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Abstract

In this paper, we discuss the positivity of the Hermitian form ð; Þp introduced by Li in
Invent. Math. 27 (1989) 237–255. Let ðG1;G2Þ be a type I dual pair with G1 the smaller group.

Let p be an irreducible unitary representation in the semistable range of yðMG1;MG2Þ (see
Communications in Contemporary Mathematics, Vol. 2, 2000, pp. 255–283). We prove that

the invariant Hermitian form ð; Þp is positive semidefinite under certain restrictions on the size
of G2 and a mild growth condition on the matrix coefficients of p: Therefore, if ð; Þp does not
vanish, yðMG1;MG2ÞðpÞ is unitary.
Theta correspondence over R was established by Howe in (J. Amer. Math. Soc. 2 (1989)

535–552). Li showed that theta correspondence preserves unitarity for dual pairs in stable

range. Our results generalize the results of Li for type I classical groups (Invent. Math. 27

(1989) 237). The main result in this paper can be used to construct irreducible unitary

representations of classical groups of type I.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let ðG1;G2Þ be an irreducible reductive dual pair of type I in Sp (see [7,11]). The
dual pairs in this paper will be considered as ordered. For example, the pair
ðOðp; qÞ;Sp2nðRÞÞ is considered different from the pair ðSp2nðRÞ;Oðp; qÞÞ:We will in
general assume that the size of G1ðV1Þ is less or equal to the size of G2ðV2Þ: In other
words, dimDðV1ÞpdimDðV2Þ: LetMp be the unique double covering of Sp: Let f1; eg
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be the preimage of the identity element in Sp: For a subgroupH of Sp; letMH be the
preimage of H under the double covering. Whenever we use the notation MH; H is
considered as a subgroup of certain Sp: Let oðMG1;MG2Þ be a Schrödinger model
of the oscillator representation of Mp: The Harish-Chandra module of
oðMG1;MG2Þ consists of polynomials multiplied by the Gaussian function.
Since the pair ðG1;G2Þ is ordered, we use yðMG1;MG2Þ to denote the theta

correspondence from RðMG1;oðMG1;MG2ÞÞ to RðMG2;oðMG1;MG2Þ (see [8]). In
this paper, whenever we talk about ‘‘K-finite matrix coefficients’’ or ‘‘K-finite
vectors’’ of a representation p of a real reductive group G; ‘‘K ’’ is used as a generic
term for a specified maximal compact subgroup of G: Throughout this paper, we will
mainly work within the category of Harish-Chandra modules. A representation of a
real reductive group refers to an admissible representation unless stated otherwise.
Throughout this paper, a vector in an admissible representation p means that v is in
the Harish-Chandra module of p which shall be evident within the context.
Let V be a vector space of finite dimension. Let W be a subspace of V : A direct

complement of W in V is a subspace U such that

U"W ¼ V :

Now suppose V is equipped with a nondegenerate sesquilinear form ð; Þ: The
orthogonal complement of W in V consists of

fvAV j ðv;wÞ ¼ 0 8wAWg:

It is denoted by W>:
Let p be an irreducible admissible representation of MG1 such that pðeÞ ¼ �1: p is

said to be in the semistable range of yðMG1;MG2Þ if the function

ðoðMG1;MG2Þð *g1Þf;cÞðu; pð *g1ÞvÞ ð8f;cAoðMG1;MG2Þ; 8u; vApÞ

is in L1�dðMG1Þ for all sufficiently small nonnegative d (i.e., dA½0; c
 for some c40).
We denote the semistable range by RsðMG1;oðMG1;MG2ÞÞ: Suppose from now on
that p is in RsðMG1;oðMG1;MG2ÞÞ: For each f;cAoðMG1;MG2Þ and u; vAp; we
define an averaging integralZ

MG1

ðoðMG1;MG2Þð *g1Þf;cÞðu; pð *g1ÞvÞ d *g1

and denote it by ðf#v;c#uÞp: Thus, ð; Þp becomes a real bilinear form on

oðMG1;MG2Þ#p: Our definition of ð; Þp differs slightly from the original definition
of Li in [11]. Let *g2AMG2 act on oðMG1;MG2Þ#p by oðMG1;MG2Þð *g2Þ#Id: In
[5], we show that if ð; Þpa0 then ð; Þp descends into a sesquilinear form on the K-finite

dual representation of yðMG1;MG2ÞðpÞ: For p unitary, ð; Þp is an invariant

Hermitian form on yðMG1;MG2ÞðpÞ:
For p unitary, a conjecture of Li says that ð; Þp will always be positive semidefinite

(see [11]). If Li’s conjecture holds and ð; Þpa0; then yðMG1;MG2ÞðpÞ is unitary. In
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this paper, we will prove that ð; Þp is positive semidefinite under certain restrictions.
This partly confirms the conjecture of Li. The nonvanishing of certain ð; Þp is proved
in [4] and in [6].
We adopt the notations from [5,11,12]. Let ðG1ðV1Þ;G2ðV2ÞÞ be a dual pair of

type I. Suppose V2 ¼ V 0
2"V 0

2 such that

(1) ð; Þ2 restricted onto V 0
2 is nondegenerate;

(2) V 0
2 ¼ ðV 0

2 Þ
>;

(3) V 0
2 is a direct sum of two isotropic subspaces:

V0
2 ¼ X 0

2"Y 0
2 :

Obviously, V0
2 will always be of even dimension. Let X 0 ¼ HomDðV1;X 0

2 Þ: The
oscillator representation oðMG1ðV1Þ;MG2ðV0

2 ÞÞ can be modeled on L2ðX 0Þ: The
action of MG1 on L2ðX 0Þ is equivalent to the regular action of G1 on L2ðX 0Þ
tensoring with a unitary character x of MG1: The generic orbits of G1 on X 0 are
classified abstractly in Theorems 4.1 and 4.2.

Later in this paper, the oscillator representation oðMG1ðV1Þ;MG2ðV0
2 ÞÞ is

denoted as oðM0G1;M0G0
2Þ to indicate the fact that MG1ðV1Þ in ðMG1ðV1Þ;

MGðV2ÞÞ might be different from MG1ðV1Þ in ðMG1ðV1Þ;MG2ðV 0
2 ÞÞ: For the same

reason, the oscillator representation oðMG1ðV1Þ;MG2ðV 0
2ÞÞ is denoted by

oðM 0G1;M 0G0
2Þ:

Theorem 1.1 (Main Theorem). Let ðG1;G2Þ be a dual pair. Let XðgÞ be Harish-

Chandra’s basic spherical function of G1: Suppose p is an irreducible unitary

representation of MG1 in the semistable range of OðMG1;MG2Þ: Suppose

1. for any x; yAG1; the function XðxgyÞ is integrable on G1f for every generic

fAHomDðV1;X 0
2 Þ (see Definition 4.1);

2. the tensor product p0 ¼ oðM 0G1;M 0G0
2Þ#p#%x; considered as a representation of

G1; is weakly contained in L2ðG1Þ (see [14]).

Then ð; Þp is positive semidefinite. If ð; Þp does not vanish, then yðMG1;MG2ÞðpÞ is

unitary.

Remarks.

1. oðM 0G1;M 0G0
2ÞÞ; p and %x are all projective representations of G1: The fact that p0

becomes a unitary representation of G1 is explained in Part II.
2. The first condition roughly requires that

dimDðX 0
2 Þ4

dimDðV1Þ
2

:

The precise statement depends on the groups involved. The function XðgÞjG1f is in
L1ðG1fÞ implies that XðxgyÞjG1f is in L1ðG1fÞ for any x; yAG1 and vice versa. In
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fact, XðgÞ is bounded by a multiple of XðxgyÞ and vice versa. Furthermore,
for any compact subset Y of G1; there exists a constant C; such that for any
x; yAY ;

XðxgyÞpCXðgÞ ðgAG1Þ: ð1Þ

One can prove this by studying the compact picture of the basic spherical
principle series representation (see [9, Chapter VII.1]). Since this remark may have
already been in the literature and a proof will incur a new set of notations, we
choose not to give the proof.

3. The growth of matrix coefficients of oðMG1ðV1Þ;MG2ðV 0
2ÞÞ can be determined

easily. Thus, the second condition can be converted into a growth condition on
the matrix coefficients of p (see Corollary 5.1).

4. Conditions 1 and 2 imply that p is in RsðMG1;oðMG1;MG2ÞÞ: Therefore,
ð; Þp is an invariant Hermitian form on yðMG1;MG2ÞðpÞ: The unitarity of
yðMG1;MG2ÞðpÞ follows since ð; Þp is positive semidefinite.

This paper is organized as follows. In Part I, we prove some positivity theorems in
the sense of Godement [3]. In Part II, we construct the dual pair ðG1;G2Þ in terms of
homomorphisms and study various subgroups and liftings concerning the tensor
decomposition

oðMG1;MG2ÞDoðM0G1;M0G0
2Þ#oðM 0G1;M 0G0

2Þ:

This tensor decomposition is termed as the mixed model in [11]. The interpretation

of this tensor product is not completely trivial since MG1; M0G1 and M 0G1 may be
different double coverings of G1: In Part II, we essentially redo part of Section 4 in

[11] just to be safe. In Part III, we study ðoðM0G1;M0G0
2Þ;L2ðX 0ÞÞ and classify all

the generic G1-orbits in X 0: This enables us to reduce our averaging integral
ðf#u;f#uÞp to an integral on G1-orbits:Z

OAG1\X 0

Z
G1

Z
xAO

fðg�1xÞfðxÞðu; p0ðgÞuÞ dx dg d½O
:

We study each generic orbit integralZ
G1

Z
xAO

fðg�1xÞfðxÞðu; p0ðgÞuÞ dx dg

in full generality and convert it into an integral on the isotropic group G1xZ
G1x

ðp0ðgÞu0; u0Þ dg:

Next, we apply the positivity theorem (Theorem 2.3) to show that this integral
is nonnegative. Thus ð; Þp is positive semidefinite. Finally, we take the pair
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ðOðp; qÞ;Sp2nðRÞÞ as an example and state our main theorem in terms of leading
exponents of p:

2. Part I: positivity theorems

Let G be a real reductive Lie group. Let K be a maximal compact subgroup of G:

For any unitary representation ðp;HÞ of G and any sAK̂; let Hs be the K-isotypic

subspace of H: Let dðsÞ be the dimension of s: Let S be a subset of K̂: We denote

"
sAS

Hs

by HðSÞ:

2.1. A generic theorem

Theorem 2.1. Let G be a real reductive Lie group. Let K be a maximal compact

subgroup of G. Let XðgÞ be Harish-Chandra’s basic spherical function with respect to

K. Let H be a closed unimodular Lie subgroup of G. Suppose that XðgÞjH is in L1ðHÞ:
Let f be a positive definite function in L2þeðGÞðSÞ for some finite subset S of K̂ and any

e40: Then
R

H
fðhÞ dhX0:

Here L2þeðGÞðSÞ is defined with respect to the left regular action of G:

Proof. By the GNS construction, we construct a unitary representation ðs;HÞ such
that fðgÞ ¼ ðsðgÞZ; ZÞ for some cyclic vector Z inHðSÞ: Since f is a positive definite
function in L2þeðGÞ for any e40; by Theorem 1 in [1], s is weakly contained in
L2ðGÞ: Thus, there exists a sequence of convex linear combinations of diagonal
matrix coefficients of L2ðGÞðSÞ;

AiðgÞ ¼
Xli

l¼1
a
ðlÞ
i LðgÞuðlÞ

i ; u
ðlÞ
i

� �
;
Xli

l¼1
a
ðlÞ
i ¼ 1; u

ðlÞ
i AL2ðGÞðSÞ; a

ðlÞ
i X0

� �

such that

AiðgÞ-fðgÞ

uniformly on compacta. Let CcðGÞðSÞ be the space of continuous and compactly
supported functions in L2ðGÞðSÞ: Since CcðGÞðSÞ is dense in L2ðGÞðSÞ; we choose u

ðlÞ
i

to be in CcðGÞðSÞ: Notice that

AiðeÞ ¼
Xli

l¼1
a
ðlÞ
i jjuðlÞ

i jj2L2-fðeÞ ¼ jjZjj2:
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Hence fAiðeÞgNi¼1 is a bounded set. Suppose AiðeÞpC: From Theorem 2 in [1],

j LðgÞuðlÞ
i ; u

ðlÞ
i

� �
jpjjuðlÞ

i jj2L2
X
sAS

dðsÞ
 !1

2

XðgÞ:

It follows that

jAiðgÞj ¼
Xli

l¼1
a
ðlÞ
i LðgÞuðlÞ

i ; u
ðlÞ
i

� ������
�����

p
Xli

l¼1
a
ðlÞ
i jjuðlÞ

i jj2L2
X
sAS

dðsÞ
 !1=2

XðgÞ

pC
X
sAS

dðsÞ
 !1=2

XðgÞ: ð2Þ

We have proved that fðgÞ can be approximated by positive definite functions
AiðgÞ such that AiðgÞ are uniformly bounded by a fixed multiple of XðgÞ:
Now consider the restrictions of fðgÞ toH: From (22.2.3) in [2], for LðgÞuðlÞ

i ; u
ðlÞ
i

� �
with u

ðlÞ
i a compactly supported continuous function,Z

H

ðLðhÞuðlÞ
i ; u

ðlÞ
i Þ dhX0:

Thus,
R

H
AiðhÞ dhX0: But AiðgÞjH are bounded by a fixed multiple of an integrable

function XðgÞjH : By the dominated convergence theorem,Z
H

fðhÞ dh ¼ lim
i-N

Z
H

AiðhÞ dhX0: &

2.2. First variation

Theorem 2.2. Let G be a real reductive Lie group. Let K be a maximal

compact subgroup of G. Let H be a closed unimodular Lie subgroup of G. Let XðgÞ
be the basic spherical function of G of Harish-Chandra. Suppose that XðgÞjH is in

L1ðHÞ: Suppose ðp;HÞ is an irreducible unitary representation weakly contained in

L2ðGÞ (see [1]). Let

v ¼
Xk

i¼1

Z
M

fiðxÞpðgiðxÞÞu dx;
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where

* u is a K-finite vector in H;
* M is a smooth manifold;
* fi is continuous and is supported on a compact set XiCM;
* gi :M-G is smooth except a codimension 1 subset and the closure of giðXiÞ is

compact.

Then Z
H

ðpðhÞv; vÞ dhX0:

The basic idea is to control the function ðpðgÞv; vÞ by a convergent integral of left
and right translations of XðgÞ:

Proof. From the proof of Theorem 2.1, we have a sequence of K-finite compactly
supported continuous positive definite functions

AmðgÞ-ðpðgÞu; uÞ

uniformly on any compact subset and

jAmðgÞjpCXðgÞ:

This implies that

jAmðxgyÞjpCXðxgyÞ:

By the compactness of suppðfiÞ and the unitarity of p;

ðpðgÞv; vÞ ¼
Xk

i;j¼1

Z
MM

fiðxÞfjðyÞðpðggiðxÞÞu; pðgjðyÞÞuÞ dx dy:

Since the closure of giðXiÞ is compact, the closure of gjðXjÞ�1ggiðXiÞ is compact for
every gAG: By the inequality 1, for any m;

Xk

i;j¼1

Z
MM

fiðxÞfjðyÞAmðgjðyÞ�1ggiðxÞÞÞ dx dy

�����
�����

pC
Xk

i;j¼1

Z
MM

jfiðxÞjjfjðyÞjXðgjðyÞ�1ggiðxÞÞÞ dx dy

pC1XðgÞ ð3Þ
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for some C140: Furthermore,

Xk

i;j¼1

Z
MM

fiðxÞfjðyÞAmðgjðyÞ�1ggiðxÞÞ dx dy-ðpðgÞv; vÞ

pointwisely as m-N: By the dominated convergence theorem,

Z
H

ðpðhÞv; vÞ dh ¼ lim
m-N

Z
H

Xk

i;j¼1

Z
MM

fiðxÞfjðyÞAmðgjðyÞ
�1

hgiðxÞÞÞ dx dy dh:

But

AmðgÞ ¼
Xlm
l¼1

aðlÞ
m LðgÞuðlÞ

m ; uðlÞ
m

� �
:

For each l;

Z
H

Xk

i;j¼1

Z
MM

fiðxÞfjðyÞ L gjðyÞ
�1

hgiðxÞ
� �

uðlÞ
m ; uðlÞ

m

� �
dx dy dh

¼
Z

H

LðhÞ
Xk

i¼1

Z
M

fiðxÞLðgiðxÞÞuðlÞ
m dx

" #
;
Xk

i¼1

Z
M

fiðxÞLðgiðxÞÞuðlÞ
m dx

" # !
dh

X0 ð4Þ

because
Pk

i¼1
R

M
fiðxÞLðgiðxÞÞu

ðlÞ
m dx is a continuous and compactly supported

function on G: Hence for every m;

Z
H

Xk

i;j¼1

Z
MM

fiðxÞfjðyÞAmðgjðyÞ
�1

hgiðxÞÞ dx dy dhX0:

It follows that Z
H

ðpðhÞv; vÞ dhX0: &

2.3. Second variation

Theorem 2.3. Let G be a real reductive Lie group. Let K be a maximal

compact subgroup of G. Let H be a closed unimodular Lie subgroup of G. Let XðgÞ
be the basic spherical function of G of Harish-Chandra. Suppose that XðgÞjH is in

L1ðHÞ: Suppose ðp;HÞ is an irreducible unitary representation weakly contained in
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L2ðGÞ (see [1,14]). Let

v ¼
Xn

i¼1

Z
M

fiðxÞpðgiðxÞÞui dx;

where

* ui are K-finite vectors in H;
* M is a smooth manifold;
* fi is continuous and is supported on a compact subset XiCM;
* gi :M-G is smooth except a codimension 1 subset and the closure of giðXiÞ is

compact.

Then Z
H

ðpðhÞv; vÞ dhX0:

The only difference from Theorem 2.2 is

v ¼
Xn

i¼1

Z
M

fiðxÞpðgiðxÞÞui dx

instead of

v ¼
Xn

i¼1

Z
M

fiðxÞpðgiðxÞÞu dx:

Proof. Let V be the linear span of

fpðkÞui j iA½1; n
; kAKg:

Since ui are K-finite, V is a finite-dimensional representation of K : Let u be
a K-cyclic vector in V : Let CðKÞ be the space of continuous functions on K:
Consider the action of CðKÞ on u:

pð f Þu ¼
Z

K

f ðkÞpðkÞu dk:

Apparently, pðCðKÞÞu ¼ V : Let

ui ¼
Z

K

fiðkÞpðkÞu dk:
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Then

v ¼
Xn

i¼1

Z
M

fiðxÞpðgiðxÞÞui dx

¼
Xn

i¼1

Z
M

fiðxÞpðgiðxÞÞ
Z

K

fiðkÞpðkÞu dk dx

¼
Xn

i¼1

Z
M

Z
K

fiðxÞfiðkÞpðgiðxÞkÞu dx dk: ð5Þ

Apply Theorem 2.2 to functions fiðxÞfiðkÞ on M  K and

gni : ðx; kÞAM  K-giðxÞkAG:

The conclusion follows immediately. &

Conjecture 1. Let G be a real reductive group. Let K be a maximal compact subgroup

of G. Let XðgÞ be Harish-Chandra’s basic spherical function. Let H be a subgroup of G

such that XðgÞjH is in L1ðHÞ: Let fðgÞ be a positive definite continuous function

bounded by XðgÞ: Then
R

H
fðhÞ dhX0:

3. Part II: dual pairs and mixed model

The basic theory on the mixed model of the oscillator representation is
qcovered in [11] with reference to an unpublished note of Howe. We redo part of
Section 4 of [11] with emphasis on the actions of various coverings of G1 regarding
the mixed model

oðMG1;MG2ÞDoðM0G1;M0G0
2Þ#oðM 0G1;M 0G0

2Þ:

Let V1 be a vector space over D equipped with a sesquilinear form ð; Þ1; V2
be a vector space over D equipped with a sesquilinear form ð; Þ2: Suppose one
sesquilinear form is x-Hermitian and the other is x-skew Hermitian. Let Gi be the
isometry group of ð; Þi: Let V ¼ HomDðV1;V2Þ be the space of D-linear

homomorphisms from V1 to V2:

3.1. Setup

Let f;cAV ; v1; u1AV1 and v2AV2: We define a unique f
nðv2Þ such that

ðfnðv2Þ; v1Þ1 ¼ ðv2;fðv1ÞÞ2:
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It is easy to verify that fnAHomDðV2;V1Þ: Thus, we obtain a n operation from V to

Vn ¼ HomDðV2;V1Þ: Let aAR: Then

ððafÞnðv2Þ; v1Þ1 ¼ ðv2; afðv1ÞÞ2 ¼ aðv2;fðv1ÞÞ2 ¼ aðfnðv2Þ; v1Þ1 ¼ ðafnðv2Þ; v1Þ1:

Therefore, the n-operation is real linear.

Let trðnÞ be the real trace of a real linear endomorphism. Since V and Vn are real
vector spaces, we can now define a real bilinear form O on V as follows

Oðf;cÞ ¼ trðcnfÞ:

We observe that

ðcnfðv1Þ; v01Þ1 ¼ðfðv1Þ;cðv01ÞÞ2 ¼ 7ðcðv01Þ;fðv1ÞÞ
x
2

¼7ðfncðv01Þ; v1Þx1 ¼ �ðv1;fncðv01ÞÞ1:

Define a n-operation on EndDðV1Þ by

ðAnu1; v1Þ1 ¼ ðu1;Aðv1ÞÞ1 ð8 AAEndDðV1ÞÞ:

Then, ðfncÞn ¼ �cnf: It follows that

Oðc;fÞ ¼ trðfncÞ ¼ trððfncÞnÞ ¼ trð�cnfÞ ¼ �Oðf;cÞ:

It is easy to verify that O is nondegenerate. Therefore, O is a real symplectic form
on V :
Next we define the action of G1 on V as follows

ðg1fÞðv1Þ ¼ fðg�1
1 v1Þ:

We observe that

ððg1cÞnðg1fÞðu1Þ; v1Þ1

¼ ððg1fÞðu1Þ; ðg1cÞðv1ÞÞ2

¼ ðfðg�1
1 u1Þ;cðg�1

1 v1ÞÞ2

¼ ðcnfðg�1
1 u1Þ; g�1

1 v1Þ1

¼ ðg1ðcnfÞg�1
1 u1; v1Þ1: ð6Þ

It follows that

Oðg1f; g1cÞ ¼ trððg1cÞnðg1fÞÞ ¼ trðg1cnfg�1
1 Þ ¼ trðcnfÞ ¼ Oðf;cÞ:
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Therefore, G1 is in SpðV ;OÞ: We define the action of G2 on V similarly by

ðg2fÞðv1Þ ¼ g2fðv1Þ:

One can verify that G2 also preserves O: In addition, the action of G1 commutes with
the action of G2:

3.2. Subgroups

Let V0
2 be a D-linear subspace of V2 such that

* ð; Þ2 restricted to V 0
2 is nondegenerate;

* There exist isotropic subspaces X 0
2 and Y 0

2 such that

X 0
2"Y 0

2 ¼ V 0
2 :

Let V 0
2 be the space of vectors perpendicular to V 0

2 with respect to ð; Þ2: Write

X 0 ¼HomDðV1;X 0
2 Þ; Y 0 ¼ HomDðV1;Y 0

2 Þ;

V 0 ¼HomDðV1;V 0
2Þ; V0 ¼ HomDðV1;V 0

2 Þ:

For any f;cAX 0;

ðcnfv1; u1Þ1 ¼ ðfv1;cu1Þ2 ¼ 0 ðv1; u1AV1Þ:

Thus, Oðc;fÞ ¼ trðfncÞ ¼ 0: X 0 is an isotropic subspace of ðV ;OÞ: For the same
reason, Y 0 is also an isotropic subspace of ðV ;OÞ: Furthermore, we have

V ¼ V 0"V0; V 0 ¼ X 0"Y 0:

Let G0
2 be the subgroup of G2 such that G0

2 restricted to V 0
2 is trivial. Then G0

2 is

isomorphic to G2ðV 0
2 Þ: Let G0

2 be the subgroup of G2 such that G0
2 restricted to V 0

2 is

trivial. Then G0
2 is isomorphic to G2ðV 0

2Þ:
Let O0 be the restriction of O on V 0: Let O0 be the restriction of O on V 0: Then

SpðV 0;O0Þ and SpðV 0;O0Þ can be embedded into SpðV ;OÞ diagonally. Let

GLðX 0;Y 0Þ be the subgroup of SpðV 0;O0Þ stabilizing X 0 and Y 0: Since G1 and

G0
2 act on V 0; we obtain a dual pair

ðG1;G0
2ÞDSpðV 0;O0Þ:

We denote this embedding by i0: On the other hand, since G1 and G0
2 act on V 0; we

obtain another dual pair

ðG1;G0
2ÞDSpðV 0;O0Þ:
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We denote this embedding by i0: Now the group G1 is embedded into SpðV ;OÞ by
i0  i0: We denote this embedding by i:

3.3. Metaplectic covering and compatibility

For any symplectic group Sp; there is a unique nonsplit double covering MSp:We
call this the metaplectic covering. Let e be the nonidentity element in MSp whose
image is the identity element in Sp: For any subgroup G of Sp; let MG be the
preimage of G under the metaplectic covering. Then every MG contains e:
Let M0SpðV0;O0Þ; M 0SpðV 0;O0Þ and MSpðV ;OÞ be the metaplectic coverings of

SpðV 0;O0Þ; SpðV 0;O0Þ and SpðV ;OÞ; respectively. Let M0; M 0 and M be the

covering maps, respectively. When we consider SpðV 0;O0Þ as a subgroup of

SpðV ;OÞ; we obtain a group MSpðV 0;O0Þ: On the other hand, SpðV 0;O0Þ has its
own metaplectic covering, namely, M0SpðV0;O0Þ:

Lemma 3.1 (compatibility). The group MSpðV0;O0Þ is isomorphic to M0SpðV0;O0Þ:

Proof. It suffices to show that MSpðV 0;O0Þ does not split. Suppose MSpðV 0;O0Þ
splits. Let K be a maximal compact subgroup of SpðV ;OÞ such that K0 ¼
K-SpðV0;O0Þ is a maximal compact subgroup of SpðV 0;O0Þ: Then MK0 splits. On
the other hand, K can be identified with a unitary group U : The metaplectic covering
of U can be represented by

fðx; gÞ j x2 ¼ det g; gAUg:

For the subgroup K0; we see thatMK0 must be the nontrivial double covering of K0:
It does not split. We reach a contradiction. &

This lemma basically asserts that if a smaller symplectic group is embedded in a
bigger symplectic group canonically, then the metaplectic covering on the smaller
group is compatible with the metaplectic covering on the bigger group. Let

*i0 : ðM0G1;M0G0
2ÞDM0SpðV 0;O0Þ

be the lifting of i0: Let

*i0 : ðM 0G1;M 0G0
2ÞDM 0SpðV 0;O0Þ

be the metaplectic lifting of i0: Let

ĩ : ðMG1;MG2ÞDMSpðV ;OÞ

be the lifting of i: According to the compatibility lemma, we may consider

M0SpðV 0;O0Þ and M 0SpðV 0;O0Þ as subgroups of MSpðV ;OÞ: These two subgroups
intersect. The intersection is f1; eg:
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Consider the natural multiplication map

j :M0SpðV 0;O0Þ  M 0SpðV 0;O0Þ-MSpðV ;OÞ:

Its kernel is fð1; 1Þ; ðe; eÞg: If gAG1; then

iðgÞ ¼ ði0ðgÞ; i0ðgÞÞASpðV 0;O0Þ  SpðV 0;O0ÞDSpðV ;OÞ:

The covering group MG1 is then isomorphic to the quotient

f jðg0; g0Þ j g0AM0G1; g0AM 0G1;M0ðg0Þ ¼ g ¼ M 0ðg0Þg=fð1; 1Þ; ðe; eÞg:

Lemma 3.2. Each element in MG1 can be expressed as jðg0; g0Þ with

ðg0AM0G1; g0AM 0G1;M0ðg0Þ ¼ M 0ðg0ÞÞ

up to a factor of

fð1; 1Þ; ðe; eÞg:

Lemma 3.3. As a group,

M0G1Dfðg; g0Þ j MðgÞ ¼ M 0ðg0Þ; gAMG1; g0AM 0G1g=fð1; 1Þ; ðe; eÞg:

3.4. Oscillator representation as tensor product

Theorem 3.1. The representation

oðM0G1;M0G0
2Þ#oðM 0G1;M 0G0

2Þ

restricted to

f jðg0; g0Þ j g0AM0G1; g0AM 0G1;M0ðg0Þ ¼ g ¼ M 0ðg0Þg

descends into oðMG1;MG2ÞjMG1
:

Proof. Suppose gAMG1: Then g can be written as

ðg0; g0Þ j g0AM0G1; g0AM 0G1;M0ðg0Þ ¼ M 0ðg0Þ

up to a multiplication by

fð1; 1Þ; ðe; eÞg:

It is easy to see that

oðMG1;MG2Þð1; 1Þ ¼ id ¼ oðM0G1;M0G0
2ÞðeÞ#oðM 0G1;M 0G0

2ÞðeÞ:
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It follows that

oðMG1;MG2ÞðgÞ ¼ oðM0G1;M
0G0

2Þðg0Þ#oðM 0G1;M 0G0
2Þðg0Þ:

Our theorem is proved. &

Let p be an irreducible unitary representation of MG1 in the semistable
range of yðMG1;MG2Þ such that pðeÞ ¼ �1: Identify the representation

oðMG1;MG2Þc#p with

oðM0G1;M0G0
2Þ
c#ðoðM 0G1;M 0G0

2Þ
c#pÞ:

From Lemma 3.3, g0AM0G1 can be represented by a pair ð *g; g0Þ up to a
multiplication of ðe; eÞ: Since

oðM 0G1;M 0G0
2Þ
cðeÞpðeÞ ¼ id;

we can write

ðoðM 0G1;M 0G0
2Þ
c#pÞðg0Þ ¼ oðM 0G1;M 0G0

2Þ
cðg0Þ#pðgÞ:

The proof of Theorem 3.1 shows that

oðM 0G1;M 0G0
2Þ
c#p

can be regarded as a unitary representation of M0G1:

3.5. Schrödinger model of oðM0G1;M0G0
2Þ

Recall V0 ¼ X 0"Y 0 and both X 0;Y 0 are Lagrangian in ðV 0;O0Þ: Let
GLðX 0;Y 0Þ be the subgroup of SpðV 0;O0Þ stabilizing X 0 and Y 0: Then

GLðX 0;Y 0ÞDGLðX 0ÞDGLðY 0Þ:

Let L2ðX 0Þ be a Schrödinger model of oðM0G1;M0G0
2Þ (see [5,13]). The group

M0GLðX 0;Y 0Þ acts on L2ðX 0Þ naturally. Since G1 is a subgroup of GLðX 0;Y 0Þ; an
element in the group M0G1 can be written as

ðx; gÞ j gAG1; xAC

such that the operator

ðoðM0G1;M0G0
2Þðx; gÞfÞðxÞ ¼ xfðg�1xÞ ðxAX 0;fAL2ðX 0ÞÞ

is unitary.
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ConsiderZ
M0G1

ðoðM0G1;M0G0
2Þðx; gÞf;cÞðu; ðoðM 0G1;M 0G0

2Þ
c#pÞðx; gÞvÞ dg dx ð7Þ

with u; vAoðM 0G1;M 0G0
2Þ#p: Since the group action of G1 on L2ðX 0Þ is already

unitary, x is a unitary character of M0G1: Thus, %x#oðM0G1;M0G0
2Þ can be viewed

as a unitary representation of G1: Moreover,

%xoðM0G1;M0G0
2Þðg; xÞfðxÞ ¼ fðg�1xÞ:

Define

p0 ¼ %x#ðoðM 0G1;M 0G0
2Þ
c#pÞ:

Viewing ðoðM 0G1;M 0G0
2Þ
c#pÞ as a representation of M0G1; p0 descends into a

unitary representation of G1:

Tensor products with %x here do not change the ambient spaces. However,
the group actions differ by a unitary character. Now, the integral (7) becomes a
multiple of Z

G1

Z
X 0

fðg�1xÞcðxÞ dxðu; p0ðgÞvÞ dg: ð8Þ

This integral can be expressed as orbital integralZ
G1

Z
OAG1\X 0

Z
xAO

:

In Part III, we will classify the generic G1-orbits in X 0 and study each generic orbital
integral Z

G1

Z
xAO

fðg�1xÞcðxÞðu; p0ðgÞvÞ dx dg:

4. Part III: orbital integrals

Recall that X 0 ¼ HomDðV1;X 0
2 Þ: We need to classify the orbital structure of the

G1-action on X 0: Let m ¼ dimD V1 and dimD X 0
2 ¼ p: If mpp; ðG1;G2Þ is said to be

in the stable range. The action of G1 on X 0 is almost free. This case is already treated
in [11]. For ðG1;G2Þ in the stable range, our approach can be simplified and indeed
coincides with Li’s approach in [11]. From now on, assume mXp: The set of

nonsurjective homomorphisms from V1 to X 0
2 is of measure zero. Hence, we will

focus on surjective homomorphisms in X 0: We denote the set of surjective

homomorphisms by X 0
0 : Let fAX 0

0 :
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4.1. The isotropic subgroup G1f

Let e1; e2;y; em be a D-linear basis for V1; and f1; f2;y; fp be a D-linear basis for

X 0
2 : Then f is uniquely determined by

fðe1Þ;fðe2Þ;y;fðemÞ:

We will determine the ‘‘generic’’ isotropic subgroups of the G1-action on X 0
0 :

Suppose gAG1 stabilizes f: In other words,

fðuÞ ¼ ðgfÞðuÞ ¼ fðg�1uÞ ð8uÞ:

This implies that kerðfÞ is stabilized by g: Therefore, kerðfÞ> is also stabilized
by g:

Lemma 4.1. Let gAG1 and fAX 0
0 : Then f is fixed by g if and only if any vector in

kerðfÞ> is fixed by g.

Proof. Suppose f is fixed by g: Let ðv; ker fÞ1 ¼ 0: We choose an arbitrary uAV1:

Since fðg�1uÞ ¼ fðuÞ; g�1u � uA ker f: This implies that ðv; g�1u � uÞ1 ¼ 0: Thus,
ðgv; uÞ1 ¼ ðv; uÞ1 for every uAV1: It follows that gv ¼ v: g fixes every vector in

vA ker f>:
Conversely, suppose gv ¼ v for any ðv; ker fÞ ¼ 0: We choose an arbitrary uAV1:

Then ðgv � v; uÞ1 ¼ 0: Hence, ðv; g�1u � uÞ1 ¼ 0 for every vA ker f>: From the

nondegeneracy of ð; Þ1;

g�1u � uAðker f>Þ> ¼ ker f

Therefore, fðg�1u � uÞ ¼ 0 for every uAV1: It follows that gf ¼ f: &

Theorem 4.1. Let f be a surjective homomorphism from V1 to X 0
2 : Then the isotropic

subgroup G1f is the subgroup that fixes all vectors in kerðfÞ>:

The restriction of ð; Þ1 onto ker f> contains a null space, namely,

W ¼ ker f- ker f>: ð9Þ

W is an isotropic subspace of V1 and it may or may not be trivial. Let U be a direct

complement of W in ker f>; i.e.,

U"W ¼ ker f>: ð10Þ

Then ð; Þ1 restricted to U is nondegenerate. Thus, ð; Þ1 restricted onto U> is a

nondegenerate sesquilinear form. Since the group G1f fixes all vectors in ker f> and
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UDker f>; G1f can be identified with the subgroup of G1ðU>Þ that fixes all
vectors in W :

From Eqs. (9) and (10), ker f is the orthogonal complement of W in U>: From
Eqs. (28) and (29) in [11], G1f is a twisted product of G1ðker f=WÞ with a at most
two-step nilpotent group N:

Theorem 4.2. For orthogonal groups, we take G1 ¼ SOðp; qÞ: The isotropic subgroup

G1f is a twisted product of a classical group of the same type with a at most two-step

nilpotent group N. It is always unimodular.

Proof. To show that G1f is unimodular, one must show that the adjoint action of

G1ðker f=WÞ on the Lie algebra n has determinant 1: This is obvious since n as a G1
(ker f=W ) module decomposes into direct sum of trivial representations and the
standard representations. &

4.2. Generic element

The homomorphism f induces an isomorphism

½f
 :V1=ker f-X 0
2 :

Notice that ker f can be regarded as a point in the Grassmannian Gðm;m � pÞ: We
obtain a fibration

GLpðDÞ-X 0
0-Gðm;m � pÞ:

The projection maps f to ker f: The fiber contains all isomorphisms from V1=ker f
to X 0

2 : Thus, the fiber can be identified with GLpðDÞ:

Definition 4.1. Generic elements in X 0 are those surjective f such that

1. either ð; Þ1 restricted on kerðfÞ is nondegenerate;
2. or if the above case is not possible,

dimDðkerðfÞ-kerðfÞ>Þ ¼ 1:

Let X 0
00 be the subset of generic elements. The subspaces kerðfÞ for generic f are

called generic ðm � pÞ-subspaces. The set of generic ðm � pÞ-subspaces is denoted by
G0ðm;m � pÞ:

Consider the following fibration,

GLpðDÞ-X 0
00-G0ðm;m � pÞ:
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Since the set G0ðm;m � pÞ is open and dense in Gðm;m � pÞ; the set X 0
00 is open and

dense in X 0
0 : Therefore, X 0

00 is open and dense in X 0:

First, suppose ð; Þ1 restricted to kerðfÞ is nondegenerate. We must have

kerðfÞ"kerðfÞ> ¼ V1:

The isotropic subgroup G1f can be identified with G1ðkerðfÞÞ by restriction

according to Theorem 4.1. It is a smaller group of type G1: The group G1f is

automatically unimodular.
Secondly, suppose

dimDðkerðfÞ-kerðfÞ>Þ ¼ 1:

Notice that this case does not occur for Oðp; qÞ: From Theorem 4.2, G1f is a

unimodular group. We obtain

Corollary 4.1. For any generic element fAX 0
00; the isotropy subgroup G1f is always

unimodular.

4.3. Averaging integral revisited

Let p be an irreducible unitary representation in the semistable range of
yðMG1;MG2Þ: Recall that

p0 ¼ oðM 0G1;M 0G0
2Þ
c#p#%x

is a unitary representation of G1: Consider the integralZ
G1

Z
X 0

fðg�1xÞcðxÞ dxðu; p0ðgÞvÞ dg; ð11Þ

where f;c are K-finite vectors in L2ðX 0Þ and u; vAp0:

Theorem 4.3. Let p be an irreducible unitary representation in the semistable range of

yðMG1;MG2Þ: Let f;c be in the Harish-Chandra module of oðM0G1;M0G0
2Þ: Let

u; vAp0: Then the function fðg�1xÞcðxÞðu; p0ðgÞvÞ is continuous and absolutely

integrable on G1  X 0: Therefore, we haveZ
G1

Z
X 0

fðg�1xÞcðxÞ dxðu; p0ðgÞvÞ dg ¼
Z

X 0

Z
G1

ðfðg�1xÞcðxÞðu; p0ðgÞvÞ dg dx:

From our discussion in Part II, the integral (11) is a form of the averaging integral
under the mixed model

oðMG1;MG2ÞDoðM0G1;M0G0
2Þ#oðM 0G1;M 0G0

2Þ:
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The absolute integrability of fðg�1xÞcðxÞðu; p0ðgÞvÞ is guaranteed by the semistable
condition (see [5]). We skip the proof.

4.4. Orbital integral in general

First, let me quote a simplified version of Theorem 8.36 from [10].

Theorem 4.4. Let G be a unimodular group and H be a closed unimodular subgroup of

G. Let dg and dh be their Haar measures, respectively. Then up to a scalar, there exists

a unique G-invariant measure d½gH
 on G=H: Furthermore, this measure can be

normalized such that for any L1 function on G,Z
G

f ðgÞ dg ¼
Z

G=H

Z
H

f ðghÞ dh d½gH
:

Suppose t is a unitary representation of G; u and v are K finite vectors in t:

Theorem 4.5. Let G be a real reductive group, and M be a G-homogeneous space.

* Let x0 be a fixed base point and G0 be the isotropy group of x0: Suppose that G0 is

unimodular. Then M is isomorphic to G=G0 and possesses a G-invariant measure.
* Let g :M-G be a smooth section of the principle bundle

B :G0-G-M

except for a subset of at least codimension 1. Assume fðyÞ is an absolutely

integrable function on M. Then

v0 ¼
Z

M

fðyÞtðgðyÞ�1Þv dy

is well-defined.
* Assume fðg�1x0Þðu; tðgÞvÞ is integrable as a function on G. Then we haveZ

G

fðgx0ÞðtðgÞu; vÞ dg ¼
Z

G0

ðtðg0Þu; v0Þ dg0:

Proof. (1) follows directly from Theorem 4.4 by identifying M with G=G0: Since t is
unitary and fðyÞ is integrable, v0 is well-defined, (2) is proved. Notice that
gðyÞG0x0 ¼ y: We computeZ

G

fðgx0ÞðtðgÞu; vÞ dg

¼
Z
½g
AG=G0

Z
G0

fðgg0x0Þðtðgg0Þu; vÞ dg0 d½gG0
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¼
Z

yAM

fðyÞ
Z

G0

ðtðgðyÞg0Þu; vÞ dg0 dy

¼
Z

M

fðyÞ
Z

G0

ðtðg0Þu; tðgðyÞ�1ÞvÞ dg0 dy

¼
Z

G0

tðg0Þu;
Z

M

fðyÞtðgðyÞ�1Þv dy

� 
dg0

¼
Z

G0

ðtðg0Þu; v0Þ dg0: & ð12Þ

We can further utilize the right invariance of the Haar measure on G by changing
x0 into an arbitrary xAM:

Theorem 4.6. Under the same assumptions from Theorem 4.5, suppose cðxÞ is an

absolutely integrable function on M. Let

u0 ¼
Z

M

cðxÞtðgðxÞ�1Þu dx:

Suppose the function

fðg�1xÞcðxÞðu; tðgÞvÞ

is in L1ðG  MÞ: Then we have

Z
M

Z
G

fðg�1xÞcðxÞðu; tðgÞvÞ dg dx ¼
Z

G0

ðtðg0Þu0; v0Þ dg0:

Proof. First of all, since t is unitary and cðxÞ is integrable, u0 is well-defined.
According to Fubini’s theorem, we can interchange the order of integrations. We
obtain

Z
M

Z
G

fðg�1xÞcðxÞðu; tðgÞvÞ dg dx

¼
Z

M

Z
G

fðgxÞcðxÞðtðgÞu; vÞ dg dx

¼
Z

M

cðxÞ
Z

G

fðgxÞðtðgÞu; vÞ dg dx

¼
Z

M

cðxÞ
Z

G

fðggðxÞx0ÞðtðgÞu; vÞ dg

� 
dx
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¼
Z

M

cðxÞ
Z

G

fðgx0ÞðtðggðxÞ�1Þu; vÞ dg

� 
dx by the right invariance of dg

¼
Z

M

cðxÞ
Z

G

fðgx0ÞðtðgÞtðgðxÞ�1Þu; vÞ dg

� 
dx

¼
Z

M

cðxÞ
Z

G0

ðtðg0ÞtðgðxÞ�1Þu; v0Þ dg0 dx by Theorem 4:5

¼
Z

G0

tðg0Þ
Z

M

cðxÞtðgðxÞ�1Þu dx

� 
; v0

� 
dg0

¼
Z

G0

ðtðg0Þu0; v0Þ dg0: & ð13Þ

4.5. Orbital integral Iðf; u;OxÞ

Let Ox be a generic G1-orbit in X 0
00: Then Ox possesses an G1-invariant measure.

Let p be a unitary representation in the semistable range of yðMG1;MG2Þ: Let us
recall some notations and facts from Part II.

1. x is a central unitary character of M0G1 and any element g0 in M0G1 can be
expressed as a pair ðx; gÞ with g in G1:

2. p0 ¼ oðM 0G1;M 0G0
2Þ
c#p#%x is a representation of G1:

We fix a K-finite vector u in p#%x: Let

f ¼
Xs

i¼1
f0i #f0

i

with f0i AoðM0G1;M0G0
2Þ and f0

iAoðM 0G1;M 0G0
2Þ: Then we have

ðf#u;f#uÞp

¼
Z

MG1

ðoðMG1;MG2Þð *gÞf;fÞðu; pð *gÞuÞ d *g

¼
X

i;j

Z
M0G1

ðoðM0G1;M0G0
2Þðg0Þf0i ;f0j Þðf0

j#u; ðoðM 0G1;M 0G0
2Þ
c#pÞ

 ðg0Þðf0
i#uÞÞ dg0
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¼
X

i;j

Z
M0G1

ððoðM0G1;M0G0
2Þ#%xÞðg0Þf0i ;f

0
j Þðf

0
j#u;

ðoðM 0G1;M 0G0
2Þ
c#p#%xÞðg0Þðf0

i#uÞÞ dg0

¼ 2
X

i;j

Z
G1

Z
X 0

f0i ðg�1xÞf0j ðxÞ dxðf0
j#u; p0ðgÞðf0

i#uÞÞ dg

¼ 2
X

i;j

Z
X 0

Z
G1

f0i ðg�1xÞf0j ðxÞðf
0
j#u; p0ðgÞðf0

i#uÞÞ dg dx: ð14Þ

First of all, due to Theorem 4.3, the above integral converges absolutely. Since X 0
00

is open and dense in X 0;

2

Z
X 0
00

Z
G1

X
i;j

f0i ðg�1xÞf0j ðxÞðf
0
j#u; p0ðgÞðf0

i#uÞÞ dg dx

converges absolutely. Due to Fubini’s Theorem, for almost all the orbits Ox in X 0
00;

the function

f0i ðg�1xÞf0j ðxÞðf0
j#u; p0ðgÞðf0

i#uÞÞ 8i; jA½1; s


is absolutely integrable on Ox  G1: Secondly, since ff0j g
s
j¼1 are rapidly decaying

functions in the Schrödinger model of oðM0G1;M0G0
2Þ; ff0j g

s
j¼1 are absolutely

integrable on X 0
00: Hence, ff

0
j g

s
j¼1 are absolutely integrable on almost every G1

orbit Ox:
Take M to be an G1-orbit Ox such that

1. f0j is absolutely integrable on Ox for every j;

2. The function

f0i ðg�1xÞf0j ðxÞðf
0
j#u; p0ðgÞðf0

i#uÞÞ

is absolutely integrable on Ox  G1 for every i; jA½1; s
:

Denote the orbital integral

X
i;j

Z
Ox

Z
G1

f0i ðg�1xÞf0j ðxÞðf
0
j#u; p0ðgÞðf0

i#uÞÞ dg dx

by Iðf; u;OxÞ: Take t to be p0: Since M can be identified with G1=G1x; G1 forms a
fiber bundle over M: By local triviality, we choose a smooth section g :M-G1 over
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an open dense subset of M: Then Theorem 4.6 implies

Iðf; u;OxÞ

¼
X

i;j

Z
Ox

Z
G1

f0i ðg�1xÞf0j ðxÞðf
0
j#u; p0ðgÞðf0

i#uÞÞ dg dx

¼
X

i;j

Z
G1x

p0ðg0Þ
Z
Ox

f0j ðyÞp0ðgðyÞ
�1Þðf0

j#uÞ dy;

�
Z
Ox

f0i ðyÞp0ðgðyÞ
�1Þðf0

i#uÞ dy


dg0

¼
Z

G1x

ðp0ðg0Þu0; u0Þ dg0: ð15Þ

Here

u0 ¼
Z
Ox

X
i

f0i ðyÞp0ðgðyÞ
�1Þðf0

i#uÞ dy:

4.6. Compactly supported continuous functions

The theorems we have so far proved hold for compactly supported continuous

(not necessarily smooth) functions f0i ;c
0
i as well. In fact, any compactly supported

continuous function on X 0 can be dominated by a multiple of the Gaussian function

mðxÞ on X 0: Therefore, the function

f0i ðg�1xÞc0j ðxÞðc
0
j#u; p0ðgÞðf0

i#vÞÞ
��� ���

is always in L1ðG1  X 0Þ: The rest of the argument from Part III goes through.
Again, we obtain

Theorem 4.7. Let p be a unitary representation in the semistable range of

yðMG1;MG2Þ: Let u be a K-finite vector in p#%x: Let f0i be compactly supported

continuous functions on X 0 and f0
iAoðM 0G1;M 0G0

2Þ: Write

f ¼
Xs

i¼1
f0i #f0

i:

Then the integral

ðf#u;f#uÞp ¼ 2
X

i;j

Z
X 0
00

Z
G1

f0i ðg�1xÞf0j ðxÞðf0
j#u; p0ðgÞðf0

i#uÞÞ dg dx
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is absolutely convergent. For almost every G1-orbit O (except a subset of measure zero),
Iðf; u;OÞ converges absolutely. Fix such an orbit Ox and a base point x. Choose any

smooth section g : Ox-G1 over an open dense subset of Ox: Let

u0 ¼
Z
Ox

X
i

f0i ðyÞp0ðgðyÞ
�1Þðf0

i#uÞ dy:

Then

Iðf; u;OxÞ ¼
Z

G1x

ðp0ðgÞu0; u0Þ dg:

5. Part IV: positivity and unitarity

Lemma 5.1. Suppose p is a unitary representation in RðMG1;oðMG1;MG2ÞÞ:
Suppose for every fAoðMG1;MG2Þ and a fixed nonzero uAp

ðf#u;f#uÞpX0:

Then ð; Þp is positive semidefinite. If ð; Þp does not vanish, Then yðMG1;MG2ÞðpÞ is

unitary.

A similar statement can be found in [12].

Proof. If ð; Þp vanishes, the lemma holds automatically. Suppose ð; Þp does not
vanish. Let Rp be the radical of ð; Þp: The linear space

ðP#uÞ=ðRp-ðP#uÞÞ

must be nontrivial. Otherwise P#uDRp: Since Rp is a ðg1;MK1Þ-module, by the
ðg1;MK1Þ-action,

P#pcDRp:

This contradicts the nonvanishing of ð; Þp:
Observe that

ðP#uÞ=ðRp-ðP#uÞÞ

is an admissible Harish-Chandra module of MG2:
From Theorem 7.8 [5], it must be irreducible and equivalent to P#pc=Rp: SinceZ

MG1

ðf;oðgÞfÞðpðgÞu; uÞ dgX0
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for a fixed uAp and any K-finite f; ð; ÞpjP#u induces an invariant positive definite

form on yðMG1;MG2ÞðpÞ: Thus yðMG1;MG2ÞðpÞ must be unitary. Consequently,
ð; Þp must be positive semidefinite. &

5.1. Proof of the main theorem

Theorem 5.1. Let XðgÞ be Harish-Chandra’s basic spherical function of G1:
Suppose

1. p is a unitary representation in the semistable range of yðMG1;MG2Þ:
2. For any x; yAG1; the function XðxgyÞ is integrable on G1f for every generic

fAHomDðV1;X 0
2 Þ (see Definition 4.1).

3. p0 is weakly contained in L2ðG1Þ:

Then ð; Þp is positive semidefinite. If ð; Þp does not vanish, then yðMG1;MG2ÞðpÞ is

unitary.

Roughly speaking, the second condition requires G1f be half the ‘‘size’’ of G1: The

first condition is redundant assuming the second and the third conditions are true.
The third conditions can be converted into a growth condition on the matrix
coefficients of p:

Proof. Let u be a fixed K-finite vector in p#%x: Write

S ¼ f ¼
Xs

i¼1
f0i #f0

i j f
0
i ACN

c ðX 0Þ;f0
iAoðM 0G1;M 0G0

2Þ
( )

:

Let fAS: Choose an arbitrary G1-orbit Ox in X 0
00 such that Iðf; u;OxÞ converges

absolutely. There is a canonical fiber bundle

G1x
-G1-Ox:

Fix a smooth section g : Ox-G1 over an open dense subset of Ox such that the

closure of gðsuppðf0i ÞÞ is compact for every i: Let

u0 ¼
Z
Ox

X
i

f0i ðyÞp0ðgðyÞ
�1Þðf0

i#uÞ dy:

From Theorem 2.3, we have

Z
G1x

ðp0ðgÞu0; u0Þ dgX0:
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Combined with Theorem 4.7, we obtain

Iðf; u;OxÞX 0;

ðf#u;f#uÞp ¼
Z
OAG1\X

0
00

Iðf; u;OÞ d½O
X0:

We have thus proved that the Hermitian form ð; Þp restricted to S#u is positive

semidefinite, i.e., Z
MG1

ðoðMG1;MG2Þð *gÞf;fÞðu; pð *gÞuÞ d *gX0

for every fAS:
For an arbitrary K-finite vector f in oðMG1;MG2Þ; write

f ¼
Xs

k¼1
f 0k ðxÞ#f 0

k ð f 0k AoðM0G1;M0G0
2Þ; f 0

kAoðM 0G1;M 0G0
2ÞÞ:

For each k; choose a sequence cðjÞ
k ðxÞACN

c ðX 0Þ such that

cðjÞ
k ðxÞ

��� ���p jf ðxÞj;

cðjÞ
k ðxÞ-f ðxÞ:

Let cðjÞ ¼
Ps

k¼1 cðjÞ
k #f 0

k: Apparently, c
ðjÞAS and

oðMG1;MG2Þð *gÞcðjÞ;cðjÞ
� �

ðu; pð *gÞuÞ-ðoðMG1;MG2Þð *gÞf ; f Þðu; pð *gÞuÞ

pointwise. Furthermore,

jðoðMG1;MG2Þð *gÞcj ;cjÞðu; pð *gÞuÞjp
Xs

k;i¼1
jðoðMG1;MG2Þð *gÞjf 0k j

# f 0
k; jf 0i j#f 0

i Þðu; pð *gÞuÞj:

By the definition of semistable range, the function

jððoðMG1;MG2Þð *gÞjf 0k j#f 0
k; jf 0i j#f 0

i Þðu; pð *gÞuÞj
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is absolutely integrable onMG1 (see [5]). Hence, by dominated convergence theorem,

ð f#u; f#uÞp ¼ lim
j-N

cðjÞ#u;cðjÞ#u
� �

p
X0:

Therefore, the form ð; Þp is positive semidefinite. If ð; Þp does not vanish, then ð; Þp
considered as a form on

yðMG1;MG2ÞðpÞ

is positive definite (see [5]). We conclude that yðMG1;MG2ÞðpÞ is unitary. &

For ðG1;G2Þ in the stable range, the generic isotropic group G1f will be trivial. In

this case, if p is an irreducible unitary representation of MG1; then ð; Þp is positive
semidefinite and nonvanishing. This result is due to Li [11].

5.2. G1 ¼ Sp2nðRÞ

Take G1 ¼ Sp2nðRÞ as an example. We can make our theorem more precise. First
let me define a partial order $ in Rn: We say that a$b if and only if

Xk

j¼1
ajp

Xk

j¼1
bj

for all k:

Corollary 5.1. Suppose noppq: Let p be an irreducible unitary representation of

MSp2nðRÞ: Suppose for every leading exponent (see [9, Chapter 8.8]) v of p we have

RðvÞ � p þ q

2
� n � 1

� �
$� rðSp2nðRÞÞ:

Then ð; Þp is positive semidefinite. In addition, if ð; Þp is nonvanishing, then

yðMG1;MG2ÞðpÞ

is unitary.

Proof. Take V1 ¼ R2n and X 0
2 ¼ Rnþ1: Then V 0

2 is a linear space equipped with a

nondegenerate symmetric form of signature ðp � n � 1; q � n � 1Þ: We verify the
conditions in Theorem 5.1.

* For xAHomðV1;X 0
2 Þ; the generic isotropic group G1x

is just Spn�1ðRÞ for n odd.

For n even, the generic G1x
can be identified with Spn�2ðRÞ  N where NDRn:

One can easily check that XðgÞ for Sp2nðRÞ is integrable on G1x
:
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* Since

RðvÞ � p þ q

2
� n � 1

� �
$� rðSp2nðRÞÞ;

p0 ¼ oðM 0G1;M 0G0
2Þ
c#p#%x has almost square integrable matrix coefficients.

According to Theorem 1 of [1], p0 is weakly contained in L2ðG1Þ:
* By Theorem 3.2 [11], matrix coefficients of oðMOðn þ 1; n þ 1Þ;MSp2nðRÞÞ are in

L2�dðMSp2nðRÞÞ for small d40: Since p0 is almost square integrable, the matrix
coefficients of oðMOðp; qÞ;MSp2nðRÞÞ#p are in L1�d0ðMG2Þ for small d040:
Thus, p must be in the semistable range of yðMG1;MG2Þ:

We conclude that ð; Þp is positive semidefinite. &

5.3. G1 ¼ Oðp; qÞ

Similarly, we obtain

Corollary 5.2. Suppose p þ qp2n þ 1: Let p be an irreducible unitary representation

of MOðp; qÞ: Suppose for every leading exponent v of p we have

RðvÞ � n � p þ q

2

� �
$� rðOðp; qÞÞ:

Then ð; Þp is positive semidefinite. In addition, if ð; Þp is nonvanishing, then

yðMG1;MG2ÞðpÞ

is unitary.

For p þ q odd, the growth condition concerning the leading exponent v can be
strengthened to allow

RðvÞ � n � p þ q � 1
2

� 
$� rðOðp; qÞÞ:

The proof is omitted.
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(1948) 1–84.

[4] H.L. He, Howe’s rank and dual pair correspondence in semistable range, M.I.T. Thesis, 1998.

[5] H. He, Theta correspondence I–semistable range: construction and irreducibility, Communications in

Contemporary Mathematics 2 (2000) 255–283.

[6] H. He, Nonvanishing of certain sesquilinear form in theta correspondence, Represent. Theory 5

(2001) 437–454.

[7] R. Howe, y-series and invariant theory, Proc. Symp. Pure Math. 33 (1979) 275–285.
[8] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989) 535–552.

[9] A. Knapp, Representation Theory on Semisimple Groups: An Overview Based on Examples,

Princeton University Press, Princeton, NJ, 1986.

[10] A. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Basel, 1996.
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