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Abstract. The principal purpose of this note is to derive variants of Hardy’s

inequality involving radial derivatives and logarithmic refinements.

1. Introduction

To describe the principal aim of this note we start by recalling the classical Hardy
inequality ˆ

Ω

|(∇f)(x)|2 dnx > (n− 2)2

4

ˆ
Ω

|x|−2|f(x)|2 dnx, (1.1)

valid for f ∈ C∞0 (Ω), Ω ⊆ Rn open, n ∈ N, n > 2 (interpreting the right-hand side
of (1.1) as zero if n = 2, and hence rendering it trivial in that case). The follow-
ing extension of Hardy’s inequality (in the special case where Ω equals Bn(x0; ρ),
the open ball in Rn of radius ρ > 0 centered at x0 ∈ Rn), involving logarithmic
refinements, was derived in [7],ˆ

Ω

|(∇f)(x)|2dnx >
ˆ

Ω

|x− x0|−2|f(x)|2
{

(n− 2)2

4

+
1

4

m∑
j=1

j∏
k=1

[lnk(γ/|x− x0|)]−2

}
dnx,

(1.2)

valid for f ∈ C∞0 (Ω), assuming that Ω ⊂ Rn, n ∈ N, n > 2, is open and bounded
with x0 ∈ Ω, m ∈ N, and the logarithmic terms lnk(γ/|x − x0|), k ∈ N, are recur-
sively given by

ln1(γ/|x− x0|) := ln(γ/|x− x0|), 0 < |x− x0| < γ, (1.3)

lnk+1(γ/|x− x0|) := ln(lnk(γ/|x− x0|)), 0 < |x− x0| < γ/ek+1, k ∈ N,

for γ > 0, x ∈ Rn\{x0}, n ∈ N, n > 2, with 0 < |x− x0| < diam(Ω) < γ/em, where

e1 := 1, ek+1 := eek , k ∈ N. (1.4)

We denote
∑0
j=1( · ) := 0 and

∏0
k=1( · ) := 1, so when m = 0, x0 = 0, (1.2) formally

agrees with (1.1).
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Due to the incredible amount of work on the classical Hardy inequality, we cannot
possibly do justice to the existing literature and hence only refer to some of the
standard monographs on the subject such as, [3], [15], [16], and [17]. In addition, we
note that factorizations in the context of Hardy’s inequality in balls with optimal
constants and logarithmic correction terms were already studied in [6], [10], based
on prior work in [12], [13], and [14], although this appears to have gone unnoticed
in the recent literature on this subject. Higher-order logarithmic refinements of
the multi-dimensional Hardy–Rellich-type inequality appeared in [1, Theorem 2.1],
and a sequence of such multi-dimensional Hardy–Rellich-type inequalities, with
additional generalizations, appeared in [19, Theorems 1.8–1.10].

The principal goal in this paper is to offer an improvement of (1.2) by replacing
the gradient with the radial derivative ∂r, given by

∂r := |x|−1x · ∇, x ∈ Rn\{0}, r = |x|, n ∈ N, n > 2. (1.5)

Obviously,

|(∇f)(x)| > |(∂rf)(x)|, x ∈ Rn\{0}, f ∈ C∞0 (Rn). (1.6)

With (1.6) in mind, we will show that (1.1), (1.2) still hold when ∇ is replaced
by ∂r. More precisely, we will prove

ˆ
Ω

|(∂rf)(x)|2 dnx > (n− 2)2

4

ˆ
Ω

|x|−2|f(x)|2 dnx, (1.7)

valid for f ∈ C∞0 (Ω), n ∈ N, n > 2 (again, interpreting the right-hand side of (1.7)
as zero in the case n = 2), and

ˆ
Ω

|(∂rf)(x)|2 dnx >
ˆ

Ω

|x− x0|−2|f(x)|2
{

(n− 2)2

4

+
1

4

m∑
j=1

j∏
k=1

[lnk(γ/|x− x0|)]−2

}
dnx,

(1.8)

valid for f ∈ C∞0 (Ω), assuming that Ω ⊂ Rn, n ∈ N, n > 2, is open and bounded
with x0 ∈ Ω, and γ > 0 satisfies 0 < |x− x0| < diam(Ω) < γ/em, m ∈ N.

While (1.7) is well-known, see, for instance, [2, p. 19], [3, Theorem 1.2.5] (in the
case p = 2, ε = 0), [5], [7], and [18], inequality (1.8) is the principal result of this
note.

2. Refinements of Hardy’s Inequality

In this section we present our radial and logarithmic refinements of Hardy’s
inequality.

We start with some preliminary results. Introducing the differential operators,
T0 on C∞0 (Ω) if 0 /∈ Ω, respectively, C∞0 (Ω\{0}) if 0 ∈ Ω, Ω ⊆ Rn open, and Tm,
m ∈ N, on C∞0 (Bn(0; ρ)\{0}), n > 2, as follows,

T0 := ∂r + [(n− 2)/2]|x|−1, m = 0, (2.1)

Tm := ∂r + [(n− 2)/2]|x|−1 + (1/2)|x|−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1, m ∈ N, (2.2)
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their formal adjoints (with respect to L2(Ω) := L2(Ω; dnx)), denoted by T+
0 and

defined on C∞0 (Ω), respectively, on C∞0 (Ω\{0}), and T+
m , m ∈ N, defined on

C∞0 (Bn(0; ρ)\{0}), are then given by (cf. (1.3), (1.4))

T+
0 = −∂r − (n/2)|x|−1, m = 0, (2.3)

T+
m = −∂r − (n/2)|x|−1 + (1/2)|x|−1

m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1, m ∈ N. (2.4)

Remark 2.1. In the following we will employ a standard convention when repeated
use of differential expressions is involved: Given differential expressions Sj , j = 1, 2,
their product S1S2 is used in the usual (operator) sense, that is,

(S1S2f)(x) = (S1(S2f))(x), (2.5)

for f in the underlying function space, and analogously for products of three and
more differential expressions. �

Next, we note that one obtains inductively,

∂r|x|−1
m∏
k=1

[lnk(γ/|x|)]−1 − |x|−1
m∏
k=1

[lnk(γ/|x|)]−1∂r

= −|x|−2
m∏
k=1

[lnk(γ/|x|)]−1 + |x|−2
m∏
k=1

[lnk(γ/|x|)]−1
m−1∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1

+ |x|−2
m∏
k=1

[lnk(γ/|x|)]−2, m ∈ N0 := N ∪ {0}, (2.6)

where again
∑0
j=1( · ) := 0,

∏0
k=1( · ) = 1.

Using (2.6), one can prove the following lemma, which will be useful in estab-
lishing Theorem 2.4.

Lemma 2.2. Let n ∈ N, n > 2 and m ∈ N0. Then

T+
m |x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1 + |x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1Tm

= −|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−2.

(2.7)

Proof. First, one notes,

T+
m |x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1 = −∂r|x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1

− (n/2)|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1 (2.8)

+ (1/2)|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1,
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and

|x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1Tm = |x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1∂r

+ [(n− 2)/2]|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1 (2.9)

+ (1/2)|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1.

Thus, applying (2.6) yields

T+
m |x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1 + |x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1Tm

=

(
− ∂r|x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1 + |x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1∂r

)

− |x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1 + |x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1.

=

(
|x|−2

m+1∏
k=1

[lnk(γ/|x|)]−1 − |x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1

− |x|−2
m+1∏
k=1

[lnk(γ/|x|)]−2

)
− |x|−2

m+1∏
k=1

[lnk(γ/|x|)]−1

+ |x|−2
m+1∏
k=1

[lnk(γ/|x|)]−1
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−1

= −|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−2. (2.10)

�

Lemma 2.3. Let n ∈ N, n > 2, and m ∈ N0. Then

T+
mTm = −∂2

r − (n− 1)|x|−1∂r − [(n− 2)/2]2|x|−2

− (1/4)|x|−2
m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−2.
(2.11)

Proof. We use induction on m ∈ N. For m = 0, one observes

T+
0 T0 =

(
− ∂r − (n/2)|x|−1

)(
∂r + [(n− 2)/2]|x|−1

)
= −∂2

r − (n− 1)|x|−1∂r − [(n− 2)/2]2|x|−2. (2.12)

For m = 1, a direct computation, employing (2.6), yields,

T+
1 T1 =

(
T+

0 + (1/2)|x|−1[ln(γ/|x|)]−1

)(
T0 + (1/2)|x|−1[ln(γ/|x|)]−1

)
= T+

0 T0 − (1/2)|x|−2[ln(γ/|x|)]−2 + (1/4)|x|−2[ln(γ/|x|)]−2 (2.13)
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= −∂2
r − (n− 1)|x|−1∂r + [(n− 2)/2]2|x|−2 − (1/4)|x|−2[ln(γ/|x|)]−2.

Assuming (2.11) holds for m ∈ N, an application of Lemma 2.2 then yields for
m+ 1,

T+
m+1Tm+1 =

(
T+
m + (1/2)|x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1

)

×
(
Tm + (1/2)|x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1

)

= T+
mTm + (1/2)

(
T+
m |x|−1

m+1∏
k=1

[lnk(γ/|x|)]−1

+ |x|−1
m+1∏
k=1

[lnk(γ/|x|)]−1Tm

)
+ (1/4)|x|−2

m+1∏
k=1

[lnk(γ/|x|)]−2

= T+
mTm − (1/2)|x|−2

m+1∏
k=1

[lnk(γ/|x|)]−2 + (1/4)|x|−2
m+1∏
k=1

[lnk(γ/|x|)]−2

= T+
mTm − (1/4)|x|−2

m+1∏
k=1

[lnk(γ/|x|)]−2

= −∂2
r − (n− 1)|x|−1∂r − [(n− 2)/2]2|x|−2

− (1/4)|x|−2
m+1∑
j=1

j∏
k=1

[lnk(γ/|x|)]−2. (2.14)

�

Given these preliminaries, we can now show the following result.

Theorem 2.4. Let Ω ⊆ Rn open, n ∈ N, n > 2.

(i) Then, for all f ∈ C∞0 (Ω),

ˆ
Ω

|(∇f)(x)|2 dnx >
ˆ

Ω

|(∂rf)(x)|2 dnx > (n− 2)2

4

ˆ
Ω

|x|−2|f(x)|2 dnx. (2.15)

(ii) Let m ∈ N, and suppose in addition that Ω ⊂ Rn is bounded with x0 ∈ Ω.
Assume γ > 0 is such that 0 < diam(Ω) < γ/em, where em is given as in (1.4),
and let lnk(γ/|x− x0|), k ∈ N, be as in (1.3), (1.4). Then, for all f ∈ C∞0 (Ω),

ˆ
Ω

|(∇f)(x)|2dnx >
ˆ

Ω

|(∂rf)(x)|2dnx

>
ˆ

Ω

|x− x0|−2|f(x)|2
{

(n− 2)2

4
+

1

4

m∑
j=1

j∏
k=1

[lnk(γ/|x− x0|)]−2

}
dnx.

(2.16)

Proof. It suffices to focus on item (ii) only. In a first step we establish the latter
in the special case Ω = Bn(0; ρ), x0 = 0, with ρ, γ > 0 and ρ < γ/em. Thus, we
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will prove for all f ∈ C∞0 (Bn(0; ρ)),ˆ
Bn(0;ρ)

|(∇f)(x)|2 dnx >
ˆ
Bn(0;ρ)

|(∂rf)(x)|2 dnx

>
ˆ
Bn(0;ρ)

|x|−2|f(x)|2
{

(n− 2)2

4
+

1

4

m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−2

}
dnx.

(2.17)

Define Tm and T+
m as in (2.1)–(2.4), respectively. For simplicity we will work

with f ∈ C∞0 (Bn(0; ρ)\{0}) for m ∈ N. However, all integrals extend to f ∈
C∞0 (Bn(0; ρ)).

By Lemma 2.3, one has

0 6
ˆ
Bn(0;ρ)

|(Tmf)(x)|2 dnx =

ˆ
Bn(0;ρ)

f(x)(T+
mTmf)(x) dnx

= −
ˆ
Bn(0;ρ)

f(x)(∂2
rf)(x) dnx− (n− 1)

ˆ
Bn(0;ρ)

|x|−1f(x)(∂rf)(x) dnx

− [(n− 2)/2]2
ˆ
Bn(0;ρ)

|x|−2|f(x)|2 dnx

− (1/4)

m∑
j=1

ˆ
Bn(0;ρ)

|x|−2|f(x)|2
j∏

k=1

[lnk(γ/|x|)]−2 dnx. (2.18)

Considering the identity,ˆ
Bn(0;ρ)

f(x)(∂2
rf)(x) dnx = −

ˆ
Bn(0;ρ)

|(∂rf)(x)|2 dnx (2.19)

− (n− 1)

ˆ
Bn(0;ρ)

|x|−1f(x)(∂rf)(x) dnx, f ∈ C∞0 (Bn(0; ρ)),

(2.18) becomes

0 6
ˆ
Bn(0;ρ)

|(Tmf)(x)|2 dnx

=

ˆ
Bn(0;ρ)

|(∂rf)(x)|2 dnx− [(n− 2)/2]2
ˆ
Bn(0;ρ)

|x|−2|f(x)|2 dnx (2.20)

− (1/4)

m∑
j=1

ˆ
Bn(0;ρ)

|x|−2|f(x)|2
j∏

k=1

[lnk(γ/|x|)]−2 dnx,

implying,ˆ
Bn(0;ρ)

|(∂rf)(x)|2dnx >
ˆ
Bn(0;ρ)

|x|−2|f(x)|2
{

(n− 2)2

4
(2.21)

+
1

4

m∑
j=1

j∏
k=1

[lnk(γ/|x|)]−2

}
dnx.

Next, let Ω = Bn(x0; ρ) ⊂ Rn. The proof of (2.16) is entirely analogous to that
of (2.17), upon replacing Tm by

Tm,x0
:= ∂r+[(n−2)/2]|x−x0|−1+(1/2)|x−x0|−1

m∑
j=1

j∏
k=1

[lnk(γ/|x−x0|)]−1, (2.22)
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and similarly, replacing T+
m by

T+
m,x0

= −∂r− (n/2)|x−x0|−1 + (1/2)|x−x0|−1
m∑
j=1

j∏
k=1

[lnk(γ/|x−x0|)]−1. (2.23)

It then follows that

T+
m,x0

Tm,x0
= −∂2

r − (n− 1)|x− x0|−1∂r − [(n− 2)/2]2|x− x0|−2

− (1/4)|x− x0|−2
m∑
j=1

j∏
k=1

[lnk(γ/|x− x0|)]−2,
(2.24)

and continuing as in the proof of (2.17) yields (2.16) for Ω = Bn(x0; ρ).
For an arbitrary, bounded domain Ω ⊂ Rn with some fixed x0 ∈ Ω, one picks

some ρ > 0 such that 0 < diam(Ω) < ρ < γ/em. Since C∞0 (Ω) ⊆ C∞0 (Bn(x0; ρ))
(extending functions in C∞0 (Ω) by zero outside Ω), inequality (2.16) follows. �

Remark 2.5. (i) Upon referring to the spherically symmetric case and oscillation
theory for the second-order differential expression

− d2

dr2
− 1

4r2
− 1

4r2

m∑
j=1

j∏
k=1

[lnk(γ/r)]−2, (2.25)

with r > 0 for m = 0 and 0 < r < γ/em for m ∈ N, discussed in [11], one verifies
that the constants (n− 2)2/4 and 1/4 in (2.16) are optimal.

(ii) We note that our proof of (2.17), most likely, is not the shortest possible one,
but brevity was not the point we had in mind. Instead, as demonstrated in [7] (see
also [18]), the value of our strategy of proof, relying on factorizations as in (2.11),
lies in the wide applicability of this approach to higher-order inequalities, such as
the well-known Rellich inequality and beyond. This will be more systematically
explored elsewhere [8]. �

We conclude with some applications of (2.15), (2.16) to Schrödinger operators
with strongly singular potentials: Let J ⊆ N be an index set, and {xj}j∈J ⊂ Rn,
n ∈ N, n > 2, be a set of points such that for some ε0 > 0,

inf
j,j′∈J
j 6=j′

|xj − xj′ | > ε0. (2.26)

In addition, let m ∈ N, ξj , ηj ∈ R, j ∈ J , and δ, γ, ξ, η ∈ (0,∞) with

|ξj | 6 ξ < (n− 2)2/4, |ηj | 6 η < 1/4, j ∈ J, 0 < ε0 < 4γ/em, n > 3. (2.27)

Next, we introduce the potential

W (x) =
∑
j∈J

e−δ|x−xj |
[

ξj
|x− xj |2

+ ηjχBn(xj ;ε0/4)(x)

m∑
`=1

∏̀
k=1

[lnk(γ/|x− xj |)]−2

]
,

x ∈ Rn\{xj}j∈J , n > 3, (2.28)

with χM the characteristic function of M ⊂ Rn.
Then an application of (2.16) (actually, (2.17) with ρ = ε0/4) combined with

[9, Theorem 3.2] shows that W (and hence, any scalar potential V satisfying |V | 6
|W | + W0 a.e. on Rn, with 0 6 W0 ∈ L∞(Rn)) is form bounded with respect to
H0 = −∆, dom(H0) = H2(Rn) in L2(Rn), n > 3, with form bound strictly less
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than one (cf. also [4, p. 28–29], and the example in [9, p. 1033–1034]). In this

context we recall that dom
(
H

1/2
0

)
= H1(Rn), and that C∞0 (Rn) is a form core for

H0.
Finally, replacing (2.28) by

W (x) =
∑
j∈J

e−δ|x−xj |ηjχBn(xj ;ε0/4)(x)

m∑
`=1

∏̀
k=1

[lnk(γ/|x− xj |)]−2,

x ∈ R2\{xj}j∈J ,

(2.29)

with δ, γ, η ∈ (0,∞) and |ηj | 6 η < 1/4, j ∈ J , 0 < ε0 < 4γ/em, these form
boundedness considerations with respect to H0 = −∆, dom(H0) = H2(R2) in
L2(R2), with form bound strictly less than one, extend to n = 2.

Acknowledgments. We are indebted to Gerald Teschl for inquiring whether (1.8)
holds, which initiated the present note. In addition, we are grateful to the anony-
mous referee for a very careful reading of our manuscript.
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