is already
unitary, ¢ is a unitary character of M°G,. Thus, EQ w(M°G,, M°GY) can be viewed
as a unitary representation of G,. Moreover,

Eo(M°Gy, M°GY) (g, &) (x) = p(g™ ).
Define
=@ (w(M'Gy, M'Gy)° ®m).

Viewing (o(M'Gy, M'G))°®mn) as a representation of M°G), my descends into a
unitary representation of Gj.

Tensor products with & here do not change the ambient spaces. However,
the group actions differ by a unitary character. Now, the integral (7) becomes a
multiple of

/ (g~ D) dx(u, mo(g)v) d. (8)
Gy X0

This integral can be expressed as orbital integral

/Gl /C”EG]\X“ /xe(@

In Part III, we will classify the generic G;-orbits in X and study each generic orbital
integral

[ ot 0wt mo)e) dx g
Gy xel

4. Part III: orbital integrals

Recall that X° = Homp(V1, XY). We need to classify the orbital structure of the
Gy-action on X°. Let m = dimp V and dimp X3 = p. If m<p, (G, G») is said to be
in the stable range. The action of G; on X is almost free. This case is already treated
in [11]. For (Gy, G) in the stable range, our approach can be simplified and indeed
coincides with Li’s approach in [11]. From now on, assume m>=p. The set of
nonsurjective homomorphisms from ¥ to X is of measure zero. Hence, we will
focus on surjective homomorphisms in X°. We denote the set of surjective
homomorphisms by X¢. Let e X{.
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4.1. The isotropic subgroup G\,

Let e, e, ..., e, be a D-linear basis for V', and f1, /2, ..., f, be a D-linear basis for
X). Then ¢ is uniquely determined by

¢(el)7 ¢(82)’ 7¢<em)

We will determine the ‘“‘generic” isotropic subgroups of the Gj-action on XOO.
Suppose ge G, stabilizes ¢. In other words,

d(u) = (99)(u) = dlg~"u)  (Yu).

This implies that ker(¢) is stabilized by g. Therefore, ker(¢)™" is also stabilized
by g.

Lemma 4.1. Let ge Gy and ¢peX). Then ¢ is fixed by g if and only if any vector in
ker(¢)™ is fixed by g.

Proof. Suppose ¢ is fixed by g. Let (v, ker ¢), = 0. We choose an arbitrary ue V.
Since ¢(g~'u) = ¢p(u), g~'u — ue ker ¢. This implies that (v,g~'u — u), = 0. Thus,
(gv,u), = (v,u), for every ueV,. It follows that gv =wv. g fixes every vector in

ve ker ¢
Conversely, suppose gv = v for any (v, ker ¢) = 0. We choose an arbitrary ue V.

Then (gv—v,u), = 0. Hence, (v,g"'u—u), =0 for every ve ker p*. From the
nondegeneracy of (,),

g 'u—ue(ker Pt =ker ¢
Therefore, ¢(g~'u — u) = 0 for every ue V. It follows that g = ¢. [

Theorem 4.1. Let ¢ be a surjective homomorphism from Vi to X3. Then the isotropic
subgroup G, is the subgroup that fixes all vectors in ker(¢)l.

The restriction of (,), onto ker ¢+ contains a null space, namely,
W = ker ¢~ ker p*. 9)

W is an isotropic subspace of V| and it may or may not be trivial. Let U be a direct
complement of W in ker ¢t ie.,

UDW =kerd™. (10)

Then (,), restricted to U is nondegenerate. Thus, (,), restricted onto Ut is a
nondegenerate sesquilinear form. Since the group G, fixes all vectors in ker ¢+ and
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Ucker ', G , can be identified with the subgroup of G;(U*) that fixes all
vectors in W.

From Egs. (9) and (10), ker ¢ is the orthogonal complement of W in U~*. From
Egs. (28) and (29) in [11], Gy, is a twisted product of Gy(ker ¢ /W) with a at most
two-step nilpotent group N.

Theorem 4.2. For orthogonal groups, we take Gy = SO(p, q). The isotropic subgroup
Gy, is a twisted product of a classical group of the same type with a at most two-step
nilpotent group N. It is always unimodular.

Proof. To show that G, is unimodular, one must show that the adjoint action of
G (ker ¢/ W) on the Lie algebra n has determinant 1. This is obvious since 1 as a G
(ker ¢ /W) module decomposes into direct sum of trivial representations and the
standard representations. [J

4.2. Generic element
The homomorphism ¢ induces an isomorphism
[p]: Vi /ker ¢ — X7.

Notice that ker ¢ can be regarded as a point in the Grassmannian % (m,m — p). We
obtain a fibration

GL,(D)— Xy —%(m,m — p).

The projection maps ¢ to ker ¢. The fiber contains all isomorphisms from V' /ker ¢
to X7. Thus, the fiber can be identified with GL,(D).

Definition 4.1. Generic elements in X° are those surjective ¢ such that

1. either (, ), restricted on ker(¢) is nondegenerate;
2. or if the above case is not possible,

dimp (ker(¢p) nker(¢)*) = 1.
Let X3, be the subset of generic elements. The subspaces ker(¢) for generic ¢ are
called generic (m — p)-subspaces. The set of generic (m — p)-subspaces is denoted by
go (ma m — p) .
Consider the following fibration,

GL,(D)— Xy — %o(m,m — p).
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Since the set %o (m,m — p) is open and dense in %(m, m — p), the set X3, is open and
dense in X{. Therefore, X is open and dense in X?.
First, suppose (, ), restricted to ker(¢) is nondegenerate. We must have

ker(¢) @ker(dp): = V.

The isotropic subgroup G, can be identified with G(ker(¢)) by restriction
according to Theorem 4.1. It is a smaller group of type G;. The group Gy, is
automatically unimodular.

Secondly, suppose

dimp (ker(¢p) nker(¢)*) = 1.

Notice that this case does not occur for O(p,q). From Theorem 4.2, G, is a
unimodular group. We obtain

Corollary 4.1. For any generic element ¢ € Xy, the isotropy subgroup G, is always
unimodular.

4.3. Averaging integral revisited

Let ©= be an irreducible unitary representation in the semistable range of
0(MG,, MG,). Recall that

T =w(M'G,M'G,)*@rn®¢

is a unitary representation of G;. Consider the integral
| ota™ 50 st ma(o)e) o, (1)
1 X

where ¢,y are K-finite vectors in L?(X°) and u, ve .

Theorem 4.3. Let 1 be an irreducible unitary representation in the semistable range of
0(MG,,MG,). Let ¢,y be in the Harish-Chandra module of o(M°Gy, M°GY). Let
u,vemy. Then the function ¢(g~'x)W(x)(u,mo(g)v) is continuous and absolutely
integrable on Gy x X°. Therefore, we have

/ g X () dx(w, molg)o) dg = / / (¢(g™ )W) (1, molg)v) dy d.
G X0 X0 JaG

From our discussion in Part II, the integral (11) is a form of the averaging integral
under the mixed model

(MG, MGy)=o(M"G;, M’ GY) @ o(M'Gi, M'G)).



H. He | Journal of Functional Analysis 199 (2003) 92-121 111

The absolute integrability of ¢(g~ ' x)y(x)(u, mo(g)v) is guaranteed by the semistable
condition (see [5]). We skip the proof.

1

4.4. Orbital integral in general

First, let me quote a simplified version of Theorem 8.36 from [10].
Theorem 4.4. Let G be a unimodular group and H be a closed unimodular subgroup of
G. Let dg and dh be their Haar measures, respectively. Then up to a scalar, there exists

a unique G-invariant measure d|gH| on G/H. Furthermore, this measure can be
normalized such that for any L' function on G,

/Gf(g) dg:/G/H /Hf(gh) dhd[gH).

Suppose 7 is a unitary representation of G, u and v are K finite vectors in 7.

Theorem 4.5. Let G be a real reductive group, and M be a G-homogeneous space.

® [et xy be a fixed base point and Gy be the isotropy group of xo. Suppose that Gy is
unimodular. Then M is isomorphic to G/Gy and possesses a G-invariant measure.
® et y: M— G be a smooth section of the principle bundle

B:Gy-G-M

except for a subset of at least codimension 1. Assume ¢(y) is an absolutely
integrable function on M. Then

waéawmwﬂw@

is well-defined.

o Assume ¢p(g~"xo)(u,t(g)v) is integrable as a function on G. Then we have

/¢wmmmw@:/@@mw@m
G Gy

Proof. (1) follows directly from Theorem 4.4 by identifying M with G/Gy. Since t is
unitary and ¢(y) is integrable, vy is well-defined, (2) is proved. Notice that
7(»)Goxo = y. We compute

/wwmmmww
G

= / B (gg0x0)(t(gg0)u, v) dgo dlgGo]
[g]EG/G() G()
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/ o0) / (e(2()g0)u,v) dgo dy
yeM Gy
- / () / (e(go)ut, 2(2()~")v) dgo dy

- w0 )

- [ laomwydn. O (12)

We can further utilize the right invariance of the Haar measure on G by changing
Xp into an arbitrary xe M.

Theorem 4.6. Under the same assumptions from Theorem 4.5, suppose y(x) is an
absolutely integrable function on M. Let

wo — /M PO () uds.

Suppose the function

¢~ ) (x)(u, 2(g)0)

is in L'(G x M). Then we have
[, L ot simw o dods = [ etaohuvo do

Proof. First of all, since 7 is unitary and (x) is integrable, uy is well-defined.
According to Fubini’s theorem, we can interchange the order of integrations. We

obtain
/ / (g~ )0 (u, 1(g)v) dg dx

= [ [ sttty dg a
f,
L7

/ gx)(x(g)u, v) dg dx

(/ (g7(x)x0)(t(g)u, v) dg) dx

%\ ﬂ\
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= 1// ( / (gx0)( )71)u7 v) dg) dx by the right invariance of dg
= ( / (9%0)(x(9)x(r(x) ), v) dg) dx
/ / 7l)u, vg) dgo dx by Theorem 4.5
< ( )u dx) vo> dgo
Gy
- [ cloouo.w)dgo. T (13
Go

4.5. Orbital integral I(¢p,u, 0,)

Let O, be a generic Gy-orbit in X(?O. Then O, possesses an G-invariant measure.
Let 7 be a unitary representation in the semistable range of 0(MG,, MG,). Let us
recall some notations and facts from Part II.

1. ¢ is a central unitary character of M°G, and any element ¢° in M°G; can be
expressed as a pair (&, ¢g) with g in Gj.
2. my = w(M’Gl,M’G’z)°®n®f is a representation of Gj.

We fix a K-finite vector u in n®¢&. Let
$=2 O
i=1
with ¢! e (MG, M°GY) and ¢;ew(M'Gy, M'G)). Then we have

(P Qu,p®u),

- / (0(MGy, MGy)(3), &) (u, (g)u) di
MG,

-y /M (0(M°Gy, MOG)(6°)8%. §°)(9, @, ((M' Gy, M' Gy @ )

ij Gy

x (¢")(¢;®u)) dg”
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-3 |« . (@06, M°G) ©)(¢")¢),¢)) 9@
(MG MG, @@ B @) df
:22/ [, #4800 dx(@ @ malo) (9] @) do
fzz/ (g7 X)91() (¢ @ u,molg) (¢ @) dg dx.  (14)

First of all, due to Theorem 4.3, the above integral converges absolutely. Since X3,
is open and dense in X°,

2 /X ) / X 9l @ ol (45 Ow) dy d

[A/

converges absolutely. Due to Fubini’s Theorem, for almost all the orbits ¢ in X,
the function

¢~ )00 (x) (¢, @ u, mo(9) (¢, @u))  Virjell, s]

is absolutely integrable on @, x G;. Secondly, since {(;5?}_;':1 are rapidly decaying
functions in the Schrédinger model of w(M°Gy, M°GY), {¢}};_, are absolutely

integrable on X80~ Hence, {d)?}j:l are absolutely integrable on almost every G
orbit O,.
Take M to be an Gj-orbit (), such that

1. (;’)19 is absolutely integrable on (), for every j;
2. The function

¢~ )0 (x) (¢, ® w1, Mo () (¢, @ u))

is absolutely integrable on 0, x G for every i,j€]l,s].
Denote the orbital integral
> / 80971 X7 (x) (8] @, mol9) (6] @u)) dg dix

I(¢,u,0,). Take t to be my. Since M can be identified with G,/Gy,, G, forms a
fiber bundle over M. By local triviality, we choose a smooth section y : M — G| over
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an open dense subset of M. Then Theorem 4.6 implies

I(¢, u, (Dr)

_Z /(f ¢ (9" x) ( )@ ®@u, m0(g)(d; ®u)) dg dx

—Z/G ( [ H0mtr0) (6
/¢0 () ) (¢ ®@u) d )dgo
Z/G (mo(go)uo, uo) dgo- (15)

Here

o = / > o (¢l @u) dy

4.6. Compactly supported continuous functions

The theorems we have so far proved hold for compactly supported continuous
(not necessarily smooth) functions qﬁ?, w? as well. In fact, any compactly supported
continuous function on X can be dominated by a multiple of the Gaussian function
u(x) on X°. Therefore, the function

7 (g~ ) (x) (W ® u, mo () (¢ ® )

is always in L'(G; x X°). The rest of the argument from Part III goes through.
Again, we obtain

Theorem 4.7. Let m be a unitary representation in the semistable range of

O0(MGy, MG,). Let u be a K-finite vector in n®¢E. Let d)? be compactly supported
continuous functions on X° and ¢'e w(M'Gy, M'G)). Write

6=> '@,
i=1

Then the integral

(6 @u, p@u), —22/ /¢ (5) (6] @1 7o 9) (9 @ 1)) g v

()()
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is absolutely convergent. For almost every Gi-orbit () (except a subset of measure zero),

I(¢p,u, O) converges absolutely. Fix such an orbit O, and a base point x. Choose any
smooth section y: O, — Gy over an open dense subset of O. Let

= /( > D)) (D ®u) dy.
Then

Iwwﬂﬂ=/ (molg)uto, uo) dg.

Gix

5. Part IV: positivity and unitarity

Lemma 5.1. Suppose m is a unitary representation in R(MG,,o(MG, MG>)).
Suppose for every p€w(MG, MG>) and a fixed nonzero uen

(¢®u7¢®u)n>0'

Then (,)
unitary.

is positive semidefinite. If (,), does not vanish, Then 0( MG, MG,)(n) is

T

A similar statement can be found in [12].

Proof. If (,), vanishes, the lemma holds automatically. Suppose (,), does not
vanish. Let #, be the radical of (,),. The linear space

(ZQu) /(% (7 ®u))

must be nontrivial. Otherwise Z ®@u< #,. Since %, is a (g,, MK;)-module, by the
(91, MK, )-action,

PRn‘ = R,.

This contradicts the nonvanishing of (,),.
Observe that

(P@u)/(#:0 (2 @u))

is an admissible Harish-Chandra module of MG,.
From Theorem 7.8 [5], it must be irreducible and equivalent to Z ® n°/#,. Since

/MG (¢, 0(g9)¢)(n(g)u,u) dg=0
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for a fixed uen and any K-finite ¢, (,),|,q, induces an invariant positive definite
form on (MG, MG,)(rn). Thus (MG, MG,)(n) must be unitary. Consequently,
(,), must be positive semidefinite. [

5.1. Proof of the main theorem

Theorem 5.1. Let Z(g) be Harish-Chandra’s basic spherical function of Gj.
Suppose

1. = is a unitary representation in the semistable range of 0(MG, MG),).
2. For any x,yeG, the function E(xqgy) is integrable on Gy, for every generic

¢ e Homp(V1, X?) (see Definition 4.1).
3. mo is weakly contained in L*(G)).

¢

Then (,)
unitary.

is positive semidefinite. If (,), does not vanish, then (MG, MG,)(n) is

e

Roughly speaking, the second condition requires G, be half the “size” of G. The
first condition is redundant assuming the second and the third conditions are true.

The third conditions can be converted into a growth condition on the matrix
coefficients of x.
Proof. Let u be a fixed K-finite vector in 7® &. Write
S
S = {¢ - Z PR pleC” (XO),¢;ew(M’G1,M’G’2)}.

i=1

Let p€.%. Choose an arbitrary Gj-orbit @, in X&) such that I(¢,u, 0,) converges
absolutely. There is a canonical fiber bundle

G1Y—>G1 —>(f,L

Fix a smooth section y:0,— G; over an open dense subset of (/) such that the
closure of y(supp(¢?)) is compact for every i. Let

w=[ 3 FOmG0) )¢S dv
From Theorem 2.3, we have

/ (m0(g)1t0, o) dg 0.
Gix
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Combined with Theorem 4.7, we obtain

1(¢,u,0) =0,

weusou, = [ 1p.u0d0z0

We have thus proved that the Hermitian form (, ), restricted to & ® u is positive
semidefinite, i.e.,

/ (0(MG1, MG2) (), ¢)(u, n(§)u) dg=0
MG,

for every ¢p€&.
For an arbitrary K-finite vector f in (MG, MG,), write

f= ka )®f (flea(M'G,M'G)), flew(M'GI,M'G,)).

For each k, choose a sequence w,@ (x)e CF(X?) such that

)| < il
Y (x) = f ().

Let lﬁ(i) =Y i l//,(f) ®f}. Apparently, 1//0') e and
(w(MCh MGy)(G)Y, W) (u, 7(§)u) > (0 (MGy, MG @) .f) (u, 7(§)u)

pointwise. Furthermore,

((@(MGy, MGY) (@), ;) (u, (§)u)| < Z [(@(MGy, MG>)(3)If?|

®fk’ 1) (u, n(g)u)-

By the definition of semistable range, the function

(MG, MG | @1 P | @17) (1, m(g)u)]
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is absolutely integrable on MG, (see [5]). Hence, by dominated convergence theorem,
(f@uf@u), = lim (v @uy" eu) 0.
j—o o T

Therefore, the form (,),
considered as a form on

is positive semidefinite. If (,). does not vanish, then (),

H(MGl y MGz)(TC)
is positive definite (see [S]). We conclude that 0( MG, MG)(=) is unitary. [

For (G, G>) in the stable range, the generic isotropic group Gj, will be trivial. In
this case, if 7 is an irreducible unitary representation of MG, then (,), is positive
semidefinite and nonvanishing. This result is due to Li [11].

5.2. Gy = Spu(R)

Take G| = Sp»,(R) as an example. We can make our theorem more precise. First
let me define a partial order < in R". We say that ¢ <5 if and only if

Y4 b
=1 J=1
for all k.

Corollary 5.1. Suppose n<p<gq. Let © be an irreducible unitary representation of
MSpy,(R). Suppose for every leading exponent (see [9, Chapter 8.8]) v of m we have

R(v) — <¥ —n— l) = — p(Sp2a(R)).

Then (,), is positive semidefinite. In addition, if (,), is nonvanishing, then
H(MGl y MG2)(TC)
is unitary.

Proof. Take V; = R and X) = R""'. Then Vj} is a linear space equipped with a
nondegenerate symmetric form of signature (p —n— 1,9 —n—1). We verify the
conditions in Theorem 5.1.

® For xe Hom(V1, X?), the generic isotropic group G, is just Sp,_1(R) for n odd.
For n even, the generic G, can be identified with Sp,_»(R) x N where N ~R".
One can easily check that Z(g) for Sp,,(R) is integrable on Gj..
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® Since

R) - (20— 1)<~ p(Spa(R),

o = o(M'G, M’ G§)°®n®f has almost square integrable matrix coefficients.
According to Theorem 1 of [1], mg is weakly contained in L*(G).

® By Theorem 3.2 [11], matrix coefficients of o(MO(n + 1,n+ 1), MSp,,(R)) are in
L*7°(MSp,,(R)) for small 6>0. Since 7 is almost square integrable, the matrix
coefficients of w(MO(p,q), MSp,(R))®= are in L'=%(MG,) for small 5y>0.
Thus, = must be in the semistable range of 0(MG,, MG>).

We conclude that (,), is positive semidefinite. [

5.3. Gi=0(,q)
Similarly, we obtain

Corollary 5.2. Suppose p+ q<2n+ 1. Let © be an irreducible unitary representation
of MO(p, q). Suppose for every leading exponent v of © we have

1) — (n =220 = - p(0(p,9))
Then (,), is positive semidefinite. In addition, if (,), is nonvanishing, then
(MG, MG,)(n)
is unitary.

For p + ¢ odd, the growth condition concerning the leading exponent v can be
strengthened to allow

R e e ER )]

The proof is omitted.
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