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Recently, a new nonlinear conjugate gradient scheme was developed which satisfies the descent

condition gT
kdk ≤ − 7

8
‖gk‖2 and which is globally convergent whenever the line search fulfills

the Wolfe conditions. This article studies the convergence behavior of the algorithm; extensive

numerical tests and comparisons with other methods for large-scale unconstrained optimization

are given.
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1. INTRODUCTION

In Hager and Zhang [2005] we introduce a new nonlinear conjugate gradient
method for solving an unconstrained optimization problem

min { f (x) : x ∈ R
n}, (1)

where f : R
n �→ R is continuously differentiable. Here, we investigate the nu-

merical performance of the algorithm and show how it relates to previous con-
jugate gradient research. The iterates xk , k ≥ 0, in conjugate gradient methods
satisfy the recurrence

xk+1 = xk + αkdk ,
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where the stepsize αk is positive, and the directions dk are generated by the
rule:

dk+1 = −gk+1 + βkdk , d0 = −g0. (2)

Here, gk = ∇ f (xk)T where the gradient ∇ f (xk) of f at xk is a row vector,
and gk is a column vector. There are many different versions of the conjugate
gradient method corresponding to different choices of βk . When f is quadratic
and αk is chosen to minimize f in the search direction dk , these choices are all
equivalent, but for a general nonlinear function, different choices have quite
different convergence properties.

The history of the conjugate gradient method, surveyed in Golub and O’leary
[1989], begins with the research of Cornelius Lanczos, Magnus Hestenes, and
others (Forsythe, Motzkin, Rosser, and Stein) at the Institute for Numerical
Analysis (National Applied Mathematics Laboratories of the United States Na-
tional Bureau of Standards in Los Angeles), and with the independent research
of Eduard Stiefel at Eidg. Technische Hochschule Zürich. In the seminal work
of Hestenes and Stiefel [1952], the algorithm is presented as an approach to
solve symmetric, positive definite linear systems. Advantages of the conjugate
gradient method are its low memory requirements and its convergence speed.

In 1964, the domain of application of conjugate gradient methods was ex-
tended to nonlinear problems, starting with the seminal research of Fletcher
and Reeves [1964]. In their work, the stepsize αk is obtained by a line search in
the search direction dk , and the update parameter βk is given by

βFR
k = ‖gk+1‖2

‖gk‖2
,

where ‖ · ‖ denotes the Euclidean norm. Daniel [1967] gave the following choice
for the update parameter:

βD
k = gT

k+1∇2 f (xk)dk

dT
k∇2 f (xk)dk

,

where ∇2 f is the Hessian of f . This choice for βk requires evaluation of both
the gradient and the Hessian in each step, which can be impractical in many
applications, while the Fletcher-Reeves formula only requires the gradient in
each step.

Global convergence of the Fletcher-Reeves scheme was established for an
exact line search [Powell 1984] or for an inexact line search [Al-Baali 1985].
However, Powell [1977] observed that in some cases jamming occurred; that
is, the search directions dk became nearly orthogonal to the gradient gk . Polak
and Ribière [1969] and Polyak [1969] gave a modification of the Fletcher-Reeves
update which addressed the jamming phenomenon that would be pointed out
in Powell [1977]. Their choice for the update parameter was

βPRP
k = yT

kgk+1

‖gk‖2
,

where yk = gk+1 − gk . When jamming occurs gk+1 ≈ gk , βPRP
k ≈ 0, and dk+1 ≈

−gk+1. In other words, when jamming occurs, the search direction is no longer
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orthogonal to the gradient, but aligned with the negative gradient. This built-
in restart feature of the PRP method often gave more rapid convergence when
compared to the FR scheme.

The work of Hestenes and Stiefel [1952] presents a choice for βk closely
related to the PRP scheme:

βHS
k = yT

kgk+1

yT
kdk

. (3)

If αk is obtained by an exact line search, then by (2) and the orthogonality
condition gT

k+1dk = 0, we have

yT
kdk = (gk+1 − gk)Tdk = −gT

kdk = gT
kgk .

Hence, βHS
k = βPRP

k when αk is obtained by an exact line search.
More recent nonlinear conjugate gradient algorithms include the conjugate

descent algorithm of Fletcher [1987], the scheme of Liu and Storey [1991], and
the scheme of Dai and Yuan [1999] (see the survey article [Hager and Zhang
2006]). The scheme of Dai and Yuan, which is used in the numerical experiments
of Section 4, corresponds to the following choice for the update parameter:

βDY
k = ‖gk+1‖2

dT
kyk

. (4)

Powell [1984] showed that the PRP method, with αk obtained by an exact
line search, can cycle infinitely without approaching a stationary point. Thus,
the PRP method addressed the jamming of the FR method, but Powell’s exam-
ple shows that in some cases PRP does not converge at all, even when the line
search is exact. To cope with possible convergence failure in the PRP scheme,
Powell [1986] suggested that βk be replaced by

βPRP+
k = max {βPRP

k , 0}.
In other words, when the βk given by PRP is negative, it is replaced by zero.
Gilbert and Nocedal [1992] proved global convergence of this PRP+ scheme.
Other ways to restrict βk in the PRP scheme are developed in Han et al. [2001]
and Wang et al. [2000].

Although the PRP+ scheme addresses both the jamming of the FR method
and the possibility of convergence failure, it interferes with the n-step conver-
gence property of the conjugate gradient method for strongly convex quadratic
functions. That is, when the conjugate gradient method is applied to a quadratic
with an exact line search, the successive iterates minimize f over an expand-
ing sequence of subspaces, leading to rapid convergence. In this case, βk > 0
for each k, however, due to rounding errors we can have βPRP

k < 0, which im-
plies that βPRP+

k = 0. Each time βk is set to zero, the conjugate gradient method
is restarted, and the expanding sequence of subspaces reinitiates with a one-
dimensional space, leading to slower convergence than would be achieved if
there was no restart.

Another important issue related to the performance of conjugate gradient
methods is the line search, which requires sufficient accuracy to ensure that the
search directions yield descent [Hager 1989]. Common criteria for line search
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accuracy are the Wolfe conditions [Wolfe 1969, 1971]:

f (xk + αkdk) − f (xk) ≤ δαkgT
kdk , (5)

gT
k+1dk ≥ σgT

kdk , (6)

where 0 < δ ≤ σ < 1. In the “strong Wolfe” conditions, (6) is replaced by
|gT

k+1dk| ≤ −σgT
kdk . It has been shown [Dai and Yuan 2000] that for the FR

scheme, the strong Wolfe conditions may not yield a direction of descent unless
σ ≤ 1/2, even for the function f (x) = λ‖x‖2, where λ > 0 is a constant. In
typical implementations of the Wolfe conditions, it is often most efficient to
choose σ close to one. Hence, the constraint σ ≤ 1/2, needed to ensure descent,
represents a significant restriction in the choice of the line search parameters.
For the PRP scheme, the strong Wolfe conditions may not yield a direction of
descent for any choice of σ ∈ (0, 1).

Now, let us consider our new conjugate gradient scheme which corresponds
to the following choice for the update parameter:

β̄N
k = max

{
βN

k , ηk
}

, where (7)

ηk = −1

‖dk‖ min{η, ‖gk‖} , (8)

βN
k = 1

dT
kyk

(
yk − 2dk

‖yk‖2

dT
kyk

)T

gk+1. (9)

Here, η > 0 is a constant. The maximization in (7) plays the role of the trunca-
tion operation in the PRP+ scheme.

We were led to the new scheme associated with (7) by deleting a term from the
search direction for the memoryless quasiNewton scheme of Perry [1977] and
Shanno [1978]. More precisely, the direction dk+1 generated by (2) with the up-
date parameter given by (9) is related to the direction dP S

k+1 of the Perry/Shanno
scheme in the following way:

dP S
k+1 = yT

ksk

‖yk‖2

(
dk+1 + dT

kgk+1

dT
kyk

yk

)
, (10)

where sk = xk+1 − xk . We show in Hager and Zhang [2005] that the dk+1

term in (10) dominates the yk term to the right when the cosine of the angle
between dk and gk+1 is sufficiently small and f is strongly convex. In this case,
the directions generated by (2) with update parameter (9) are approximately
multiples of dP S

k+1.
As shown in a survey article [Hager and Zhang 2006], the update formula

(9) is one member of a family of conjugate gradient methods with guaranteed
descent; each member of the family corresponds to a parameter θ ∈ [1/4, ∞).
Different choices for the parameter correspond to differences in the relative
importance of conjugacy versus descent. The scheme (9) corresponds to the
intermediate parameter value θ = 2.

Observe that when ηk is sufficiently small, max{βN
k , ηk} = βN

k and the direc-
tion (2) with update parameter (9) coincides with the direction (2) with update
parameter (7). We establish in Hager and Zhang [2005] a global convergence
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result for the scheme corresponding the direction (2) and update parameter (9)
when f is strongly convex. For the truncated scheme corresponding to the direc-
tion (2) and the update parameter (7), a global convergence result is established
for general functions.

The Perry/Shanno scheme, analyzed further in Powell [1977], Shanno and
Phua [1980], and Shanno [1985], has global convergence for convex functions
and an inexact line search [Shanno 1978], but in general it does not neces-
sarily converge, even when the line search is exact [Powell 1984]. Of course,
the Perry/Shanno scheme is convergent if restarts are employed, however, the
speed of convergence can decrease. Han et al. [1997] proved that if a standard
Wolfe line search is employed, then convergence to a stationary point is achieved
when lim

k→∞
‖yk‖2 = 0 and the gradient of f is Lipschitz continuous.

The new scheme (7)–(9) addresses limitations in previous conjugate gradient
schemes in the following ways:

—For a line search satisfying the second Wolfe condition (6), and for any choice
of f , the iterates satisfy the descent condition

gT
kdk ≤ −7

8
‖gk‖2. (11)

—Jamming is avoided, essentially due to the yT
kgk+1 term in the definition of

βN
k , the same term that appears in the PRP scheme.

—If our scheme is implemented with a line search that satisfies the standard
(not strong) Wolfe conditions, then the iterates are globally convergent in the
sense that lim infk→∞ ‖gk‖ = 0.

—For k large, we have β̄N
k = βN

k , assuming dk is bounded, if gk tends to zero.
Hence, there is no restart of the conjugate gradient iteration, at least for
large k, and the n-step convergence property for strongly convex quadratics
is retained.

The theorem concerning the descent properties of the new conjugate gradient
scheme given in Hager and Zhang [2005] is repeated here for convenience:

THEOREM 1. If dT
kyk �= 0 and

dk+1 = −gk+1 + τdk , d0 = −g0, (12)

for any τ ∈ [βN
k , max{βN

k , 0}], then

gT
k+1dk+1 ≤ −7

8
‖gk+1‖2. (13)

PROOF. Since d0 = −g0, we have gT
0d0 = −‖g0‖2, which satisfies (13). Sup-

pose τ = βN
k . Multiplying (12) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + βN

k gT
k+1dk

= −‖gk+1‖2 + gT
k+1dk

(
yT

kgk+1

dT
kyk

− 2
‖yk‖2gT

k+1dk

(dT
kyk)2

)
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= yT
kgk+1(dT

kyk)(gT
k+1dk) − ‖gk+1‖2(dT

kyk)2 − 2‖yk‖2(gT
k+1dk)2

(dT
kyk)2

. (14)

We apply the inequality

uTv ≤ 1

2
(‖u‖2 + ‖v‖2)

to the first term in (14) with

u = 1

2
(dT

kyk)gk+1 and v = 2(gT
k+1dk)yk

to obtain (13). On the other hand, if τ �= βN
k , then βN

k ≤ τ ≤ 0. After multiplying
(12) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk .

If gT
k+1dk ≥ 0, then (13) follows immediately, since τ ≤ 0. If gT

k+1dk < 0, then

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk ≤ −‖gk+1‖2 + βN
k gT

k+1dk

since βN
k ≤ τ ≤ 0. Hence, (13) follows by our previous analysis.

By taking τ = βN
k , we see that the directions generated by (2) and (9) are

descent directions when dT
kyk �= 0. Since ηk in (7) is negative, it follows that

β̄N
k = max

{
βN

k , ηk
} ∈ [βN

k , max{βN
k , 0}]. (15)

Hence, the direction given by (2) and (7) is a descent direction when dT
kyk �=

0. [Dai and Yuan 1999, 2001] present conjugate gradient schemes with the
property that dT

k+1gk+1 < 0 when dT
kyk > 0. If f is strongly convex or the line

search satisfies the Wolfe conditions, then dT
kyk > 0 and the Dai/Yuan schemes

yield descent. Note that in (13) we bound dT
k+1gk+1 by −(7/8)||gk+1||2, while

for the schemes of [Dai and Yuan 1999, 2001], the negativity of dT
k+1gk+1 is

established.
The assumption dT

kyk �= 0 in Theorem 1 is always fulfilled when f is strongly
convex or the line search satisfies the Wolfe condition (6). That is, by (6)

yT
kdk = (gk+1 − gk)Tdk ≥ (σ − 1)gT

kdk .

For k = 0, we have

gT
0d0 = −‖g0‖2 ≤ −7

8
‖g0‖2.

Utilizing Theorem 1 and proceeding by induction,

yT
kdk ≥ 7

8
(1 − σ )‖gk‖2 (16)

for each k ≥ 0. Hence, yT
kdk > 0 if gk �= 0.

Another algorithm related to our new conjugate gradient scheme is the
scheme of Dai and Liao [2001], where the update parameter is given by

βDL
k = 1

dT
kyk

(yk − tsk)Tgk+1. (17)
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Here, t > 0 is a constant and sk = xk+1 − xk . Numerical results are reported
in Dai and Liao [2001] for t = 0.1 and t = 1; for different choices of t, the
numerical results are quite different. The method (2) and (7) can be viewed as
an adaptive version of (17) corresponding to t = 2‖yk‖2/sT

kyk .
Our article is organized as follows: In Section 2 we summarize the conver-

gence results established in Hager and Zhang [2005] for the new conjugate gra-
dient scheme, while Section 3 discusses our implementation. The line search
utilizes a special secant step to achieve rapid convergence, while high accuracy
is achieved by replacing the Wolfe conditions by an approximation which can
be checked more reliably than ordinary Wolfe conditions in a neighborhood of
a local minimum. Finally, in Section 4 we compare the performance of the new
conjugate gradient scheme to the L-BFGS quasiNewton method [Liu and No-
cedal 1989, Nocedal 1980], the PRP+ method [Gilbert and Nocedal 1992], and
the schemes in Dai and Yuan [1999, 2001]. We use the unconstrained problems
in the CUTEr [Bongartz et al. 1995] test problem library, and the performance
profiles of Dolan and Moré [2002].

2. REVIEW OF THE CONVERGENCE ANALYSIS

In Hager and Zhang [2005] we prove two types of results. For strongly convex
functions, it is shown that for the scheme with βk = βN

k , we have

lim
k→∞

gk = 0. (18)

For more general smooth functions and βk = β̄N
k , we have

lim inf
k→∞

‖gk‖ = 0. (19)

More precisely, for the strong convergence result (18), we assume that the line
search satisfies either the Wolfe’s conditions (5)–(6), or Goldstein’s conditions
[Goldstein 1965], and that there exist constants L and μ > 0 such that

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ and (20)

μ‖x − y‖2 ≤ (∇ f (x) − ∇ f (y))(x − y),

for all x and y ∈ L, where

L = {x ∈ R
n : f (x) ≤ f (x0)}. (21)

To obtain the weak convergence result (19), we drop the strong convexity as-
sumption. Instead, we require that the line search satisfies the Wolfe conditions,
that the level set L is bounded, and that f satisfies the Lipschitz condition (20).

3. NUMERICAL IMPLEMENTATION

Our numerical implementation of the conjugate gradient scheme, based on
the update parameter (7), is called CG DESCENT. Each step of the algorithm
involves the following two operations:

—We perform a line search to move from the current iterate xk to the next
iterate xk+1; and
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—We evaluate the new search direction dk+1 in (2) using the choice (7) for the
update parameter.

In this section we explain how the stepsize αk is computed. Work focusing on the
development of efficient line search algorithms includes Lemaréchal [1981], Al-
Baali and Fletcher [1984], Moré and Sorensen [1984], Hager [1989], and Moré
and Thuente [1994]. New features of our line search include:

—an approximation to the Wolfe conditions that can be evaluated with greater
precision,

—a special secant routine that leads to a rapid reduction in the width of the
interval bracketing αk (an acceptable step), and

—a quadratic step that retains the n-step quadratic convergence property of
the conjugate gradient method.

Let α denote a scalar, and define the function

φ(α) = f (xk + αdk).

In principle, we would like to satisfy the Wolfe conditions (5)–(6). In terms of φ,
these conditions are equivalent to

δφ′(0) ≥ φ(αk) − φ(0)

αk
and φ′(αk) ≥ σφ′(0), (22)

where 0 < δ ≤ σ < 1. Numerically, the first condition in (22) is difficult to satisfy
in a neighborhood of a local minimum since φ(α) ≈ φ(0), and the subtraction
φ(αk) − φ(0) is relatively inaccurate [Hager 1988]. More precisely, we show in
Hager and Zhang [2005] that a local minimizer is evaluated with accuracy on
the order of the square root of the machine epsilon when using (22).

This leads us to introduce the approximate Wolfe conditions:

(2δ − 1)φ′(0) ≥ φ′(αk) ≥ σφ′(0), (23)

where 0 < δ < .5 and δ ≤ σ < 1. The second inequality in (23) is the same as
the second inequality in (22), which is equivalent to the second Wolfe condition
(6). Since the condition (6) is included in the approximate Wolfe conditions,
it follows from Theorem 1, (15), and (16) that the directions generated by (2)
and (9), or by (2) and (7) are descent directions when the approximate Wolfe
conditions are used in the line search.

The first inequality in (23) is obtained by replacing φ by a quadratic inter-
polant q(·) that matches φ(α) at α = 0 and φ′(α) at α = 0 and α = αk . Evaluating
the finite difference quotient in (22) using q in place of φ, we have

φ(αk) − φ(0)

αk
≈ q(αk) − q(0)

αk
= φ′(αk) + φ′(0)

2
, (24)

and after making this substitution for the difference quotient in (22), we obtain
the first inequality in (23). Since the subtraction q(αk) − q(0) is done exactly,
we circumvent the errors inherent in the original finite difference φ(αk) − φ(0).
When f is quadratic, the approximation (24) is exact and gives a more accurate
way to implement the standard Wolfe conditions.
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The code CG DESCENT allows the user to choose between three different objec-
tives in the line search:

V1. Compute a point satisfying the Wolfe conditions (22).

V2. Compute a point satisfying the approximate Wolfe conditions (23).

V3. For the initial iterations, compute a point satisfying the Wolfe conditions
(22). If at iteration k the following condition is satisfied, then switch per-
manently to the approximate Wolfe conditions:

| f (xk+1) − f (xk)| ≤ ωCk , (25)

where {
Qk = 1 + Qk−1�, Q−1 = 0,
Ck = Ck−1 + (| f (xk)| − Ck−1)/Qk , C−1 = 0.

(26)

Here, � ∈ [0, 1] is a parameter used in the averaging of the previous absolute
function values, and ω ∈ [0, 1] is a parameter used to determine when to switch
from the Wolfe to the approximate Wolfe conditions. As � approaches 0, we
give more weight to the most recent function values. As the iteration difference
| f (xk)− f (xk−1)| in (25) tends to zero, we cannot satisfy the first Wolfe condition
(5) due to numerical errors. Hence, when the difference is sufficiently small, we
switch to the approximate Wolfe conditions.

There is a fundamental difference between the computation of a point sat-
isfying the Wolfe conditions, and the computation of a point satisfying the ap-
proximate Wolfe conditions. Moré and Thuente [1994] develop an algorithm for
finding a point satisfying the Wolfe conditions that is based on computing a
local minimizer of the function ψ defined by

ψ(α) = φ(α) − φ(0) − αδφ′(0).

Since ψ(0) = 0, it is required that the local minimizer α∗ satisfy

ψ(α∗) < 0 and ψ ′(α∗) = 0.

Together, these two relations imply that the Wolfe conditions hold in a neigh-
borhood of α∗ if δ < σ .

In contrast to the Wolfe conditions (22), the approximate Wolfe conditions
(23) are satisfied at a minimizer of φ. Hence, when trying to satisfy the ap-
proximate Wolfe condition we focus on minimizing φ; when trying to satisfy the
usual Wolfe condition we focus on minimizing ψ . Although there is no theory
to guarantee convergence when using the approximate Wolfe conditions, we
pointed out earlier that there is a numerical advantage in using the approxi-
mate Wolfe conditions—we can compute local minimizers with accuracy on the
order of the machine epsilon, rather than with accuracy on the order of the
square root of the machine epsilon. We now observe that there can be a speed
advantage associated with the approximate Wolfe conditions.

Recall that the conjugate gradient method has an n-step quadratic conver-
gence property when αk is the minimum of φ(·) (see [Cohen 1972], also [Hirst
1989] for a result concerning the required accuracy in the line search mini-
mum). However, if the line search is based on the Wolfe conditions and the
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function ψ is minimized instead of φ, then the n-step quadratic convergence
property is lost.

For a general function f , the minimization of ψ when implementing the
Wolfe conditions represents an approximate minimization of f in the search
direction (due to the linear term in the definition of ψ). By focusing on the
function φ, as we do in the approximate Wolfe conditions, we usually obtain
better approximations to the minimum of f , since we are minimizing the actual
function we wish to minimize rather than an approximation to it.

We now give a detailed description of the algorithm used to generate a point
satisfying the approximate Wolfe conditions (23). The line search algorithm
represents an approach for computing a local minimizer of φ(·) on the interval
[0, ∞). The line search is terminated whenever an iterate αk is generated with
the following property:

T1. Either the original Wolfe conditions (22) are satisfied, or

T2. the approximate Wolfe conditions (23) are satisfied and

φ(αk) ≤ φ(0) + εk , (27)

where εk ≥ 0 is an estimate for the error in the value of f at iteration k.

In our code, we incorporate the following possible expressions for the error in
the function value:

εk = εCk or εk = ε, (28)

where ε is a (small) user-specified constant and Ck is an estimate for the function
value size generated by the recurrence (26). We would like to satisfy the original
Wolfe conditions, so we terminate the line search in T1 whenever they are
satisfied. However, numerically, f is flat in a neighborhood of a local minimum
and the first inequality in (22) is never satisfied. In this case, we terminate the
line search when the approximate Wolfe conditions are satisfied. Due to the
constraint (27) in T2, we only terminate the line search using the approximate
Wolfe conditions when the value of f at the accepted step is not much larger
than the value of f at the previous iterate—due to numerical errors, the value
of f at an acceptable step may be larger than the value of f at the previous
iterate. The parameter εk in (27) allows for a small growth in the value of f .

Our algorithm for computing a point that satisfies either T1 or T2 generates a
nested sequence of (bracketing) intervals. A typical interval [a, b] in the nested
sequence satisfies the following opposite slope condition:

φ(a) ≤ φ(0) + εk , φ′(a) < 0, φ′(b) ≥ 0. (29)

In Moré and Thuente [1994], the bracketing intervals used in the computation
of a point satisfying the Wolfe conditions satisfy the following relations:

ψ(a) ≤ ψ(b), ψ(a) ≤ 0, ψ ′(a)(b − a) < 0.

We prefer to use the relations (29) to describe the bracketing interval since
we view the function derivative, in finite precision arithmetic, as more reliable
than the function value in computing a local minimizer.

Given a bracketing interval [a, b] satisfying (29) and given an update point
c, we now explain how we will update the bracketing interval. The input of this
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procedure is the current bracketing interval [a, b] and a point c generated by
either a secant step, or a bisection step, as explained shortly. The output of the
procedure is the updated bracketing interval [ā, b̄]. In the interval update rules
appearing below, θ denotes a parameter in (0, 1) (θ = 1/2 corresponding to the
bisection method):1

[ā, b̄] = update (a, b, c)

U0. If c �∈ (a, b), then ā = a, b̄ = b, and return.

U1. If φ′(c) ≥ 0, then ā = a, b̄ = c, and return.

U2. If φ′(c) < 0 and φ(c) ≤ φ(0) + εk , then ā = c, b̄ = b, and return.

U3. If φ′(c) < 0 and φ(c) > φ(0) + εk , then ā = a, b̄ = c, and do the following:
a. Set d = (1 − θ )ā + θ b̄; if φ′(d ) ≥ 0, then b̄ = d and return.
b. If φ′(d ) < 0 and φ(d ) ≤ φ(0) + εk , then ā = d and go to a.
c. If φ′(d ) < 0 and φ(d ) > φ(0) + εk , then b̄ = d and go to a.

After completing U1–U3, we obtain a new interval [ā, b̄] ⊂ [a, b] whose end-
points satisfy (29). The loop embedded in U3a–U3c should terminate since the
interval width b̄− ā tends to zero, and at the endpoints, the following conditions
hold:

φ′(ā) < 0, φ(ā) ≤ φ(0) + εk

φ′(b̄) < 0, φ(b̄) > φ(0) + εk

The input c for the update routine is generated by a special secant step. If c is
obtained from a secant step based on function values at a and b, then we write

c = secant (a, b) = aφ′(b) − bφ′(a)

φ′(b) − φ′(a)
.

The secant step used in our line search, denoted secant2, is defined in the
following way:

[ā, b̄] = secant2(a, b)

S1. c = secant (a, b) and [A, B] = update (a, b, c).

S2. If c = B, then c̄ = secant (b, B).

S3. If c = A, then c̄ = secant (a, A).

S4. If c = A or c = B, then [ā, b̄] = update (A, B, c̄). Otherwise, [ā, b̄] = [A, B].

As explained in Hager and Zhang [2005], statement S1 typically updates one
side of the bracketing interval, while S4 updates the other side. The convergence
rate of secant2 is 1 + √

2 ≈ 2.4 [Hager and Zhang 2005, Thm. 3.1].
The following routine is used to generate an initial interval [a, b] satisfying

the opposite slope condition (29), beginning with the initial guess [0, c].

[a, b] = bracket (c)

B0. Initialize j = 0 and c0 = c.

1The termination rules T1–T2, the update rule U0–U3, and the secant rules S1–S4 also appear in

Hager and Zhang [2005]; they are repeated here for continuity.

ACM Transactions on Mathematical Software, Vol. 32, No. 1, March 2006.



124 • W. Hager and H. Zhang

B1. If φ′(c j ) ≥ 0, then b = c j and a = ci, where i < j is the largest integer such
that φ(ci) ≤ φ(0) + εk , and return.

B2. If φ′(c j ) < 0 and φ(c j ) > φ(0) + εk , then return after generating a and b
using U3a–c with the initialization ā = 0 and b̄ = c j .

B3. Otherwise, set c j+1 = ρc j , increment j , and go to B1.

Here, ρ > 0 is the factor by which c j grows in each step of the bracket routine.
We continue to let c j expand until either the slope φ′(c j ) becomes nonnegative,
activating B1, or the function value φ(c j ) is large enough to activate B2.

Next, we give the rules used to generate the starting guess c used by the
bracket routine. The parameter QuadStep in I1 is explained later, while ‖ · ‖∞
stands for the sup-norm (maximum absolute component of the vector).

[c] = initial (k)

I0. If k = 0 and the user does not specify the starting point in the line search,
then it is generated by the following rules:
(a) If x0 �= 0, then c = ψ0‖x0‖∞/‖g0‖∞ and return.
(b) If f (x0) �= 0, then c = ψ0| f (x0)|/‖g0‖2 and return.
(c) Otherwise, c = 1 and return.

I1. If QuadStep is true, φ(ψ1αk−1) ≤ φ(0), and the quadratic interpolant q(·)
that matches φ(0), φ′(0), and φ(ψ1αk−1) is strongly convex with a minimizer
αq , then c = αq and return.

I2. Otherwise, c = ψ2αk−1.

The rationale for the starting guesses given in I0 is the following: If f (x) ≈
d0 +d2xTx, where d2 > 0, then the minimum is attained at x = 0. The step that
yields this minimum is α = ‖x0‖∞/‖g0‖∞. Since this estimate is obviously crude,
we multiply by a small scalar ψ0 in order to keep the starting guess close to x0.
If x0 = 0, then this estimate is unsuitable, and we consider the approximation
f (x) ≈ d2xTx and the corresponding optimal step α = 2| f (x0)|/‖g0‖2. Again,
we multiply this estimate by a small scalar ψ0 in I0b. If f (x0) = 0, then this
guess is unsuitable, and we simply take c = 1.

For k > 0, we exploit the previous step αk−1 in determining the new initial
step, and we utilize a result of Hirst [1989], which is roughly the following: For
a line search done with “quadratic accuracy,” the conjugate gradient method
retains the n-step local quadratic convergence property established by Cohen
[1972]. More precisely, let q(·) denote the quadratic interpolant that matches
φ(0), φ′(0), and φ(R), and let αq denote the minimizer of q, assuming it exists.
Hirst [1989] shows that if

φ(R) ≤ φ(0) and φ(αk) ≤ φ(αq),

then the FR, PRP, HS, and D conjugate gradient schemes all preserve the n-step
quadratic convergence property. Although our new scheme was not known at
the time of Hirst’s work, we anticipate that Hirst’s analysis will apply to the
new scheme (since it is related to both the PRP and HS schemes that Hirst did
analyze).
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If the parameter QuadStep is true, then we attempt to find a point that com-
plies with the conditions needed in Hirst’s analysis of n-step quadratic conver-
gence. By Theorem 1, the current search direction is a descent direction. Hence,
a small positive R should satisfy the requirement φ(R) ≤ φ(0). More precisely,
we try R = ψ1αk−1 in I1 where 0 < ψ1 < 1. If the quadratic interpolant in I1
has no minimum or QuadStep is false, then we simply take c = ψ2αk−1, where
ψ2 > 1 since we wish to avoid expanding c further in the bracket routine.

We now give a complete statement of the line search procedure, beginning
with a list of the parameters.

Line Search/CG DESCENT Parameters

δ− range (0, .5), used in the Wolfe conditions (22) and (23)

σ− range [δ, 1), used in the Wolfe conditions (22) and (23)

ε− range [0, ∞), used in the approximate Wolfe termination (T2)

ω− range [0, 1], used in switching from Wolfe to approximate Wolfe conditions

�− range [0, 1], decay factor for Qk in the recurrence (26)

θ− range (0, 1), used in the update rules when the potential intervals [a, c]
or [c, b] violate the opposite slope condition contained in (29)

γ− range (0, 1), determines when a bisection step is performed (L2 below)

η− range (0, ∞), enters into the lower bound for βN
k in (7) through ηk

ρ− range (1, ∞), expansion factor used in the bracket rule B3.

ψ0− range (0, 1), small factor used in starting guess I0.

ψ1− range (0, 1), small factor used in I1.

ψ2− range (1, ∞), factor multiplying previous step αk−1 in I2.

Line Search Algorithm

L0. c = initial (k), [a0, b0] = bracket (c), and j = 0.

L1. [a, b] = secant2(aj , bj ).

L2. If b − a > γ (bj − aj ), then c = (a + b)/2 and [a, b] = update (a, b, c).

L3. Increment j , set [aj , bj ] = [a, b], and go to L1.

The line search is terminated whenever a point is generated satisfying T1/T2.

4. NUMERICAL COMPARISONS

In this section we compare the performance of the new conjugate gradient
method, denoted CG DESCENT, to the L-BFGS limited memory quasiNewton
method of Nocedal [1980] and Liu and Nocedal [1989], and to other conjugate
gradient methods. We considered both the PRP+ version of the conjugate gra-
dient method developed by Gilbert and Nocedal [1992] where the βk associated
with the Polak-Ribière-Polyak conjugate gradient method [Polak and Ribière
1969; Polyak 1969] is kept nonnegative, and versions of the conjugate gradient
method developed by [Dai and Yuan 1999, 2001], denoted CGDY and DYHS,
which achieve descent for any line search that satisfies the Wolfe conditions
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(5)–(6). The hybrid conjugate gradient method DYHS uses

βk = max
{
0, min

{
βHS

k , βDY
k

}}
,

where βHS
k is the choice of Hestenes-Stiefel (3) and βDY

k is defined in (4). The test
problems are the unconstrained problems in the CUTEr [Bongartz et al. 1995]
test problem library.

The L-BFGS and PRP+ codes were obtained from Jorge Nocedal’s web page.
The L-BFGS code is authored by Jorge Nocedal, while the PRP+ code is co-
authored by Guanghui Liu, Jorge Nocedal, and Richard Waltz. In the documen-
tation for the L-BFGS code, it is recommended that between three and seven
vectors be used for the memory. Hence, we chose five vectors for the memory.
The line search in both codes is a modification of subroutine CSRCH of Moré
and Thuente [1994], which employs various polynomial interpolation schemes
and safeguards in satisfying the strong Wolfe line search conditions.

We also manufactured a new L-BFGS code by replacing the Moré/Thuente
line search by the new line search presented in our article. We call this new code
L-BFGS∗. The new line search would need to be modified for use in the PRP+
code to ensure descent. Hence, we retained the Moré/Thuente line search in the
PRP+ code. Since the conjugate gradient algorithms of Dai and Yuan achieve
descent for any line search that satisfies the Wolfe conditions, we are able to
use the new line search in our experiments with CGDY and with DYHS. All
codes were written in Fortran and compiled with f77 (default compiler settings)
on a Sun workstation.

Our line search algorithm uses the following values for the parameters:

δ = .1, σ = .9, ε = 10−6, θ = .5, γ = .66, η = .01, ρ = 5,

ω = 10−3, � = .7, ψ0 = .01, ψ1 = .1, ψ2 = 2.

Our rationale for these choices was the following: The constraints on δ and σ

are 0 < δ ≤ σ < 1, and δ < .5. As δ approaches 0 and σ approaches 1, the line
search terminates more quickly. The chosen values δ = .1 and σ = .9 represent a
compromise between our desire for rapid termination and our desire to improve
the function value. When using the approximate Wolfe conditions, we would like
to achieve decay in the function value if numerically possible. Hence, we made
the small choice ε = 10−6, and we used the first estimate in (28) for the function
error. When restricting βk in (7), we would like to avoid truncation if possible,
since the fastest convergence for a quadratic function is obtained when there
is no truncation at all. The choice η = .01 leads to infrequent truncation of βk .
The choice γ = .66 ensures that the length of the interval [a, b] decreases by
a factor of 2/3 in each iteration of the line search algorithm. The choice θ = .5
in the update procedure corresponds to bisection. As ω tends to zero, the line
search becomes a Wolfe line search as opposed to an approximate Wolfe line
search. Taking ω = 10−3, we switch to the approximate Wolfe line search when
the cost function converges to three digits. If the cost function vanishes at a
minimizer, then an estimate of the form ε f (xk) is often a poor approximation
for the error in the value of f . By taking � = .7 in (26), the parameter Ck

in (26) goes to zero more slowly than f (xk), and hence, we often obtain a less
poor estimate for the error in the function value. In the routine to initialize
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the line search, we take ψ0 = .01 to keep the initial step close to the starting
point. We would like the guess α = ψ1αk−1 in I1 to satisfy the descent condition
φ(ψ1αk−1) ≤ φ(0), but we do not want the guess to be a poor approximation to
a minimizer of φ. Hence, we take ψ1 = .1. When the line search does not start
with a quadratic interpolation step, we take ψ2 = 2, in which case the initial
guess in I2 is twice the previous stepsize αk−1. We take ψ2 > 1 in an effort to
avoid future expansions in the bracket routine.

The first set of experiments use CUTEr unconstrainted test problems with
dimensions between 50 and 104. We downloaded all the unconstrained test
problems and then deleted a problem in any of the following cases:

(D1) The problem was small (dimension less than 50).

(D2) The problem could be solved in, at most, .01 seconds by any of the solvers.

(D3) The cost function seemed to have no lower bound.

(D4) The cost function generated a “NaN” for what seemed to be a reasonable
choice for the input.

(D5) The problem could not be solved by any of the solvers (apparently due to
nondifferentiability of the cost function).

(D6) Different solvers converged to different local minimizers (that is, the op-
timal costs were different).

In the Fall of 2004, there are 160 unconstrained optimization problems in
the CUTEr test. After the deletion process, we were left with 106 problems. For
some problems the dimension could be chosen arbitrarily. In these cases, we
often ran two versions of the test problem, one with twice as many variables as
the other.

Nominally, our termination criterion was the following:

‖∇ f (xk)‖∞ ≤ max{10−6, 10−12‖∇ f (x0)‖∞}. (30)

In a few cases, this criterion was too lenient. For example, with the test prob-
lem PENALTY1, the computed cost still differs from the optimal cost by a fac-
tor of 105 when criterion (30) is satisfied. As a result, different solvers obtain
completely different values for the cost, and the test problem would be dis-
carded by (D6). By changing the convergence criterion to ‖∇ f (xk)‖∞ ≤ 10−6,
the computed costs all agreed six digits. The problems for which the conver-
gence criterion was strengthened were DQRTIC, PENALTY1, POWER, QUARTC, and
VARDIM.

The CPU time in seconds and the number of iterations, function evaluations,
and gradient evaluations for each of the methods are posted on William Hager’s
webpage.2 Here, we analyze the performance data using the profiles of Dolan
and Moré [2002]. That is, for subsets of the methods being analyzed, we plot
the fraction P of problems for which any given method is within a factor τ of
the best time. In a performance profile plot, the top curve is the method that
solved the most problems in a time that was within a factor τ of the best time.
The percentage of the test problems for which a method is the fastest is given

2http://www.math.ufl.edu/∼hager/papers/CG
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Fig. 1. Performance based on CPU time for CG and L-BFGS codes.

Table I. Number of Times Each

Method was Fastest (time

metric, stopping criterion (30))

Method Fastest

CG DESCENT 64

L-BFGS∗ 31

L-BFGS 18

PRP+ 6

on the left axis of the plot. The right side of the plot gives the percentage of the
test problems that were successfully solved by each of the methods. In essence,
the right side is a measure of an algorithm’s robustness.

In Figure 1, we use CPU time to compare the performance of CG DESCENT
to that of L-BFGS, L-BFGS∗, and PRP+. Both the CG DESCENT and L-BFGS∗

codes use the approximate Wolfe line search. Since the L-BFGS∗ curve lies
above the L-BFGS curve, the L-BFGS∗ algorithm benefited from the new line
search. The best performance, relative to the CPU time metric, was obtained
by CG DESCENT, the top curve in Figure 1. For this collection of meth-
ods, the number of times any method achieved the best time is shown in
Table I. The column total in Table I exceeds 106 due to ties for some test prob-
lems.

In Figure 2, we use CPU time to compare the performance of the conjugate
gradient codes CG DESCENT, CGDY, DYHS, and PRP+. Figure 2 indicates
that, relative to the CPU time metric, CG DESCENT is fastest, then DYHS,
then CGDY, and then PRP+. Since the three fastest codes use the same line
search, these codes only differ in their choice of the search direction (as dictated
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Fig. 2. Performance based on CPU time for CG codes.

Table II. Number of Times

Each Method was Fastest (time

metric, stopping criterion (30))

Method Fastest

CG DESCENT 49

DYHS 36

CGDY 31

PRP+ 7

by their choice for βk). Hence, CG DESCENT appears to generate the best
search directions, on average. For this collection of methods, the number of
times each method achieved the best time appears in Table II.

In Figure 3, we compare the performance of CG DESCENT for various
choices of its parameters. The dashed curve corresponds to the approximate
Wolfe line search and the parameter QuadStep = .false. Clearly, skipping the
quadratic interpolation step at the start of each iteration increases the CPU
time. On the other hand, if we wait long enough we still solve the problems, since
the dashed curves eventually reaches the same limit as the top two curves. The
top dotted curve in Figure 3 corresponds to a hybrid scheme in which a Wolfe
line search is employed until (25) holds, with ω = 10−3, followed by an approx-
imate Wolfe line search; the performance of the pure approximate Wolfe line
search (top solid curve) is slightly below the performance of the hybrid scheme.
The bottom solid curve, corresponding to a pure Wolfe line search, is inferior to
either an approximate Wolfe line search or the hybrid scheme.

For these variations of CG DESCENT, the number of times each variation
achieved the best time appears in Table III. Except for Figure 3, all plots in this
article are for a pure approximate Wolfe line search.
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Fig. 3. Performance based on CPU time for various choices of CG DESCENT parameters.

Table III. Number of Times Each Variation of

CG DESCENT was Fastest

Method Fastest

Wolfe followed by Approximate Wolfe 73

Approximate Wolfe only 62

Wolfe only 43

Approximate Wolfe, QuadStep false 11

In the next series of experiments, we use a stopping criterion of the form:

‖∇ f (xk)‖∞ ≤ 10−6(1 + | f (xk)|). (31)

Except in cases where f vanishes at an optimum, this criterion often leads
to quicker termination than the previous criterion (30) and to less accurate
solutions. In fact, for some problems, where f is large at the starting point,
many of the algorithms terminated almost immediately, far from the optimum.
For example, if f (x) = x2 is a scalar function, then f ′(x) = 2x and for any
large x, (31) is satisfied. The problems where we encounter quick termination
due to large f at a starting point are DQRTIC, PENALTY1, QUARTC, VARDIM, WOODS,
ARGLINB, ARGLINC, PENALTY2, and NONCVXUN. These problems were resolved using
the previous stopping criterion.

In Figure 4, we compare the time performance of the solvers using the crite-
rion (31). In CG DESCENT we used the approximate Wolfe line search and
QuadStep is true. Observe that with this weaker stopping criterion, PRP+
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Fig. 4. Performance based on CPU time for stopping criterion (31).

Table IV. Number of Times Each Method was

Fastest (time metric, stopping criterion (31))

Method Fastest Method Fastest

CG DESCENT 37 L-BFGS 16

DYHS 27 L-BFGS∗ 15

CGDY 24 PRP+ 4

solves a larger fraction of the test problems. Again, the best performance in
this test set is obtained by CG DESCENT. In Table IV we give the number of
times each method achieved the best time.

In the next experiment, we compare performance based on the number of
function and gradient evaluations, using the stopping criterion (30). For our
CUTEr test set, we found that, on average, the CPU time to evaluate the deriva-
tive of f was about 3 times the CPU time to evaluate f itself. Figure 5 gives
the performance profiles based on the metric

NF + 3NG, (32)

where NF is the number of function evaluations and NG is the number of gra-
dient evaluations. Observe that relative to this metric, L-BFGS∗ (L-BFGS with
the new line search) achieved the top performance, followed by CG DESCENT.
In Table V we give the number of times each method achieved the best time in
the function evaluation metric (32).

In Figure 6 we compare performance based on number of iterations and
the stopping criterion (30). Notice that relative to the number of iterations,
CG DESCENT and L-BFGS∗ have almost identical performance. Also, it is in-
teresting to observe in Figure 6 that the PRP+ code is the top performer, relative
to the iteration metric, for values of τ near 1. In Table VI we give the number of
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Fig. 5. Performance based on number of function evaluations and stopping criterion (30).

Table V. Number of Times Each Method was Fastest

(function evaluation metric, stopping criterion (30))

Method Fastest Method Fastest

L-BFGS∗ 39 DYHS 20

CG DESCENT 27 CGDY 19

L-BFGS 21 PRP+ 1

times each method achieved the best time in the iteration metric. Since PRP+
performs well in the iteration metric for τ near 1, we conclude that the over-
all poor performance of PRP+ in the time and function evaluation metrics is
connected with the poor performance of the line search. In particular, the line
search in the PRP+ scheme must achieve sufficient accuracy to ensure descent,
while with CG DESCENT the search directions are always descent directions,
independent of the accuracy in the line search. Hence, with CG DESCENT the
line search terminates as soon as either the Wolfe or approximate Wolfe con-
ditions are satisfied, without having to further improve accuracy to achieve a
descent direction.

Together, Figures 1, 5, and 6 seem to imply the following: CG DESCENT
and L-BFGS∗ require, on average, almost the same number of iterations to
achieve a given error tolerance. In the line search more function evaluations
are needed by CG DESCENT to achieve the stopping criterion, while with L-
BFGS∗ the initial step α = 1 is acceptable quite often. On the other hand, the
linear algebra in the L-BFGS code to update the search direction is more time
consuming than the linear algebra in CG DESCENT. Hence, the reduction in
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Fig. 6. Performance based on iterations and stopping criterion (30).

Table VI. Number of Times Each Method was Fastest

(iteration metric, stopping criterion (30))

Method Fastest Method Fastest

PRP+ 45 DYHS 16

L-BFGS∗ 29 CGDY 14

CG DESCENT 24 L-BFGS 7

the number of function evaluations seen in Figure 5 for L-BFGS∗ is dominated
in Figure 1 by the cost of the linear algebra.

As discussed in Section 1, the truncation of βk in (7) for CG DESCENT can
be controlled through the parameters ηk and η. First, gk tends to zero, helping
to make ηk small, and second, by taking η near zero we can make ηk small
even when ‖gk‖ is large. Powell’s example [1984] reveals that truncation may
be needed to ensure convergence, but from the practical viewpoint truncation
impedes the convergence of the conjugate gradient method. In this set of test
problems we found that there were 33 problems where CG DESCENT trun-
cated a step, and 64 problems where PRP+ truncated a step. Altogether, there
were 89 truncation steps with CG DESCENT and 172 truncation steps with
PRP+. Hence, formula (7) reduced the number of truncations when compared
to PRP+. We also tried η = 10−6, in which case there were no truncations at all
in CG DESCENT. With this smaller value for η there were 51 problems where
the convergence speed improved and 33 problems where the convergence was
slower. Hence, by decreasing η, there were fewer truncations and a slight im-
provement in convergence speed.

In Table VII we illustrate the accuracy of the algorithms and line search.
We solved problem CURLY10 in the CUTEr library with dimension 1000 and
with various tolerances. The top two methods, CG DESCENT and L-BFGS∗,
use the new line search based on the approximate Wolfe conditions (23), while
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Table VII. Solution Time in Seconds versus Tolerance

Algorithm Tolerance ‖gk‖∞
Name 10−2 10−3 10−4 10−5 10−6 10−7

CG DESCENT 10.04 17.13 25.26 27.49 32.03 39.79

L-BFGS∗ 14.80 19.46 31.12 36.30 46.86 54.43

L-BFGS 16.48 22.63 33.36 F F F

PRP+ 17.80 24.13 F F F F

the bottom two methods, L-BFGS and PRP+, use the Moré/Thuente line search
based on the usual Wolfe conditions (22). An F in the table means that the line
search terminated before the convergence tolerance for ‖gk‖∞ was satisfied.
According to the documentation for the line search in the L-BFGS and PRP+
codes, “rounding errors prevent further progress. There may not be a step which
satisfies the sufficient decrease and curvature conditions. Tolerances may be too
small.”

This problem was chosen since it illustrates the typical performance that we
saw in the test problems. That is, first the PRP+ scheme fails, and shortly there-
after, the L-BFGS scheme fails. Much later, the codes using the approximate
Wolfe line search fail. For the CURLY10 test problem, we continued to reduce
the convergence tolerance to 10−12 without failure. The solution time was 78.31
seconds for CG DESCENT and 101.36 seconds for L-BFGS∗. Additional com-
parisons, like the one given in Table VII, appear in Hager and Zhang [2005].
Roughly, a line search based on the Wolfe conditions can compute a solution
with accuracy on the order of the square root of the machine epsilon, while a
line search that also includes the approximate Wolfe conditions can compute a
solution with accuracy on the order of the machine epsilon.

5. CONCLUSIONS

We have presented the recently introduced conjugate gradient algorithm, which
we call CG DESCENT, for solving unconstrained optimization problems. Al-
though the update formula (7)–(9) is more complicated than previous formulas,
the scheme is relatively robust in numerical experiments. We prove [Hager
and Zhang 2005] that it satisfies the descent condition gT

kdk ≤ − 7
8
‖gk‖2 for ei-

ther a Wolfe or an approximate Wolfe line search (see Theorem 1 in Section 1).
We prove [Hager and Zhang 2005] global convergence under the standard (not
strong) Wolfe conditions. A new line search was introduced that utilizes the ap-
proximate Wolfe conditions; this approximation provides a more accurate way
to check the usual Wolfe conditions when the iterates are near a local minimizer.
Our line search algorithm exploits a double secant step, denoted secant2, that
is designed to achieve rapid decay in the width of the interval which brackets
an acceptable step. For a test set consisting of 106 problems from the CUTEr
library with dimensions ranging between 50 and 10,000, the CPU time perfor-
mance profile for CG DESCENT was higher than those of CGDY, DYHS, PRP+,
L-BFGS, and L-BFGS∗ (L-BFGS implemented using our new line search). The
second best performance in the time metric was achieved by either L-BFGS∗ or
DYHS. In the function evaluation metric, L-BFGS∗ had the top performance,
followed by CG DESCENT. On average, CG DESCENT requires slightly more
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function/gradient evaluations in the line search, while the L-BFGS∗ line search
frequently terminates at the initial step α = 1. The better time performance of
CG DESCENT is due to the fact that the update of the search direction is less
time consuming than the corresponding update in L-BFGS.

In the iteration metric, PRP+ had the best performance for τ near 1, followed
by CG DESCENT and L-BFGS∗, whose performances were very similar. The
latter two had the top performance in the iteration metric for larger values of
τ . The better performance of CG DESCENT relative to PRP+ in the time and
function evaluation metrics was connected with the line search. With PRP+,
the line search accuracy may need to be increased to achieve descent. The in-
creased accuracy requires more evaluations of the cost function and its gradient;
with CG DESCENT, the search directions are always descent directions, inde-
pendent of the line search accuracy. Since our implementation of CGDY and
DYHS use the same line search as we use in CG DESCENT, the better perfor-
mance of CG DESCENT is due to the generation of better search directions, on
average.

A copy of the code CG DESCENT, along with the User’s Guide [Hager and
Zhang 2004], are posted on William Hager’s webpage.
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