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Abstract. The principal aim of this paper is to extend Birman’s sequence of
integral inequalitiesˆ ρ

0
dx
∣∣f (m)(x)

∣∣2 > [(2m− 1)!!]2

22m

ˆ ρ
0
dx x−2m|f(x)|2,

f ∈ Cm0 ((0, ρ)), m ∈ N, ρ ∈ (0,∞) ∪ {∞},
originally obtained in 1961, and containing Hardy’s and Rellich’s inequality

(i.e., m = 1, 2) as special cases, to a sequence of inequalities that incorporates
power weights on either side and logarithmic refinements on the right-hand

side of the inequality as well.
Introducing iterated logarithms given by

ln1( · ) = ln( · ), lnj+1( · ) = ln(lnj( · )), j ∈ N,

and iterated exponentials,

e0 = 0, ej+1 = eej , j ∈ N0 = N ∪ {0},
a particular (but representative) extension of Birman’s sequence we will prove
then readsˆ ρ

0
dx xα

∣∣f (m)(x)
∣∣2 > A(`, α)

ˆ ρ
0
dx xα−2`

∣∣f (m−`)(x)
∣∣2

+B(`, α)

N∑
k=1

ˆ ρ
0
dx xα−2`

k∏
`=1

[ln`(γ/x)]−2
∣∣f (m−`)(x)

∣∣2,
f ∈ C∞0 ((0, ρ)), `,m,N ∈ N, 1 6 ` 6 m, α ∈ R, ρ, γ ∈ (0,∞), γ > eNρ.

Here the constants A(p, α) and B(p, α), p ∈ N, are of the form

A(p, α) =

p∏
j=1

(
2j − 1− α

2

)2

, B(p, α) =
1

4p

p∑
k=1

p∏
j=1
j 6=k

(2j − 1− α)2.

The constants A(`, α) in the above extension of Birman’s inequality are opti-
mal, and so are the conditions on γ. Moreover, employing a new technique of

proof relying on a combination of transforms originally due to Hartman and

Müller-Pfeiffer, the parameter α ∈ R in the power weights is now unrestricted,
considerably improving on prior results in the literature.

We also indicate a vector-valued version of these inequalities, replacing
complex-valued f( · ) by f( · ) ∈ H, with H a complex, separable Hilbert space.
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1. Introduction

To be able to describe the content of this paper we start by recalling Birman’s
infinite sequence of integral inequalities [19], the sequence of Birman–Hardy–Rellich
inequalities of the formˆ b

a

dx
∣∣f (m)(x)

∣∣2 > [(2m− 1)!!]2

22m

ˆ b

a

dxx−2m|f(x)|2,

f ∈ Cm0 ((a, b)), m ∈ N, 0 6 a < b 6∞,
(1.1)

which appeared in 1961, and in English translation in 1966 (see also [47, pp. 83–
84]). The case m = 1 in (1.1) represents Hardy’s celebrated inequality [53], [54,
Sect. 9.8] (see also [63, Chs. 1, 3, App.]), the case m = 2 is due to Rellich [86,
Sect. II.7] (actually, in the multi-dimensional context). The inequalities (1.1) and
their power weighted generalizations, that is, the first line in (1.10), are known to be
strict, that is, equality holds in (1.1), resp., in the first line in (1.10) (in fact, for the
entire inequality (1.10)) if and only if f = 0 on (a, b). Moreover, these inequalities
are optimal, meaning, the constants [(2m − 1)!!]2/22m in (1.1), respectively, the
constants A(m,α) in (1.10) are sharp, although, this must be qualified as different
authors frequently prove sharpness for different function spaces. In the present one-
dimensional context at hand, sharpness of (1.1) (and typically, it’s power weighted
version, the first line in (1.10)), are often proved in an integral form (rather than the
currently presented differential form) where f (m) on the left-hand side is replaced
by F and f on the right-hand side by m repeated integrals over F . For pertinent
one-dimensional sources, we refer, for instance, to [14, p. 3–5], [22], [25, p. 104–105],
[44, 51, 53], [54, p. 240–243], [63, Ch. 3], [64, p. 5–11], [67, 76, 85]. We also note that
higher-order Hardy inequalities, including various weight functions, are discussed in
[62, Sect. 5], [63, Chs. 2–5], [64, Chs. 1–4], [65], and [84, Sect. 10] (however, Birman’s
sequence of inequalities (1.1) is not mentioned in these sources). In addition, there
are numerous sources which treat multi-dimensional versions of these inequalities on
various domains Ω ⊆ Rn, which, when specialized to radially symmetric functions
(e.g., when Ω represents a ball), imply one-dimensional Birman–Hardy–Rellich-
type inequalities with power weights under various restrictions on these weights (cf.
Remarks 3.3 (ii) and A.3). However, none of the results obtained in this manner
imply our principal result, (1.10), under optimal hypotheses on α and γ. We also
mention that a large number of these references treat the Lp-setting, and in some
references x ∈ (a, b) is replaced by d(x), the distance of x to the boundary of (a, b),
respectively, Ω, but this represents quite a different situation (especially in the
multi-dimensional context) and hence is not further discussed in this paper.

The primary aim in this paper is to prove optimal inequalities of the type (1.1)
with additional weights (of power-type on either side of (1.1)) and logarithmic
refinements (i.e., additional, only logarithmically weaker, singularities on the right-
hand side of (1.1)). To describe our new results in detail, we need some preparations
and introduce the iterated logarithms lnj( · ), j ∈ N (cf. [55], [56, pp. 324–325])),
given by

ln1( · ) = ln( · ), lnj+1( · ) = ln(lnj( · )), j ∈ N, (1.2)

and also normalized iterated logarithms Lj( · ), j ∈ N (see, e.g., [16]),

L1( · ) =
(
1− ln( · )

)−1
, Lj+1( · ) = L1(Lj( · )), j ∈ N. (1.3)
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In addition, we introduce iterated exponentials in the form,

e0 = 0, ej+1 = eej , j ∈ N0 = N ∪ {0}. (1.4)

Moreover, for m ∈ N and α ∈ R, we introduce the constants

A(m,α) =

m∏
j=1

(
2j − 1− α

2

)2

, (1.5)

B(m,α) =
1

4m

m∑
k=1

m∏
j=1
j 6=k

(2j − 1− α)2. (1.6)

One observes that

B(m,α) = A(m,α)

m∑
j=1

1

(2j − 1− α)2
, m ∈ N, α ∈ R\{2j − 1}16j6m, (1.7)

A(m, 0) =
[(2m− 1)!!]2

22m
, m ∈ N, (1.8)

in particular, A(m, 0) coincides with the constant in (1.1).
The improved Birman inequalities contain additional constants c`(m,α), ` =

0, 1, . . . , 2m, which are defined in terms of the polynomial

Pm,α(λ) =

2m∑
`=0

c`(m,α)λ` =

m∏
j=1

(
λ2 − (2j − 1− α)2

4

)
, m ∈ N, α ∈ R. (1.9)

Given the notation introduced in (1.2)–(1.9), we can now describe the principal
results proved in this note: Let `,m,N ∈ N, 1 6 ` 6 m, α ∈ R, ρ, γ ∈ (0,∞),
γ > eNρ, and f ∈ C∞0 ((0, ρ)). Then the power-weighted Birman–Hardy–Rellich
sequence with logarithmic refinements on the interior interval (0, ρ) are of the formˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ρ

0

dxxα−2`
∣∣f (m−`)(x)

∣∣2
+B(`, α)

N∑
k=1

ˆ ρ

0

dxxα−2`
k∏
`=1

[ln`(γ/x)]−2
∣∣f (m−`)(x)|2

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j
∣∣f (m−`)(x)

∣∣2 (1.10)

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j

×
k∏
p=1

[lnp+1(γ/x)]−2
∣∣f (m−`)(x)

∣∣2.
Moreover, we prove the same sequence of inequalities on the exterior interval

(ρ,∞) for f ∈ C∞0 ((ρ,∞)), and finally, both sets of inequalities (exterior and inte-
rior) are also proved with the iterated logarithms lnj( · ) replaced by the normalized
logarithms Lj( · ), j ∈ N. In the latter case an infinite series of logarithmic terms
(i.e., the case N = ∞ in the analog of (1.10)) will be permitted. Furthermore,
we show that all inequalities are strict, that is, equality holds if and only if f = 0
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on (0, ρ) (resp., (ρ,∞)). For brevity, a careful comparison of our result with the
existing ones in the literature is postponed to Remarks 3.3 and A.3.

A multi-dimensional version of our approach, focusing on radial and logarithmic
refinements of Birman–Hardy–Rellich-type inequalities, will appear in [42].

In Section 2 we introduce our principal tool, a combined Hartman–Müller-Pfeiffer
transformation, our main results are then proved in Section 3. In Section 4 we de-
rive the sequence of power-weighted Birman–Hardy–Rellich inequalities with log-
arithmic refinements in the vector-valued case, replacing complex-valued f( · ) by
f( · ) ∈ H, with H a complex, separable Hilbert space. Finally, sharpness of the
constants A(m,α) is derived in Appendix A.

2. The Combined Hartman–Müeller-Pfeiffer Transformation

In this section we introduce an elementary, yet extremely useful, variable trans-
formation, an appropriate combination of special cases of transformations consid-
ered by Hartman [55] (see also [56, p. 324–325]) and Müller-Pfeiffer [77, p. 200–
207]. We now introduce an extension of these transformations by Hartman and
Müller-Pfeiffer applicable to power weights and higher-order derivatives. This will
be crucial in proving the power-weighted Birman–Hardy–Rellich inequalities with
logarithmic refinements under most general conditions in our principal Section 3.

Let m,N ∈ N and suppose that

α ∈ R\{j | 1 6 j 6 2m− 1}. (2.1)

Given f ∈ C∞0 ((eN ,∞)), the transformation

x = et, x ∈ (eN ,∞), dx = etdt, t ∈ (eN−1,∞), (2.2)

f(x) ≡ f(et) = e[(2m−1−α)/2]tw(t), w ∈ C∞0 ((eN−1,∞)), (2.3)

yields (
xαf (m)(x)

)(m)
= e−[(2m+1−α)/2]t

2m∑
`=0

c`(m,α)w(`)(t), (2.4)

for appropriate constants c`(m,α), ` = 0, 1, . . . , 2m to be determined next.
The solutions of the differential equation(

xαf (m)(x)
)(m)

= 0, (2.5)

are linear combinations of the following powers of x:{
xj , j = 0, 1, . . . ,m− 1,

xk−α, k = m, . . . , 2m− 1.
(2.6)

One notes that the solutions (2.6) are linearly independent due to (2.1).
Thus, recalling (2.2)–(2.4), it follows that the solutions of

2m∑
`=0

c`(m,α)w(`)(t) = 0, t ∈ (eN−1,∞), (2.7)

are the functions

e(
1+α
2 −m)txj = e(j+

1+α
2 −m)t, j = 0, 1, . . . ,m− 1, (2.8)

and

e(
1+α
2 −m)txk−α = e(k+

1−α
2 −m)t k = m, . . . , 2m− 1. (2.9)



WEIGHTED BIRMAN INEQUALITIES WITH LOGARITHMIC REFINEMENTS 5

Observe that for j = 0 and k = 2m− 1,

e(j+
1+α
2 −m)t = e(

1+α
2 −m)t

e(k+
1−α
2 −m)t = e−(

1+α
2 −m)t.

(2.10)

For j = 1 and k = 2m− 2,

e(j+
1+α
2 −m)t = e(

3+α
2 −m)t

e(k+
1−α
2 −m)t = e−(

3+α
2 −m)t.

(2.11)

Continuing iteratively, one concludes that the linearly independent solutions of
(2.7) are of the form

e±
1
2 (2j+1−2m+α)t, j = 0, 1, . . . ,m− 1, (2.12)

By a simple relabeling, given α ∈ R\{j | 1 6 j 6 2m− 1}, this is equivalent to

e±
1
2 (2j−1−α)t, j = 1, . . . ,m, t ∈ (eN−1,∞), (2.13)

are linearly independent solutions of (2.7). The zeros of the characteristic polyno-
mial of (2.7) are thus the constant factors in the exponents of (2.13). Hence, the
characteristic polynomial is given by

Pm,α(λ) =

2m∑
`=0

c`(m,α)λ`

=

(
λ2 − (1− α)2

4

)(
λ2 − (3− α)2

4

)
· · ·
(
λ2 − (2m− 1− α)2

4

)
=

m∏
j=1

(
λ2 − (2j − 1− α)2

4

)
. (2.14)

Thus, the coefficients c`(m,α), ` = 0, 1, . . . , 2m, satisfy the following properties:

(i) c2j−1(m,α) = 0, j = 1, . . . ,m;

(ii) c2j(m,α) = (−1)m−j |c2j(m,α)|, j = 0, 1, . . . ,m;

(iii) |c0(m,α)| = A(m,α); (2.15)

(iv) |c2(m,α)| = 4B(m,α);

(v) c2m(m,α) = 1.

Turning our attention to the iterated logarithms, given N ∈ N, the transforma-
tion (2.2) (i.e., x = et, x ∈ (eN ,∞), t ∈ (eN−1,∞)) yields

N∑
k=1

k∏
j=1

[lnj(x)]−2 = t−2 + t−2
N−1∑
k=1

k∏
j=1

[lnj(t)]
−2, (2.16)

interpreting
∑0
k=1( · ) = 0.
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3. Power-Weighted Birman–Hardy–Rellich-type Inequalities with
Logarithmic Refinements

In this section we now establish several improvements of existing power-weighted
Birman–Hardy–Rellich inequalities in the literature by employing the combined
Hartman–Müeller-Pfeiffer variable transformation from section 2 in a crucial (and
new) manner. These weighted inequalities are proved for both types of iterated
logarithms lnj( · ), j ∈ N and Lj( · ), j ∈ N, and are given on both the exterior
interval (ρ,∞) and interior interval (0, ρ) for any ρ ∈ (0,∞).

The principal new result of this paper then reads as follows:

Theorem 3.1. Let `,m,N ∈ N, α ∈ R, and ρ, γ, τ ∈ (0,∞). The following hold:

(i) If ρ > eNγ and 1 6 ` 6 m, then for all f ∈ C∞0 ((ρ,∞)),

ˆ ∞
ρ

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ∞
ρ

dxxα−2`
∣∣f (m−`)(x)

∣∣2
+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

[lnp(x/γ)]−2
∣∣f (m−`)(x)

∣∣2 (3.1)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j
∣∣f (m−`)(x)

∣∣2
+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j

×
k∏
p=1

[lnp+1(x/γ)]−2
∣∣f (m−`)(x)

∣∣2.
(ii) If ρ > τ and 1 6 ` 6 m, then for all f ∈ C∞0 ((ρ,∞)),

ˆ ∞
ρ

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ∞
ρ

dxxα−2`
∣∣f (m−`)(x)

∣∣2
+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

[Lp(τ/x)]2
∣∣f (m−`)(x)

∣∣2 (3.2)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`[L1(τ/x)]2j
∣∣f (m−`)(x)

∣∣2
+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`[L1(τ/x)]2j

×
k∏
p=1

[Lp+1(τ/x)]2
∣∣f (m−`)(x)

∣∣2.
(iii) If γ > eNρ and 1 6 ` 6 m, then for all f ∈ C∞0 ((0, ρ)),

ˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ρ

0

dxxα−2`
∣∣f (m−`)(x)

∣∣2
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+B(`, α)

N∑
k=1

ˆ ρ

0

dxxα−2`
k∏
p=1

[lnp(γ/x)]−2
∣∣f (m−`)(x)

∣∣2 (3.3)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j
∣∣f (m−`)(x)

∣∣2
+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j

×
k∏
p=1

[lnp+1(γ/x)]−2
∣∣f (m−`)(x)

∣∣2.
(iv) If τ > ρ and 1 6 ` 6 m, then for all f ∈ C∞0 ((0, ρ)),
ˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ρ

0

dxxα−2`
∣∣f (m−`)(x)

∣∣2
+B(`, α)

N∑
k=1

ˆ ρ

0

dxxα−2`
k∏
p=1

[Lp(x/τ)]2
∣∣f (m−`)(x)

∣∣2 (3.4)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ρ

0

dxxα−2`[L1(x/τ)]2j
∣∣f (m−`)(x)

∣∣2
+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ρ

0

dxxα−2`[L1(x/τ)]2j
k∏
p=1

[Lp+1(x/τ)2
∣∣f (m−`)(x)

∣∣2.
(v) Inequalities (3.1)–(3.4) are strict for f 6≡ 0 on (ρ,∞), respectively, (0, ρ).

(vi) In the exceptional cases α ∈ {2j − 1}16j6` (i.e., if and only if A(`, α) = 0),
the first terms containing A(`, α) on the right-hand sides of (3.1)–(3.4) are to be
deleted.

We break up the proof of Theorem 3.1 into four parts. For simplicity, we present
the proof in the special case ` = m; the general case follows upon replacing f by
f (m−`) for ` = 1, . . . ,m.

Proof of Theorem 3.1 (i). Let ρ > eNγ, pick any f ∈ C∞0 ((ρ,∞)), and assume that
α ∈ R satisfies (2.1). The scaling

x = γy, dx = γdy, g(y) = f(γy), y ∈ (ρ/γ,∞) ⊆ (eN ,∞), (3.5)

implies g ∈ C∞0 ((ρ/γ,∞)). Applying the transformation (2.2), (2.3) to g, that is,
employing

x/γ = y = et, dx/γ = dy = etdt, t ∈ (ln(ρ/γ),∞),

f(x) = g(y) = e[(2m−1−α)/2]tw(t), w ∈ C∞0 ((ln(ρ/γ),∞)),
(3.6)

then yields

(
yαg(m)(y)

)(m)
= e−[(2m+1−α)/2]t

m∑
j=0

(−1)m−j |c2j(m,α)|w(2j)(t), (3.7)
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for t ∈ (ln(ρ/γ),∞)) ⊆ (eN−1,∞), and c2j(m,α) as in (2.15). Thus,

(−1)m
(
yαg(m)(y)

)(m)
g(y) = e−t

m∑
j=0

(−1)2m−j |c2j(m,α)|w(2j)(t)w(t). (3.8)

Furthermore, (2.2), (2.3), and (2.16) yield

yα−2m|g(y)|2 = e−t|w(t)|2, (3.9)

yα−2m
N∑
k=1

k∏
p=1

[lnp(y)]−2|g(y)|2 = e−t
{
t−2|w(t)|2 + t−2

N−1∑
k=1

k∏
p=1

[lnp(t)]
−2|w(t)|2

}
,

and for j = 2, . . . ,m,

yα−2m[ln(y)]−2j |g(y)|2 = e−tt−2j |w(t)|2, (3.10)

yα−2m[ln(y)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(y)]−2|g(y)|2 = e−tt−2j
N−1∑
k=1

k∏
p=1

[lnp(t)]
−2|w(t)|2.

Employing the elementary identity,
ˆ b

a

dxxα
∣∣f (m)(x)

∣∣2 = (−1)m
ˆ b

a

dx
(
xαf (m)(x)

)(m)
f(x),

m ∈ N, α ∈ R, f ∈ C∞0 ((a, b)), 0 6 a < b 6∞,
(3.11)

and items (iii), (iv) of (2.15), it follows from (3.5)–(3.10) thatˆ ∞
ρ

dx

{
xα
∣∣f (m)(x)

∣∣2 −A(m,α)xα−2m|f(x)|2

−B(m,α)xα−2m
N∑
k=1

k∏
p=1

[lnp(x/γ)]−2|f(x)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)xα−2m[ln(x/γ)]−2j |f(x)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)xα−2m[ln(x/γ)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(x/γ)]−2|f(x)|2
}

= γα−2m+1

ˆ ∞
ρ/γ

dy

{
yα
∣∣g(m)(y)

∣∣2 −A(m,α)yα−2m|g(y)|2

−B(m,α)yα−2m
N∑
k=1

k∏
p=1

[lnp(y)]−2|g(y)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)yα−2m[ln(y)]−2j |g(y)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)yα−2m[ln(y)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(y)]−2|g(y)|2
}

= γα−2m+1

{ m∑
j=0

|c2j(m,α)|
ˆ ∞
ln(ρ/γ)

dt
∣∣w(j)(t)

∣∣2 −A(m,α)

ˆ ∞
ln(ρ/γ)

dt |w(t)|2
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−B(m,α)

ˆ ∞
ln(ρ/γ)

dt t−2|w(t)|2

−B(m,α)

N−1∑
k=1

ˆ ∞
ln(ρ/γ)

dt t−2
k∏
p=1

[lnp(t)]
−2|w(t)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)

ˆ ∞
ln(ρ/γ)

dt t−2j |w(t)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ln(ρ/γ)

dt t−2j
k∏
p=1

[lnp(t)]
−2|w(t)|2

}

= γα−2m+1

{ m∑
j=1

|c2j(m,α)|
ˆ ∞
ln(ρ/γ)

dt
∣∣w(j)(t)

∣∣2
−

m∑
j=1

|c2j(m,α)|A(j, 0)

ˆ ∞
ln(ρ/γ)

dt t−2j |w(t)|2

−
m∑
j=1

|c2j(m,α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ln(ρ/γ)

dt t−2j
k∏
p=1

[lnp(t)]
−2|w(t)|2

}

= γα−2m+1
m∑
j=1

|c2j(m,α)|
{ˆ ∞

ln(ρ/γ)

dt
∣∣w(j)(t)

∣∣2 −A(j, 0)

ˆ ∞
ln(ρ/γ)

dt t−2j |w(t)|2

−B(j, 0)

N−1∑
k=1

ˆ ∞
ln(ρ/γ)

dt t−2j
k∏
p=1

[lnp(t)]
−2|w(t)|2

}
,

w ∈ C∞0 ((ln(ρ/γ),∞)), (3.12)

interpreting
∑0
k=1( · ) = 0.

Hence, part (i), for α ∈ R\{j | 1 6 j 6 2m − 1}, follows via induction over
N ∈ N. Indeed, for N = 1 equality (3.12) yields (cf. (2.3))

ˆ ∞
ρ

dx

{
xα
∣∣f (m)(x)

∣∣2 −A(m,α)xα−2m|f(x)|2 −B(m,α)xα−2m[ln(x/γ)]−2|f(x)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)xα−2m[ln(x/γ)]−2j |f(x)|2
}

= γα−2m+1
m∑
j=1

|c2j(m,α)|
{ˆ ∞

ln(ρ/γ)

dt
∣∣w(j)(t)

∣∣2 −A(j, 0)

ˆ ∞
ln(ρ/γ)

dt t−2j |w(t)|2
}

> 0, w ∈ C∞0 ((ln(ρ/γ),∞)), (3.13)

by (1.1) as a sum of unweighted Birman–Hardy–Rellich-type inequalities. Assuming
(3.1) holds for N − 1 ∈ N then reapplying (3.12) proves (3.1) for N ∈ N. Strictness
also follows by induction over N ∈ N since f 6≡ 0 implies w 6≡ 0 by (2.2), (2.3) so
that (3.13), and by induction, (3.12) is strictly positive.

The case α ∈ {j | 1 6 j 6 2m − 1} then follows by taking the limits α → k ∈
{j | 1 6 j 6 2m − 1}, noting that A(m,α), B(m,α), and c2j(m,α) are continuous
as polynomials in α ∈ R. This completes the proof of part (i). �
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Proof of Theorem 3.1 (ii). By taking limits as in part (i), it suffices once more to
consider α ∈ R\{2j − 1}16j6m. Let ρ > τ and pick any f ∈ C∞0 ((ρ,∞)). The
scaling

x = τy, dx = τdy, g(y) = f(τy), y ∈ (ρ/τ,∞), (3.14)

yields g ∈ C∞0 ((ρ/τ,∞)) ⊆ C∞0 ((1,∞)). One modifies the transformation (2.2),
(2.3) applied to g by

y = et−1, dy = et−1dt, t ∈ (1,∞),

g(y) ≡ g(et−1) = e[(2m−1−α)/2](t−1)v(t), v ∈ C∞0 ((1,∞)),
(3.15)

where v is given by

v(t) := w(t− 1), t ∈ (1,∞), (3.16)

with w ∈ C∞0 ((0,∞)). Setting

s = t− 1, ds = dt, (3.17)

and noting
d

dt
v(t) =

d

ds
w(s), (3.18)

yields, similarly to (3.7),

(
yαg(m)(y)

)(m)
= e−[(2m+1−α)/2]s

2m∑
`=0

c`(m,α)w(`)(s)

= e−[(2m+1−α)/2](t−1)
2m∑
`=0

c`(m,α)v(`)(t).

(3.19)

Hence, an analogous argument as in section 2 shows the constants c`(m,α) satisfy
(i)–(v) in (2.15) as before. Therefore by (3.19),

(−1)m
(
yαg(m)(y)

)(m)
g(y) = e1−t

m∑
j=0

(−1)2m−j |c2j(m,α)|v(2j)(t)v(t). (3.20)

Now, (3.15) yields

L1(1/y) =
(
1− ln(1/y)

)−1
=
(
1− ln(e1−t)

)−1
= t−1, (3.21)

and

L2(1/y)=L1(L1(1/y))=L1(1/t). (3.22)

Inductively, we see that

L1(1/y) = t−1, Lj(1/y) = Lj−1(1/t), j = 2, 3, . . . (3.23)

Hence,

yα−2m|g(y)|2 = e1−t|v(t)|2, (3.24)

yα−2m
N∑
k=1

k∏
p=1

L2
p(1/y)|g(y)|2 = e1−t

{
t−2|v(t)|2 + t−2

N−1∑
k=1

k∏
p=1

L2
p(1/t)|v(t)|2

}
,

and for j = 2, . . . ,m,

yα−2mL2j
1 (1/y)|g(y)|2 = e1−tt−2j |v(t)|2, (3.25)
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yα−2mL2j
1 (1/y)

N−1∑
k=1

k∏
p=1

L2
p+1(1/y)|g(y)|2 = e1−tt−2j

N−1∑
k=1

k∏
p=1

L2
p(1/t)|v(t)|2.

Again recalling (3.11) and (iii)–(iv) of (2.15), (3.20), (3.24), and (3.25) yield (cf.
(3.15))ˆ ∞

ρ

dx

{
xα
∣∣f (m)(x)

∣∣2 −A(m,α)xα−2m|f(x)|2

−B(m,α)xα−2m
N∑
k=1

k∏
p=1

L2
p(τ/x)|f(x)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)xα−2mL2j
1 (τ/x)|f(x)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)xα−2mL2j
1 (τ/x)

N−1∑
k=1

k∏
p=1

L2
p+1(τ/x)|f(x)|2

}

= τα−2m+1
m∑
j=1

|c2j(m,α)|
{ˆ ∞

1

dt
∣∣v(j)(t)∣∣2 −A(j, 0)

ˆ ∞
1

dt t−2j |v(t)|2

−B(j, 0)

N−1∑
k=1

ˆ ∞
1

dt t−2j
k∏
p=1

L2
p(1/t)|v(t)|2

}
,

v ∈ C∞0 ((1,∞)), (3.26)

and the proof again follows by induction over N ∈ N. �

Proof of Theorem 3.1 (iii). Consider again α ∈ R\{j | 1 6 j 6 2m − 1}. Let γ >
eNρ and pick any f ∈ C∞0 ((0, ρ)). The scaling

x = γy, dx = γdy, y ∈ (0, ρ/γ), g(y) = f(γy), (3.27)

yields g ∈ C∞0 ((0, ρ/γ)). Slightly modifying the transformation (2.2), (2.3) applied
to g leads to

y = e−t, dy = −e−tdt, t ∈ (ln(γ/ρ),∞),

g(y) ≡ g(e−t) = e−[(2m−1−α)/2]tu(t), u ∈ C∞0 ((ln(γ/ρ),∞)).
(3.28)

This implies (
yαg(m)(y)

)(m)
= e[(2m+1−α)/2]t

2m∑
`=0

(−1)`c`(m,α)u(`)(t), (3.29)

and hence, (i)–(v) in (2.15) still hold. Thus,

(−1)m
(
yαg(m)(y)

)(m)
g(y) = et

m∑
j=0

(−1)2m−j |c2j(m,α)|u(2j)(t)u(t). (3.30)

Furthermore,

yα−2m|g(y)|2 = et|u(t)|2, (3.31)

yα−2m
N∑
k=1

k∏
p=1

[lnp(1/y)]−2|g(y)|2 = et
{
t−2|u(t)|2 + t−2

N−1∑
k=1

k∏
p=1

[lnp(t)]
−2|u(t)|2

}
,
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and for j = 2, . . . ,m,

yα−2m[ln(1/y)]−2j |g(y)|2 = ett−2j |u(t)|2, (3.32)

yα−2m[ln(1/y)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(1/y)]−2|g(y)|2 = ett−2j
N−1∑
k=1

k∏
p=1

[lnp(t)]
−2|u(t)|2.

Applying (3.30)–(3.32) yieldsˆ ρ

0

dx

{
xα
∣∣f (m)(x)

∣∣2 −A(m,α)xα−2m|f(x)|2

−B(m,α)xα−2m
N∑
k=1

k∏
p=1

[lnp(γ/x)]−2|f(x)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)xα−2m[ln(γ/x)]−2j |f(x)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)xα−2m[ln(γ/x)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(γ/x)]−2|f(x)|2
}

= γα−2m+1
m∑
j=1

|c2j(m,α)|
{ˆ ∞

ln(γ/ρ)

dt
∣∣u(j)(t)∣∣2 −A(j, 0)

ˆ ∞
ln(γ/ρ)

dt t−2j |u(t)|2

−B(j, 0)

N−1∑
k=1

ˆ ∞
ln(γ/ρ)

dt t−2j
k∏
p=1

[lnp(t)]
−2|u(t)|2

}
,

u ∈ C∞0 ((ln(γ/ρ),∞)), (3.33)

and the proof follows by induction over N ∈ N, as before. �

Proof of Theorem 3.1 (iv). Once more, consider α ∈ R\{j | 1 6 j 6 2m− 1}. Sup-
pose τ > ρ, f ∈ C∞0 ((0, ρ)), and use the scaling

x = τy, dx = τdy, y ∈ (0, ρ/τ), g(y) = f(τy), (3.34)

so that g ∈ C∞0 ((0, ρ/τ)) ⊆ C∞0 ((0, 1)). Next, one applies the modified transfor-
mation

y = e−t+1, dy = −e−t+1dt, t ∈ (1,∞),

g(y) ≡ g(e−t+1) = e[(2m−1−α)/2](1−t)v(t), v ∈ C∞0 ((1,∞)),
(3.35)

where v is given by

v(t) := w(1− t), t ∈ (1,∞), (3.36)

with w ∈ C∞0 ((−∞, 0)). Therefore

(−1)m
(
yαg(m)(y)

)(m)
g(y) = et−1

m∑
j=0

(−1)2m−j |c2j(m,α)|v(2j)(t)v(t). (3.37)

Also,

yα−2m|g(y)|2 = et−1|v(t)|2, (3.38)

yα−2m
N∑
k=1

k∏
p=1

L2
p(y)|g(y)|2 = et−1

{
t−2|v(t)|2 + t−2

N−1∑
k=1

k∏
p=1

L2
p(1/t)|v(t)|2

}
,
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and for j = 2, . . . ,m,

yα−2mL2j
1 (y)|g(y)|2 = et−1t−2j |v(t)|2, (3.39)

yα−2mL2j
1 (y)

N−1∑
k=1

k∏
p=1

L2
p+1(y)|g(y)|2 = et−1t−2j

N−1∑
k=1

k∏
p=1

L2
p(1/t)|v(t)|2.

Hence,ˆ ρ

0

dx

{
xα
∣∣f (m)(x)

∣∣2 −A(m,α)xα−2m|f(x)|2

−B(m,α)xα−2m
N∑
k=1

k∏
p=1

L2
p(x/τ)|f(x)|2

−
m∑
j=2

|c2j(m,α)|A(j, 0)xα−2mL2j
1 (x/τ)|f(x)|2

−
m∑
j=2

|c2j(m,α)|B(j, 0)xα−2mL2j
1 (x/τ)

N−1∑
k=1

k∏
p=1

L2
p+1(x/τ)|f(x)|2

}

= τα−2m+1
m∑
j=1

|c2j(m,α)|
{ˆ ∞

1

dt
∣∣v(j)(t)∣∣2 −A(j, 0)

ˆ ∞
1

dt t−2j |v(t)|2

−B(j, 0)

N−1∑
k=1

ˆ ∞
1

dt t−2j
k∏
p=1

L2
p(1/t)|v(t)|2

}
,

v ∈ C∞0 ((1,∞)), (3.40)

and the proof follows again by induction over N ∈ N. �

Theorem 3.1 (ii), (iv) can be further improved by replacing the N -th sum with
an infinite series. See, for example, [16, 50, 95] for similar results and discussions

of the convergence of the series
∑∞
k=1

∏k
j=1 L

2
j (s) for s ∈ (0, 1).

Corollary 3.2. Let `,m ∈ N, α ∈ R, and ρ, τ ∈ (0,∞). Then (3.2) and (3.4)
extend to N =∞.

Proof. It suffices to discuss the proof of (3.2). Given f ∈ C∞0 ((ρ,∞)), Theorem
3.1 (ii) implies that (3.2) holds for any N ∈ N. Thus, by taking N ↑ ∞ and
recalling that increasing sequences bounded above are convergent, (3.2) holds with
N =∞. �

To put our results in perspective and to compare with existing results in the
literature, we offer some comments next.

Remark 3.3. (i) Theorem 3.1 (i),(ii) (resp., Theorem 3.1 (iii),(iv)) extends to N =
ρ = 0 (resp., N = 0, ρ = ∞) upon disregarding all logarithmic terms (i.e., upon
putting B(`, α) = c2j(`, α) = 0, 2 6 j 6 `, 1 6 ` 6 m), we omit the details.

(ii) Originally, logarithmic refinements of Hardy’s inequality started with oscillation
theoretic considerations going back to Hartman [55] (see also [56, p. 324–325])
and have been used in connection with Hardy’s inequality in [39, 45], and more
recently in [40, 41]. Since then there has been enormous activity in this context
and we mention, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [14, Chs. 3, 5],
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[16, 17, 18, 21, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 40, 46, 48, 49], [50,
Chs. 2,6,7], [58, 59, 69, 70, 71, 72, 74, 75, 79, 81, 82], [86, Sect. 2.7], [87, 88, 89,
93, 94, 95, 96]. The vast majority of these references deals with analogous multi-
dimensional settings (relevant to our setting in particular in the case of radially
symmetric functions), most also in the Lp-context.

(iii) For m > 2 these inequalities are new in the following sense: The weight
parameter α ∈ R is now unrestricted (as opposed to prior results, see item (ii) of
this remark) and at the same time the conditions on the logarithmic parameters γ
and τ are sharp. Moreover, the two integral terms containing c2j(m,α) are new in
this generality (we note that a single term of the type x−2m[ln(γ/x)]−4 appeared in
[4] and [21]; and [77, Ch. 6] discusses sums involving even powers of [ln(γ/x)]−1).
We also note that the inequalities are proved for both iterated logarithms lnj( · )
and Lj( · ), j ∈ N, and finally they are proved on both the exterior interval (ρ,∞)
and interior interval (0, ρ) for any ρ ∈ (0,∞). �

We conclude this section by extending Theorem 3.1 from C∞0 -functions to func-
tions in appropriately weighted Sobolev spaces.

To this end we introduce the norms on C∞0 ((a, b)),

‖f‖2m,α =

m∑
k=0

ˆ b

a

dxxα
∣∣f (k)(x)

∣∣2, |||f |||2m,α =

ˆ b

a

dxxα
∣∣f (m)(x)

∣∣2,
0 6 a < b 6∞, m ∈ N, α ∈ R, f ∈ C∞0 ((a, b)).

(3.41)

and define the weighted Sobolev spaces

Hm
0

(
(a, b);xαdx

)
= C∞0 ((a, b))

‖ · ‖m,α
, m ∈ N, α ∈ R, (3.42)

and the corresponding homogeneous weighted Sobolev spaces
.
Hm

0

(
(a, b);xαdx

)
= C∞0 ((a, b))

||| · |||m,α
, m ∈ N, α ∈ R. (3.43)

In the case b <∞ we also note the following (higher-order) weighted Poincaré-type
inequality:

Lemma 3.4. Let ρ ∈ (0,∞), k,m ∈ N, 0 6 k 6 m − 1, α ∈ R. Then there exists
Ck,m = C(k,m, α, ρ) ∈ (0,∞) such that

Ck,m
∥∥f (k)∥∥2

L2((0,ρ);xαdx)
= Ck,m|||f |||2k,α 6 |||f |||2m,α =

∥∥f (m)
∥∥2
L2((0,ρ);xαdx)

,

f ∈ C∞0 ((0, ρ)). (3.44)

Proof. If A(m− k, α) 6= 0, one can use the simplest inequality in Theorem 3.1 (iii)
to conclude for f ∈ C∞0 ((0, ρ)),ˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > A(m− k, α)

ˆ ρ

0

dxxα−2(m−k)
∣∣f (k)(x)

∣∣2
> A(m− k, α)ρ−2(m−k)

ˆ ρ

0

dxxα
∣∣f (k)(x)

∣∣2. (3.45)

If A(m − k, α) = 0, one uses the next simplest inequality in Theorem 3.1 (iii) to
infer ˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > B(m− k, α)

ˆ ρ

0

dxxα−2(m−k)[ln(γ/x)]−2
∣∣f (k)(x)

∣∣2



WEIGHTED BIRMAN INEQUALITIES WITH LOGARITHMIC REFINEMENTS 15

> B(m− k, α)

(ˆ η

0

+

ˆ ρ

η

)
dxxα−2(m−k)[ln(γ/x)]−2

∣∣f (k)(x)
∣∣2

> Ck,m

ˆ ρ

0

dxxα
∣∣f (k)(x)

∣∣2, (3.46)

where η ∈ (0, ρ) is chosen such that x−2(m−k)[ln(γ/x)]−2 is strictly monotonically
decreasing on the interval (0, η). �

Thus, for ρ ∈ (0,∞), (3.44) implies equivalence of the norms ‖ · ‖m,α and
||| · |||m,α on C∞0 ((0, ρ)) since repeated application of (3.44) yields,

|||f |||2m,α 6 ‖f‖2m,α = |||f |||2m,α +

m−1∑
k=0

|||f |||2k,α 6 C|||f |||2m,α,

f ∈ C∞0 ((0, ρ)), m ∈ N,
(3.47)

with C = C(m,α, ρ) ∈ (0,∞). In particular,

Hm
0

(
(0, ρ);xαdx

)
=

.
Hm

0

(
(0, ρ);xαdx

)
, ρ ∈ (0,∞), m ∈ N, α ∈ R. (3.48)

Of course, since xα is bounded from above and from below near x = ρ,

f ∈
.
Hm

0

(
(0, ρ);xαdx

)
= Hm

0

(
(0, ρ);xαdx

)
, ρ ∈ (0,∞),

implies f(ρ) = f ′(ρ) = · · · = f (m−1)(ρ) = 0.
(3.49)

Given these preparations, we can now extend Theorem 3.1 as follows:

Theorem 3.5. Under the hypotheses in Theorem 3.1, items (i) and (ii) extend

from f ∈ C∞0 ((ρ,∞)) to f ∈
.
Hm

0

(
(ρ,∞);xαdx

)
and items (iii) and (iv) extend

from f ∈ C∞0 ((0, ρ)) to f ∈
.
Hm

0

(
(0, ρ);xαdx

)
= Hm

0

(
(0, ρ);xαdx

)
.

Proof. Since the proofs of items (i)–(iv) follow the same route based on combining
Theorem 3.1 with Fatou’s lemma, it suffices to focus on cases (i) and (iii).

(i). We start with the finite interval case (iii). Since C∞0 ((0, ρ)) is dense in
Hm

0

(
(0, ρ);xαdx

)
(in the norm ‖ · ‖m,α), given f ∈ Hm

0

(
(0, ρ);xαdx

)
, there exists

a sequence {fn}n∈N ⊂ C∞0 ((0, ρ)) such that limn→∞
∥∥fn − f∥∥2m,α = 0, explicitly,

lim
n→∞

ˆ ρ

0

dxxα
∣∣f (k)n (x)− f (k)(x)

∣∣2 = 0, 0 6 k 6 m, α ∈ R. (3.50)

Hence, for each 0 6 k 6 m, one can find a subsequence {fnp,k}p∈N of {fn}n∈N such
that

xα/2f
(k)
np,k

−→
p→∞

xα/2f (k) pointwise a.e. on (0, ρ), (3.51)

equivalently,

f
(k)
np,k

−→
p→∞

f (k) pointwise a.e. on (0, ρ). (3.52)

Hence, abbreviating

w`,α,N (x) = A(`, α) +B(`, α)

N∑
k=1

k∏
p=1

[lnp(γ/x)]−2

+
∑̀
j=2

|c2j(`, α)|A(j, 0)[ln(γ/x)]−2j (3.53)
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+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

[ln(γ/x)]−2j
k∏
p=1

[lnp+1(γ/x)]−2, x ∈ (0, ρ),

(a well-known consequence of) Fatou’s lemma (cf., e.g., [37, Corollary 2.19]) and
inequality (3.3) imply

ˆ ρ

0

dxxα−2`w`,α,N (x)
∣∣f (m−`)(x)

∣∣2
6 lim inf

p→∞

ˆ ρ

0

dxxα−2`w`,α,N (x)
∣∣f (m−`)np,m−`(x)

∣∣2 (by Fatou’s lemma)

= lim
p→∞

ˆ ρ

0

dxxα−2`w`,α,N (x)
∣∣f (m−`)np,m−`(x)

∣∣2
6 lim
p→∞

ˆ ρ

0

dxxα
∣∣f (m)
np,m−`(x)

∣∣2 (by (3.3))

=

ˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 (by (3.50) with k = m). (3.54)

(ii). To treat the interval (ρ,∞) one can argue as follows. Using arguments analo-
gous to those in the proof of [44, Proposition 3.1], one shows that the space

Hm,α([ρ,∞)) =
{
f : [ρ,∞)→ C

∣∣ for all R > ρ, f (k) ∈ AC([ρ,R]), 0 6 k 6 m− 1;

f (k)(ρ) = 0, 0 6 k 6 m− 1; f (m) ∈ L2
(
(ρ,∞);xαdx

)}
, (3.55)

is a Hilbert space space with respect to the norm ||| · |||m,α associated with the
inner product

〈f, g〉m,α =

ˆ ∞
ρ

xαdx f (m)(x)g(m)(x), f, g ∈ Hm,α([ρ,∞)). (3.56)

The fact C∞0 ((ρ,∞)) ⊂ Hm,α([ρ,∞)) naturally leads to the introduction of the

space
.
Hm

0

(
(ρ,∞);xαdx

)
as the closure of C∞0 ((ρ,∞)) in the norm ||| · |||m,α in ac-

cordance with (3.43). Then a routine argument (see Appendix B for details) shows

that if f ∈
.
Hm

0

(
(ρ,∞);xαdx

)
then there exists a sequence {fn}n∈N ⊂ C∞0 ((ρ,∞))

such that for 0 6 k 6 m,

lim
n→∞

f (k)n (x) = f (k)(x) for a.e. x > ρ. (3.57)

At this point one can follow the Fatou-type argument in (3.54). �

4. The Vector-Valued Case

In our final section, we establish that all previous inequalities extend line by
line to the vector-valued case in which f is H-valued, with H a separable, complex
Hilbert space. The relevance of such a generalization is briefly mentioned at the
end of this section.

We start by stating a power-weighted extension of (1.1) for vector-valued func-
tions, which is derived from the more general Hardy result [23, Example 1] by simple
iteration (see also [44, Theorem 8.1] for the special case α = 0, a = 0, b = ∞).
Inequality (4.1) will replace (1.1) in the base step of each induction proof.
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Lemma 4.1. Let m ∈ N, α ∈ R\{2j − 1}16j6m, 0 6 a < b 6 ∞. Then for all
f ∈ C∞0 ((a, b);H),

ˆ b

a

dxxα
∥∥f (m)(x)

∥∥2
H > A(m,α)

ˆ b

a

dxxα−2m‖f(x)‖2H. (4.1)

The constant A(m,α) is sharp and equality holds if and only if f = 0 on (a, b).

In addition, the combined Hartman–Müeller-Pfeiffer transformation extends to
the H-valued context. Indeed, given m,N ∈ N, α ∈ R, α 6= 1, . . . , 2m − 1, and
f ∈ C∞0 ((eN ,∞);H), one sets

x = et, dx = etdt, t ∈ (eN−1,∞),

f(x) ≡ f(et) = e(m−
1+α
2 )tw(t), w ∈ C∞0 ((eN−1,∞);H),

(4.2)

so that (
xαf (m)(x)

)(m)
= e−(m+ 1−α

2 )t
2m∑
`=0

c`(m,α)w(`)(t). (4.3)

Combining (4.2) and (4.3) yields

(−1)m
((
xαf (m)(x)

)(m)
, f(x)

)
H
= e−t

m∑
j=0

(−1)2m−j |c2j(m,α)|
(
w(2j)(t), w(t)

)
H. (4.4)

Furthermore,

xα−2m‖f(x)‖2H = e−t‖w(t)‖2H,

xα−2m
N∑
k=1

k∏
p=1

[lnp(x)]−2‖f(x)‖2H (4.5)

= e−t
{
t−2‖w(t)‖2H+ t−2

N−1∑
k=1

k∏
p=1

[lnp(t)]
−2‖w(t)‖2H

}
,

and for j = 2, . . . ,m,

xα−2m[ln(x)]−2j‖f(x)‖2H = e−tt−2j‖w(t)‖2H,

xα−2m[ln(x)]−2j
N−1∑
k=1

k∏
p=1

[lnp+1(x)]−2‖f(x)‖2H (4.6)

= e−tt−2j
N−1∑
k=1

k∏
p=1

[lnp(t)]
−2‖w(t)‖2H.

The modified variable transformations (3.15), (3.28), (3.35), generalize analogously.
Finally, we note that (3.11) extends to the vector-valued situation in the form

ˆ b

a

dxxα
∥∥f (m)(x)

∥∥2
H = (−1)m

ˆ b

a

dx
((
xαf (m)(x)

)(m)
, f(x)

)
H
, (4.7)

for f ∈ C∞0 ((a, b);H), where 0 6 a < b 6∞,m ∈ N, α ∈ R.
Given these preliminaries, the vector-valued case becomes completely analogous

to the scalar situation treated in Section 3:
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Theorem 4.2. Let `,m,N ∈ N, α ∈ R, and ρ, γ, τ ∈ (0,∞). The following hold:

(i) If ρ > eNγ and 1 6 ` 6 m, then for all f ∈ C∞0 ((ρ,∞);H),

ˆ ∞
ρ

dxxα
∥∥f (m)(x)

∥∥2
H > A(`, α)

ˆ ∞
ρ

dxxα−2`
∥∥f (m−`)(x)

∥∥2
H

+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

[lnp(x/γ)]−2
∥∥f (m−`)(x)

∥∥2
H (4.8)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j
∥∥f (m−`)(x)

∥∥2
H

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j

×
k∏
p=1

[lnp+1(x/γ)]−2
∥∥f (m−`)(x)

∥∥2
H.

(ii) If ρ > τ and 1 6 ` 6 m, then for all f ∈ C∞0 ((ρ,∞);H),

ˆ ∞
ρ

dxxα
∥∥f (m)(x)

∥∥2
H > A(`, α)

ˆ ∞
ρ

dxxα−2`
∥∥f (m−`)(x)

∥∥2
H

+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

L2
p(τ/x)

∥∥f (m−`)(x)
∥∥2
H (4.9)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`L2j
1 (τ/x)

∥∥f (m−`)(x)
∥∥2
H

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`L2j
1 (τ/x)

k∏
p=1

L2
p+1(τ/x)

∥∥f (m−`)(x)
∥∥2
H.

(iii) If γ > eNρ and 1 6 ` 6 m, then for all f ∈ C∞0 ((0, ρ);H),

ˆ ρ

0

dxxα
∥∥f (m)(x)

∥∥2
H > A(`, α)

ˆ ρ

0

dxxα−2`
∥∥f (m−`)(x)

∥∥2
H

+B(`, α)

N∑
k=1

ˆ ρ

0

dxxα−2`
k∏
p=1

[lnp(γ/x)]−2
∥∥f (m−`)(x)

∥∥2
H (4.10)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j
∥∥f (m−`)(x)

∥∥2
H

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ρ

0

dxxα−2`[ln(γ/x)]−2j

×
k∏
p=1

[lnp+1(γ/x)]−2
∥∥f (m−`)(x)

∥∥2
H.
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(iv) If τ > ρ and 1 6 ` 6 m, then for all f ∈ C∞0 ((0, ρ);H),ˆ ρ

0

dxxα
∥∥f (m)(x)

∥∥2
H > A(`, α)

ˆ ρ

0

dxxα−2`
∥∥f (m−`)(x)

∥∥2
H

+B(`, α)

N∑
k=1

ˆ ρ

0

dxxα−2`
k∏
p=1

L2
p(x/τ)

∥∥f (m−`)(x)
∥∥2
H (4.11)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ρ

0

dxxα−2`L2j
1 (x/τ)

∥∥f (m−`)(x)
∥∥2
H

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ρ

0

dxxα−2`L2j
1 (x/τ)

k∏
p=1

L2
p+1(x/τ)

∥∥f (m−`)(x)
∥∥2
H.

(v) Inequalities (4.8)–(4.11) are strict for f 6≡ 0 on (ρ,∞), respectively, (0, ρ).

(vi) In the exceptional cases α ∈ {2` − 1}16`6m (i.e., if and only if A(`, α) = 0),
the first terms containing A(`, α) on the right-hand sides of (4.8)–(4.11) are to be
deleted.

Corollary 4.3. Let `,m ∈ N, α ∈ R, and ρ, τ ∈ (0,∞). Then (4.9) and (4.11)
extend to N =∞.

Using Lemma 4.1 and identity (4.7) for the base step in the induction proof over
N ∈ N, one can follow the special scalar case treated in the proof of Theorem 3.1,
and Corollary 3.2 line by line.

Remark 4.4. Theorem 4.2 can also be proved using the following alternative con-
sideration. We will illustrate the case of Theorem 4.2 (i): Since H is separable,
let {φr}r∈N be an orthonormal basis of H and let fr, r ∈ N, be the ”coordinate
functions” of f with respect to {φr}r∈N, that is, fr(x) = (φr, f(x))H, x ∈ (ρ,∞),

r ∈ N. Then fr ∈ C∞0 ((ρ,∞)) and f
(m)
r (x) =

(
φr, f

(m)(x)
)
H, x ∈ (ρ,∞), m, r ∈ N.

Applying Theorem 3.1 (i) to fr one obtainsˆ ∞
ρ

dxxα
∣∣f (m)
r (x)

∣∣2 > A(`, α)

ˆ ∞
ρ

dxxα−2`
∣∣f (m−`)r (x)

∣∣2
+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

[lnp(x/γ)]−2
∣∣f (m−`)r (x)

∣∣2 (4.12)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j
∣∣f (m−`)r (x)

∣∣2
+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j

×
k∏
p=1

[lnp+1(x/γ)]−2
∣∣f (m−`)r (x)

∣∣2.
Summing over r ∈ N, one obtainsˆ ∞

ρ

dxxα
∞∑
r=1

∣∣f (m)
r (x)

∣∣2 > A(`, α)

ˆ ∞
ρ

dxxα−2`
∞∑
r=1

∣∣f (m−`)r (x)
∣∣2
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+B(`, α)

N∑
k=1

ˆ ∞
ρ

dxxα−2`
k∏
p=1

[lnp(x/γ)]−2
∞∑
r=1

∣∣f (m−`)r (x)
∣∣2 (4.13)

+
∑̀
j=2

|c2j(`, α)|A(j, 0)

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j
∞∑
r=1

∣∣f (m−`)r (x)
∣∣2

+
∑̀
j=2

|c2j(`, α)|B(j, 0)

N−1∑
k=1

ˆ ∞
ρ

dxxα−2`[ln(x/γ)]−2j

×
k∏
p=1

[lnp+1(x/γ)]−2
∞∑
r=1

∣∣f (m−`)r (x)
∣∣2,

which is (4.8). Theorem 4.2 (ii)–(iv) can be proved in a similar manner. �

As in the scalar case, the constants A(m,α), α ∈ R\{2j − 1}16j6m, are sharp
and the inequalities extend to the associated weighted Sobolev spaces of H-valued
functions; we omit the details.

We conclude with the observation that the vector-valued Hardy case (i.e., m = 1)
without logarithmic refinements (i.e., N = 0), played an important role in the
spectral theory of n-dimensional Schrödinger operators (n ∈ N, n > 2) as detailed,
for instance in [66, Chs. IV, V]. In this context one employs polar coordinates and
H is then naturally identified with L2(Sn−1; dn−1ω). This aspect will also play a
crucial role in the multi-dimensional generalizations of the results presented in this
note, see [42].

Appendix A. Optimality of A(m,α)

In this appendix we demonstrate sharpness of the constants A(`, α), 1 6 ` 6 m.

Theorem A.1. The constants A(`, α), 1 6 ` 6 m, α ∈ R\{2j − 1}16j6`, in
Theorems 3.1 and 3.5 are sharp.

Proof. For simplicity, we consider the interval (0, ρ) (the case (ρ,∞) being com-
pletely analogous).

To simplify notation we assume, without loss of generality, that ρ > 2 for the
remainder of this proof.

We first present the proof for the case ` = m and near the end indicate the
necessary changes to treat the analogous cases 1 6 ` 6 m− 1, m > 2. Introducing

y0(x) = x(2`−1−α)/2, x > 0, ` ∈ N, α ∈ R, (A.1)

one notes the facts

y
(`)
0 (x) = 2−`(2`− 1− α)(2`− 3− α) · · · (3− α)(1− α)x−(1+α)/2, (A.2)

xα
[
y
(`)
0

]2
= A(`, α)xα−2`[y0(x)]2 = A(`, α)x−1, (A.3)

(−1)`
(
xαy

(`)
0 (x)

)(`) −A(`, α)xα−2`y0(x) = 0. (A.4)

Next, we also introduce the cutoff functions

φ ∈ C∞(R), 0 6 φ(x) 6 1, x ∈ R, φ(x) =

{
0, x 6 1,

1, x > 2,
(A.5)

φε(x) = φ(x/ε), x ∈ R, 0 < ε sufficiently small, (A.6)
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ψ ∈ C∞(R), 0 6 ψ(x) 6 1, x ∈ R, ψ(x) =

{
1, x 6 ρ− 2,

0, x > ρ− 1,
(A.7)

and mollify y0 as follows,

y0,ε(x) = y0(x)φε(x)ψ(x), 0 6 x 6 ρ, y0,ε ∈ C∞0 ((0, ρ)). (A.8)

Then one verifies

A(`, α)

ˆ ρ

0

dxxα−2`[y0,ε(x)]2 = A(`, α)

ˆ ρ

0

dxx−1φ(x/ε)2ψ(x)2

= A(`, α)

ˆ ρ−2

ε

dxx−1φ(x/ε)2 +A(`, α)

ˆ ρ−1

ρ−2
dxx−1ψ(x)2

= A(`, α)

ˆ (ρ−2)/ε

2

dξ ξ−1φ(ξ)2 +A(`, α)

ˆ 2

1

dξ ξ−1φ(ξ)2

+A(`, α)

ˆ ρ−1

ρ−2
dxx−1ψ(x)2

=
ε↓0

A(`, α)ln(1/ε) +O(1), (A.9)

andˆ ρ

0

dxxα
[
y
(`)
0,ε(x)

]2
=

ˆ ρ−2

ε

dxxα
[
y
(`)
0,ε(x)

]2
+

ˆ ρ−1

ρ−2
dxxα

[
y
(`)
0,ε(x)

]2
=

ˆ ρ−2

ε

dxxα
{

[(y0(x)φ(x/ε)](`)
}2

+

ˆ ρ−1

ρ−2
dxxα

{
[y0(x)ψ(x)](`)

}2
. (A.10)

Next, one employs

[y0(x)φ(x/ε)](`) =
∑̀
k=0

(
`
k

)
y
(`−k)
0 (x)

dk

dxk
φ(x/ε)

= x−(1+α)/2
∑̀
k=0

c`,k,α(x/ε)kφ(k)(x/ε), (A.11)

where

c`,0,α = 2−`(2`− 1− α)(2`− 3− α) · · · (3− α)(1− α),

c2`,0,α = A(`, α).
(A.12)

Thus, one can continue (A.10) as follows:

(A.10) =

ˆ ρ−2

ε

dxx−1

[∑̀
k=0

c`,k,α(x/ε)kφ(k)(x/ε)

]2

+

ˆ ρ−1

ρ−2
dxxα

{
[y0(x)ψ(x)](`)

}2
=

ˆ (ρ−2)/ε

1

dξ ξ−1

[∑̀
k=0

c`,k,αξ
kφ(k)(ξ)

]2
+

ˆ ρ−1

ρ−2
dxxα

{
[y0(x)ψ(x)](`)

}2
=

ˆ (ρ−2)/ε

1

dξ ξ−1

[
c`,0,αφ(ξ) +

∑̀
k=1

c`,k,αξ
kφ(k)(ξ)

]2
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+

ˆ ρ−1

ρ−2
dxxα

{
[y0(x)ψ(x)](`)

}2
= A(`, α)

ˆ (ρ−2)/ε

1

dξ ξ−1φ(ξ)2

+

ˆ 2

1

dξ ξ−1

{
2c`,0,αφ(ξ)

∑̀
k=1

c`,k,αξ
kφ(k)(ξ)

+

[∑̀
k=1

c`,k,αξ
kφ(k)(ξ)

]2}
+

ˆ ρ−1

ρ−2
dxxα

{
[y0(x)ψ(x)](`)

}2
=
ε↓0

A(`, α)

ˆ (ρ−2)/ε

1

dξ ξ−1φ(ξ)2 +O(1)

=
ε↓0

A(`, α)

ˆ (ρ−2)/ε

2

dξ ξ−1 +A(`, α)

ˆ 2

1

dξ ξ−1φ(ξ)2 +O(1)

=
ε↓0

A(`, α)ln(1/ε) +O(1), (A.13)

employing the fact that supp
(
φ(k)

)
⊆ [1, 2], k > 1. Thus,(A.9) and (A.13) yield

´ ρ
0
dxxα

[
y
(`)
0,ε(x)

]2
A(`, α)

´ ρ
0
dxxα−2`[y0,ε(x)]2

=
ε↓0

1 +O(1/ln(1/ε)), (A.14)

proving sharpness of A(`, α) for ` ∈ N and α ∈ R\{2j − 1}16j6` on the function
space C∞0 ((0, ρ)).

For 1 6 ` 6 m− 1, m > 2, one replaces y0 by

f0(x) = [Ã(`, α)/Ã(m,α)]x(2m−α−1)/2, x > 0, α ∈ R,

Ã(`, α) = 2−`(2`− 1− α)(2`− 3− α) · · · (3− α)(1− α), α ∈ R,
(A.15)

and observes the facts,

fm−`0 (x) = x(2`−1−α)/2, (A.16)

f
(m)
0 (x) = Ã(`, α)x−(α+1)/2, (A.17)

xα
[
f
(m)
0 (x)

]2
= A(`, α)xα−2`

[
f
(m−`)
0 (x)

]2
= A(`, α)x−1, (A.18)

and then mollifies f0 as before via

f0,ε(x) = f0(x)φε(x)ψ(x), 0 6 x 6 ρ, f0,ε ∈ C0((0,∞)). (A.19)

At this point one can follow the above proof step by step arriving at´ ρ
0
dxxα

[
f
(m)
0,ε (x)

]2
A(`, α)

´ ρ
0
dxxα−2`

[
f
(m−`)
0,ε (x)

]2 =
ε↓0

1 +O(1/ln(1/ε)), (A.20)

once more proving sharpness of A(`, α) for ` ∈ N and α ∈ R\{2j − 1}16j6`.
Since Theorem 3.5 exhibits the same constant A(`, α), the latter is sharp also

for the larger function space Hm
0 ((0, ρ);xαdx). �

Remark A.2. (i) Once more we recall that A(`, α) = 0 if and only if α ∈ {2j −
1}16j6`. Thus, the inequalityˆ ρ

0

dxxα
∣∣f (m)(x)

∣∣2 > A(`, α)

ˆ ρ

0

dxxα−2`
∣∣f (m−`)(x)

∣∣2, f ∈ C∞0 ((0, ρ)), (A.21)
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is rendered trivial if α ∈ {2j−1}16j6`, with the right-hand side of (A.21) being zero.
The same observation applies of course to the remaining three cases (i), (ii), and
(iv) in Theorem 3.1. However, we emphasize that inequalities (3.1)–(3.4) remain
valid and nontrivial with just the first terms on their right-hand sides removed.

(ii) For α ∈ R\{2j−1}16j6`, inequality (A.21) extends to ρ =∞, again withA(`, α)
being the sharp constant for f ∈ C∞0 ((0,∞)). In particular, the proof of Theorem
A.1, suitably adapted, extends to the case ρ = ∞. (This observation applies of
course to cases (i), (ii) (if ρ = 0), and (iii), (iv) (if ρ =∞) in Theorem 3.1). This
is of course in accordance with the fact that C∞0 ((0, ρ))-functions extended by zero
beyond ρ, ρ ∈ (0,∞), can be viewed as a subset of C∞0 ((0,∞)). �

Remark A.3. Regarding sharpness (optimality) of constants, we first note that the
smaller the underlying function space, the larger the efforts needed to prove op-
timality. In particular, in connection with the proof presented in Theorem A.1,
assuming f ∈ C∞0 ((0, ρ)) requires mollification of y0 in (A.1) near x = 0 and x = ρ
and of course analogously in the case f ∈ C∞0 ((ρ,∞)). Many of the results cited in
the remainder of this remark, under particular restrictions on the weight parameter
α, establish sharpness for larger classes of functions f which do not automatically
continue to hold in the C∞0 ((0, ρ))-context. It is this simple observation that adds
considerable complexity to sharpness proofs for the space C∞0 ((0, ρ)). (By the same
token, optimality proofs obtained for C∞0 function spaces automatically hold for
larger function spaces as long as the inequalities have already been established
for the larger function spaces with the same constants A(m,α), B(m,α).) This
comment applies, in particular, to many papers that prove sharpness results in
multi-dimensional situations for larger function spaces such as C∞0 (B(0; ρ)) or (ho-
mogeneous, weighted) Sobolev spaces rather than C∞0 (B(0; ρ)\{0}), B(0; ρ) ⊆ Rn
the open ball in Rn, n > 2, with center at the origin x = 0 and radius ρ > 0. Un-
less C∞0 (B(0; ρ)\{0}) is dense in the appropriate norm (cf. the discussion preceding
Theorem 3.5 in the one-dimensional context), one cannot a priori assume that the
optimal constants A(m, α̃) and B(m, α̃) (with α̃ appropriately depending on n, e.g.,
α̃ = α + n − 1) remain the same for C∞0 (B(0; ρ)) and C∞0 (B(0; ρ)\{0}), say. At
least in principle, they could actually increase for the space C∞0 (B(0; ρ)\{0}). In
this context we emphasize that the multi-dimensional results then naturally lead
to one-dimensional results for C∞0 ((0, ρ)) upon specializing to radially symmetric
functions in C∞0 (B(0; ρ)\{0}).

Sharpness of the constant A(m, 0), m ∈ N (i.e., in the unweighted case, α = 0),
in connection with the space C∞0 ((0,∞)) has been shown by Yafaev [96]. In fact,
he also established this result for fractional m (in this context we also refer to
appropriate norm bounds in Lp(Rn; dnx) of operators of the form |x|−β | − i∇|−β ,
1 < p < n/β, see [13, Sect. 1.7], [14, 57, 60, 61, 83, 91, 92, Sects. 1.7, 4.2]).
Sharpness of A(2, 0) (i.e., in the unweighted Rellich case) was shown by Rellich [86,
p. 91–101] in connection with the space C∞0 ((0,∞)); his multi-dimensional results
also yield sharpness of A(2, n− 1) for n ∈ N, n > 3, again for C∞0 ((0,∞)). In this
context see also [14, Corollary 6.3.5]. An exhaustive study of optimality of A(2, α̃)
(i.e., Rellich inequalities with power weights) for the space C∞0 (Ω\{0}) for cones
Ω ⊆ Rn, n > 2, appeared in Caldiroli and Musina [21]. The authors, in particular,
describe situations where A(2, α̃) has to be replaced by other constants and also
treat the special case of radially symmetric functions in detail. Additional results for
power weighted Rellich inequalities appeared in [79, 80]; further extensions of power
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weighted Rellich inequalities with sharp constants on C∞0 (Rn\{0}) were obtained
in [73]; for optimal power weighted Hardy, Rellich, and higher-order inequalities
on homogeneous groups, see [87, 88]. Many of these references also discuss sharp
(power weighted) Hardy inequalities, implying optimality for A(1, α̃). Moreover,
replacing f(x) by F (x) =

´ x
0
dt f(t)

(
or F (x) =

´∞
x
dt f(t)

)
, optimality of the

Hardy constant A(1, 0) for larger, Lp-based function spaces, can already be found
in [54, Sect. 9.8] (see also [14, Theorem 1.2.1], [63, Ch. 3], [64, p. 5–11], [67, 76, 85],
in connection with A(1, α)).

Sharpness results for A(m,α) and B(m,α) together are much less frequently
discussed in the literature, even under suitable restrictions on m and α. The re-
sults we found in the literature primarily follow upon specializing multi-dimensional
results for function spaces such as C∞0 (Ω\{0}), or C∞0 (Ω), Ω ⊆ Rn open, and ap-
propriate restrictions on m, α, and n > 2, for radially symmetric functions to
the one-dimensional case at hand (cf. the previous paragraph). In this context
we mention that the Hardy case m = 1, without a weight function, is studied in
[1, 2, 5, 9, 20, 24, 27, 36, 52, 59, 69, 90, 94] (all for N = 1), and in [10, 29, 48]
(all for N ∈ N); the case with power weight functions is discussed in [17], [49], [50,
Ch. 6] (for N ∈ N); see also [70]. The Rellich case m = 2 with a general power
weight on C∞0 (Ω\{0}) is discussed in [21] (for N = 1); the Rellich case m = 2,
without weight function on C∞0 (Ω), is studied in [27, 28, 30] (all for N = 1), the
case N ∈ N is studied in [4]; the case of additional power weights is treated in [49],
[50, Ch. 6], [75]. The general case m ∈ N is discussed in [6] (for N = 1) and in
[15], [49], [50, Ch. 6], [95] (all for N ∈ N and including power weights). Employing
oscillation theory, sharpness of the unweighted Hardy case A(1, 0) = B(1, 0) = 1/4,
with N ∈ N, was proved in [45].

The special results available on sharpness of B(m,α) are all saddled with enor-
mous complexity, especially, for larger values of N ∈ N. In fact, a careful proof for
general N will rival the length of this paper and hence has not been attempted here
as briefly discussed in the following remark. �

Remark A.4. The proof of optimality of A(`, α) in Theorem A.1 consists of two
principal steps:

(i) Identify a function y0 (see (A.1)) which is not in C∞0 ((ρ,∞)), but which satisfies
(see (A.4)), ´∞

ρ
dxxα

∣∣y(m)
0 (x)

∣∣2
´∞
ρ
dxxα2`

∣∣y(m−`)0 (x)
∣∣2 = A(`, α). (A.22)

(ii) Exhibit a family {y0,ε}ε>0 ⊂ C∞0 ((ρ,∞)) of multiplicative mollifications of y0
(see (A.8)) that approaches y0 as ε ↓ 0 and for which (see (A.14))

lim
ε↓0

´∞
ρ
dxxα

∣∣y(m)
0,ε (x)

∣∣2
´∞
ρ
dxxα2`dx

∣∣y(m−`)0,ε (x)
∣∣2 = A(`, α). (A.23)

Unfortunately, due to the ensuing complexity when having to apply the product rule
of differentiation again and again, this approach in connection with A(`, α) cannot
naturally be adapted to a proof of optimality of B(`, α). The proof of optimality of
B(`, α) we are currently working out requires substantial modification to steps (i)
and (ii) above. We sketch the new approach in the special case ` = m in inequality
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(3.1). We abbreviate

Wm,α,N (x) = A(m,α) +B(m,α)

N−1∑
k=1

k∏
p=1

[lnp(γ/x)]−2. (A.24)

Instead of identifying one explicit functon y0 which satisfies (A.22), we use a mod-
ification of the proof of [15, Theorem 2] to identify a family {f0,ε : (ρ,∞)→ C}ε>0

of functions which are not in C∞0 ((ρ,∞)) but for which

lim
ε↓0

´∞
ρ
dxxα

∣∣f (m)
0,ε (x)

∣∣2 − ´∞
ρ
dxxα−2mWm,α,N (x)|f0,ε(x)|2´∞

ρ
dxxα−2m

∏N
p=1[lnp(γ/x)]−2|f0,ε(x)|2

= B(m,α). (A.25)

Instead of a family of multiplicative mollifications as in (A.8), for each ε > 0 we
employ a family {f0,ε,ν}ν>0 ⊂ C∞0 ((ρ,∞)) of mollifications of f0,ε using convolution
with an approximate identity which has the properties:

lim
ν↓0

ˆ ∞
ρ

dxxα
∣∣f (m)

0,ε,ν(x)
∣∣2 =

ˆ ∞
ρ

dxxα|f0,ε(x)|2, (A.26)

and for k = 0, 1, · · ·, N ,

lim
ν↓0

ˆ ∞
ρ

dxxα−2m
k∏
p=1

[lnp(γ/x)]−2|f0,ε,ν(x)|2

=

ˆ ∞
ρ

dxxα−2m
k∏
p=1

[lnp(γ/x)]−2|f0,ε(x)|2.

(A.27)

Thus, roughly speaking, one gets

lim
ε,ν↓0

´∞
ρ
dxxα

∣∣f (m)
0,ε,ν(x)

∣∣2 − ´∞
ρ
dxxα−2mWm,α,N (x)|f0,ε(x)|2´∞

ρ
dxxα−2m

∏N
p=1[lnp(γ/x)]−2|f0,ε,ν(x)|2

= B(m,α). (A.28)

This approach is that much longer than the proof of Theorem A.1, that we felt
we had no choice but to write a separate paper [43] for the proof of optimality of
B(`, α). �

Appendix B. The Interval Case (ρ,∞) in Theorem 3.5

We recall the space

Hm,α([ρ,∞)) =
{
f : [ρ,∞)→ C

∣∣ for all R > ρ, f (k) ∈ AC([ρ,R]), 0 6 k 6 m− 1;

f (k)(ρ) = 0, 0 6 k 6 m− 1; f (m) ∈ L2
(
(ρ,∞);xαdx

)}
, (B.1)

and introduce the bilinear form 〈 · , · 〉m,α on Hm,α([ρ,∞)) by

〈f, g〉m,α =

ˆ ∞
ρ

xαdx f (m)(x)g(m)(x), f, g ∈ Hm,α([ρ,∞)). (B.2)

Proposition B.1. The bilinear form 〈 · , · 〉m,α is an inner product on the space
Hm,α([ρ,∞)), in fact, (Hm,α([ρ,∞)), 〈 · , · 〉m,α) is a Hilbert space.

Proof. Assuming 〈f, f〉m,α = 0, f ∈ Hm,α([ρ,∞)), one obtainsˆ ∞
ρ

xαdx
∣∣f (m)(x)

∣∣2 = 0, (B.3)
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and hence f (m) = 0 a.e. on (ρ,∞). Thus, employing f (m−1)(ρ) = 0, one concludes
that

f (m−1)(x) =

ˆ x

ρ

dt f (m)(t) = 0, x > ρ. (B.4)

Similarly, as f (m−2)(ρ) = 0,

f (m−2)(x) =

ˆ x

ρ

dt f (m−1)(t) = 0, x > ρ, (B.5)

and hence inductively,

f (k)(x) = 0, 0 6 k 6 m− 1, x > ρ. (B.6)

Thus, 〈 · , · 〉m,α is an inner product on Hm,α([ρ,∞)).
To prove completeness of (Hm,α([ρ,∞)), 〈 · , · 〉m,α), one assumes that {fn}n∈N

is a Cauchy sequence in Hm,α([ρ,∞)). Then
{
f
(m)
n

}
n∈N is a Cauchy sequence in

L2
(
(ρ,∞);xαdx

)
. Hence, there exists g ∈ L2

(
(ρ,∞);xαdx

)
such that

lim
n→∞

∥∥f (m)
n − g

∥∥
L2((ρ,∞);xαdx)

= 0. (B.7)

Introducing f : [ρ,∞)→ C by

f(x) =

ˆ x

ρ

ˆ t1

ρ

· · ·
ˆ tm−1

ρ

dt1 · · · dtm−1du g(u), x > ρ, (B.8)

then f (k) ∈ AC([ρ,R]) for all R > ρ and f (k)(ρ) = 0, 0 6 k 6 m − 1, and
f (m) = g ∈ L2

(
(ρ,∞);xαdx

)
, and hence f ∈ Hm,α([ρ,∞)). In addition,

|||fn − f |||Hm,α([ρ,∞)) =
∥∥f (m)
n − f (m)

∥∥
L2((ρ,∞);xαdx)

=
∥∥f (m)
n − g

∥∥
L2((ρ,∞);xαdx)

−→
n→∞

0,
(B.9)

completing the proof. �

We recall that the norm in Hilbert space Hm,α([ρ,∞)) is denoted by ||| · |||m,α.
The fact that C∞0 ((ρ,∞)) ⊂ Hm,α([ρ,∞)) then leads to the introduction of the
homogeneous weighted Sobolev space

.
Hm

0

(
(ρ,∞);xαdx

)
= C∞0 ((ρ,∞))

||| · |||m,α
, (B.10)

that is, the closure of C∞0 ((ρ,∞)) in Hm,α([ρ,∞)). Proposition B.1 then yields the
following result.

Corollary B.2. Assume that f ∈
.
Hm

0

(
(ρ,∞);xαdx

)
, α ∈ R. Then there exists a

sequence {fn}n∈N ⊂ C∞0 ((ρ,∞)) such that for 0 6 k 6 m,

lim
n→∞

f (k)n (x) = f (k)(x) for a.e. x > ρ. (B.11)

Proof. Since f ∈
.
Hm

0

(
(ρ,∞);xαdx

)
, there exists a sequence {fn}n∈N ⊂ C∞0 ((ρ,∞))

such that

lim
n→∞

∥∥f (m)
n − f (m)

∥∥
L2((ρ,∞);xαdx)

= 0. (B.12)

By taking a subsequence, if necessary, one can assume that

lim
n→∞

f (m)
n (x) = f (m)(x) for a.e. x > ρ. (B.13)
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Since f (k)(ρ) = 0, 0 6 k 6 m− 1,∣∣f (m−1)n (x)− f (m−1)(x)
∣∣ =

∣∣∣∣ˆ x

ρ

dt f (m)
n (t)−

ˆ x

ρ

dt f (m)(t)

∣∣∣∣
6
ˆ x

ρ

dt
∣∣f (m)
n (t)− f (m)(t)

∣∣
6

[ ˆ x

ρ

dt
∣∣f (m)
n (t)− f (m)(t)

∣∣2]1/2(x− ρ)1/2

6 max
(
ρ−α/2, x−α/2

)[ˆ x

ρ

dt tα
∣∣f (m)
n (t)− f (m)(t)

∣∣2]1/2(x− ρ)1/2

−→
n→∞

0, x > ρ. (B.14)

Next, fix R > ρ. Then for all n ∈ N sufficiently large, and for all x ∈ [ρ,R], there
exists C(ρ, α,R) ∈ (0,∞) such that∣∣f (m−1)n (x)

∣∣ 6 ˆ x

ρ

dt
∣∣f (m)
n (t)

∣∣
6

[ˆ x

ρ

dt
∣∣f (m)
n (t)

∣∣2]1/2(x− ρ)1/2

6 max
(
ρ−α/2, x−α/2

)[ ˆ x

ρ

dt tα
∣∣[f (m)

n (t)− f (m)(t)
]

+ f (m)(t)
∣∣2]1/2

× (x− ρ)1/2

6 max
(
ρ−α/2, x−α/2

)[
2

ˆ x

ρ

dt tα
∣∣f (m)
n (t)− f (m)(t)

∣∣2
+ 2

ˆ x

ρ

dt tα
∣∣f (m)(t)

∣∣2]1/2(x− ρ)1/2

6 max
(
ρ−α/2, x−α/2

)[
o(1) + 2

ˆ x

ρ

dt tα
∣∣f (m)(t)

∣∣2]1/2(x− ρ)1/2

6 C(ρ, α,R)
∥∥f (m)

∥∥
L2((ρ,∞);xαdx)

, x ∈ [ρ,R]. (B.15)

Thus, (B.14), (B.15), and an application of Lebesgue’s dominated convergence the-
orem implies

lim
n→∞

∥∥∥f (m−1)n

∣∣
[ρ,R]
− f (m−1)

∣∣
[ρ,R]

∥∥∥
L1((ρ,R);dt)

= 0. (B.16)

Next, one infers that∣∣f (m−2)n (x)− f (m−2)(x)
∣∣ =

∣∣∣∣ ˆ x

ρ

dt
[
f (m−1)n (t)− f (m−1)(t)

]∣∣∣∣
6
ˆ x

ρ

dt
∣∣f (m−1)n (t)− f (m−1)(t)

∣∣
6
ˆ R

ρ

dt
∣∣f (m−1)n (t)− f (m−1)(t)

∣∣
=
∥∥∥f (m−1)n

∣∣
[ρ,R]
− f (m−1)

∣∣
[ρ,R]

∥∥∥
L1((ρ,R);dt)
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−→
n→∞

0, x ∈ [ρ,R], (B.17)

by (B.16). Similarly, for all n ∈ N sufficiently large, and for all x ∈ [ρ,R], one has∣∣f (m−2)n (x)
∣∣ 6 ˆ x

ρ

dt
∣∣f (m−1)n (x)

∣∣ 6 ˆ R

ρ

dt
∣∣f (m−1)n (x)

∣∣
=
∥∥∥[f (m−1)n − f (m−1)

]
+ f (m−1)

∣∣
ρ,R

∥∥∥
L1((ρ,R);dt)

= o(1) +
∥∥∥f (m−1)∣∣

ρ,R

∥∥∥
L1((ρ,R);dt)

6 2
∥∥∥f (m−1)∣∣

ρ,R

∥∥∥
L1((ρ,R);dt)

, x ∈ [ρ,R]. (B.18)

Thus, (B.17), (B.18), and an application of Lebesgue’s dominated convergence the-
orem yields

lim
n→∞

∥∥∥f (m−2)n

∣∣
[ρ,R]
− f (m−2)

∣∣
[ρ,R]

∥∥∥
L1((ρ,R);dt)

= 0. (B.19)

Iterating these arguments proves that for all 0 6 k 6 m− 1,

lim
n→∞

f (k)n (x) = f (k)(x) for a.e. x ∈ [ρ,R]. (B.20)

Since R > ρ was arbitrary, this concludes the proof of Corollary B.2. �
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[64] A. Kufner, L.-E. Persson, and N. Samko, Weighted Inequalities of Hardy Type, 2nd ed.,

World Scientific, Singapore, 2017.
[65] A. Kufner and A. Wannebo, Some remarks on the Hardy inequality for higher order deriva-

tives, Int. Ser. Num. Math. 103, 33–48 (1992).
[66] S. T. Kuroda, An Introduction to Scattering Theory, Aarhus University Lecture Notes Series,

No. 51, 1978.
[67] E. Landau, A note on a theorem concerning series of positive terms: extract from a letter

of Prof. E. Landau to Prof. I. Schur, J. London Math. Soc. 1, 38–39 (1926).
[68] G. Leoni, A First Course in Sobolev Spaces, 2nd ed., Graduate Studies in Math., Vol. 181,

Amer. Math. Soc., Providence, RI, 2017.
[69] S. Machihara, T. Ozawa, and H. Wadade, Hardy type inequalities on balls, Tohoku Math.

J. 65, 321–330 (2013).

http://arxiv.org/abs/1805.10935


WEIGHTED BIRMAN INEQUALITIES WITH LOGARITHMIC REFINEMENTS 31

[70] S. Machihara, T. Ozawa, and H. Wadade, Scaling invariant Hardy inequalities of multiple

logarithmic type on the whole space, J. Inequal. Appls. 2015:281, pp. 1–13.

[71] S. Machihara, T. Ozawa, and H. Wadade, Remarks on the Hardy type inequalities with
remainder terms in the framework of equalities, arXiv:1611.03580.

[72] S. Machihara, T. Ozawa, and H. Wadade, Remarks on the Rellich inequality, Math. Z. 286,

1367–1373 (2017).
[73] G. Metafune, M. Sobajima, and C. Spina, Weighted Calderón–Zygmund and Rellich in-

equalities in Lp, Math. Ann. 361, 313–366 (2015).

[74] E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes 67, 479–486 (2000).
[75] A. Moradifam, Optimal weighted Hardy–Rellich inequalities on H2 ∩H1

0 , J. London Math.

Soc. 85, 22–40 (2012).
[76] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44, 31–38 (1972).
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[81] Q. A. Ngô and V. N. Nguyen, A supercritical Sobolev type inequality in higher order Sobolev

spaces and related higher order elliptic problems, arXiv:1905.01864.

[82] E. S. Noussair and N. Yoshida, Nonoscillation criteria for elliptic equations of order 2m,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 59 (1975), no. 1–2, 57–64 (1976).

[83] N. Okazawa, H. Tamura, and T. Yokota, Square Laplacian perturbed by inverse fourth-power

potential. I Self-adjointness (real case), Proc. Roy. Soc. Edinburgh 141A, 409–416 (2011).
[84] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics

Series, Vol. 219. Longman Scientific & Technical, Harlow, 1990.
[85] L.-E. Persson and S. G. Samko, A note on the best constants in some Hardy inequalities, J.

Math. Inequalities 9, 437–447 (2015).

[86] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, 1969.
[87] M. Ruzhansky and D. Suragan, Hardy and Rellich inequalities, and sharp remainders on

homogeneous groups, Adv. Math. 317, 799–822 (2017).

[88] M. Ruzhansky and N. Yessirkegenov, Factorizations and Hardy–Rellich inequalities on strat-
ified groups, J. Spectral Th. (to appear), arXiv:1706.05108.

[89] M. Sano, Extremal functions of generalized critical Hardy inequalities, J. Diff. Eq. 267,

2594–2615 (2019).
[90] M. Sano and F. Takahashi, Sublinear eigenvalue problems with singular weights related to

the critical Hardy inequality, Electronic J. Diff. Eq. 2016, No. 212, pp. 1–12.

[91] U.-W. Schmincke, Essential selfadjointness of a Schrödinger operator with strongly singular
potential, Math. Z. 124, 47–50, (1972).

[92] B. Simon, Hardy and Rellich inequalities in non-integral dimension, J. Operator Th. 9,
143–146 (1983).

[93] M. Solomyak, A remark on the Hardy inequalities, Integral Eq. Operator Th. 19, 120–124

(1994).
[94] F. Takahashi, A simple proof of Hardy’s inequality in a limiting case, Arch. Math. 104,

77–82 (2015).
[95] A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy–Rellich inequalities and

related improvements, Adv. Math. 209, 407–459 (2007).

[96] D. Yafaev, Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal. 168, 121–144

(1999).

http://arxiv.org/abs/1611.03580
http://arxiv.org/abs/1905.01864


32 F. GESZTESY, L. L. LITTLEJOHN, I. MICHAEL, AND M. M. H. PANG

Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th

Street, Waco, TX 76706, USA

E-mail address: Fritz_Gesztesy@baylor.edu

URL: http://www.baylor.edu/math/index.php?id=935340

Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th
Street, Waco, TX 76706, USA

E-mail address: Lance_Littlejohn@baylor.edu

URL: http://www.baylor.edu/math/index.php?id=53980

Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton

Rouge, LA 70803, USA

E-mail address: imichael@lsu.edu

URL: http://blogs.baylor.edu/isaac_michael/

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: pangm@missouri.edu

URL: https://www.math.missouri.edu/people/pang

mailto:Fritz_Gesztesy@baylor.edu
http://www.baylor.edu/math/index.php?id=935340
mailto:Lance_Littlejohn@baylor.edu
http://www.baylor.edu/math/index.php?id=53980
mailto:imichael@lsu.edu
http://blogs.baylor.edu/isaac_michael/
mailto:pangm@missouri.edu
https://www.math.missouri.edu/people/pang

	1. Introduction
	2. The Combined Hartman–Müeller-Pfeiffer Transformation
	3. Power-Weighted Birman–Hardy–Rellich-type Inequalities with Logarithmic Refinements
	4. The Vector-Valued Case
	Appendix A. Optimality of A(m,)
	Appendix B. The Interval Case (,) in Theorem ??
	References

