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Abstract

A signed graph is called net regular if the sum of the signs of every
edge incident to each vertex is constant. Graphs that admit a signing
making them net regular are called net regularizable. In this paper,
net regular signed trees are studied, including general properties, con-
ditions for a tree to be net regularizable, and generating functions.

1 Introduction

The notion of a signed graph was introduced by Harary [3]. A signed graph
consists of a graph and a labeling of the edges with ±1. The signed degree
or net degree of a vertex is the sum of the signs of the edges incident to it.
Net degree has been well studied ([1, 4, 5, 6, 8, 9, 10, 11, 15, 16]). A signed
graph is called net regular if its net degree is constant ([12, 13]). In [13],
regular net regular graphs were examined and the question of examining other
types of net regular graphs was raised. In this paper we look at net regular
trees. Definitions are given in §2, general properties and two equivalent
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conditions for a tree to be net regularizable appear in §3 (Theorems 3.6
and 3.9), §4 provides an algorithm and computes the initial terms of the
generating function for the number of net regularizable trees (Theorem 4.1),
and §5 contains some closing remarks.

2 Preliminaries

In this paper, we write T = (V,E) for a finite tree. We assume that T is
neither empty nor the singleton graph to avoid trivialities.

A signed tree is a pair (T, σ) with σ : E → {±1} a labeling of the edges.
For v ∈ V , the net degree d± (v) of v is defined as the sum of the signs of the
edges incident to v,

d± (v) =
∑

u∈N(v)

σ (uv) ,

where N (v) denotes the neighborhood of v. A signed tree is called net regular
if the function d± is constant. In that case we write d± (T ) for the common
value. A tree is called net regularizable if there exists a signing making it net
regular.

Since we are assuming |V | ≥ 2, T has leaves and therefore the only
possible value of d± (T ) for a net regular tree is±1. Without loss of generality,
we assume that all net regular trees have net degree

d± (T ) = 1.

If T is net regular, it follows immediately that the degree d (v) of each
vertex v ∈ V is odd, that is

d (v) ≡ 1 mod 2.

By the handshaking lemma, |V | ≡ 0 mod 2. In fact, by a general result on
signed graphs in [1] or by Theorem 3.6 below,

|V | ≡ 2 mod 4.

Naturally, these two conditions are not sufficient to imply net regularity.
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3 Structure of Net-Regular Trees

In this section we determine a number of equivalent conditions for a tree T
to be net regularizable.

Theorem 3.1. Any tree may be embedded in a net regularizable tree.

Proof. Start with a tree T and label each edge with −1. At each vertex, add
enough leaves, labeled with +1, to make the tree net regular.

Definition 3.2. (1) A tree of the form given in Figure 1 is called a chair.

v0

w

Figure 1: Chair

Namely, a chair is a star graph on four vertices to which an edge is adjoined
at one of the leaves.

(2) A subtree C = (VC , EC) of T = (V,E) is called an external chair of
T if (a) C is a chair and (b) if the only edges of E\EC incident to a vertex
of C are incident to v0 (i.e., C connects to the rest of T only at v0).

Definition 3.3. For the edge uv ∈ E, deleting uv from T results in two
trees. One contains v and the other contains w. Write T (v;u) for the tree
containing v.

Note that v is a vertex in T (v;u) and that T is the disjoint union of the
trees T (v;u) and T (u; v) connected by the edge uv.

Lemma 3.4. Suppose T is net regular with edge w−1w0 ∈ E and w0 is
not a leaf. Pick a vertex w in T (w0;w−1) (necessarily a leaf in T ) so that
dist (w0, w) is maximal. If dist (w0, w) ≥ 2, then w sits in an external chair
of T (w0;w−1) (and of T ) as in Figure 1 with labeling as in Figure 2.
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v0

w

+1

+1

−1

+1

Figure 2: Chair Labels

Proof. Let w−1, w0, w1, . . . , wN = w be the vertices in the path from w−1 to
w. Assume N ≥ 2 and let v−1 = wN−3, v0 = vN−2, and v1 = wN−1. By
maximality, w is a leaf and net regularity forces σ (v1w) = +1.

Regardless of whether σ (v0v1) = ±1, net regularity requires that, in
addition to v0 and w, v1 be incident to at least one other vertex, w′. Again
by maximality, w′ must also be a leaf and net regularity forces σ (v1w

′) = +1.
If v1 were incident to any additional vertices, they too would be leaves and
the edges labeled by +1 which makes net regularity impossible. It follows
that v1 is incident to only v0, w, and w′. Finally, net regularity implies that
σ (v0v1) = −1 so that we get a subgraph as in Figure 3.

v0 v1

w′

w

+1

+1

−1

Figure 3:

It remains only to see that v0 is also incident to a leaf. Besides v−1v0 and
v0v1, by net regularity, v0 must be incident to at least one more edge. Write
all those edges as v0u1, . . . , v0uM . If at least one of these is a leaf, then we are
done. By way of proof by contradiction, suppose this is not the case. Then,
by maximality and by the same considerations as above, each edge v0ui leads
to a subgraph as in Figure 4. As this makes net regularity impossible at v0,

4



v−1 v0 v1

ui w′

w
+1

+1

−1

+1+1

−1

Figure 4:

we have our contradiction.

Definition 3.5. (1) We say T is constructible from T ′ by iteratively attaching
chairs if either T = T ′ or there is a sequence of trees T0 = T ′, T1, . . . , TN = T
so that Ti+1 is constructed from Ti and a chair C by identifying a vertex of
Ti+1 with the vertex v0 of C (see Figure 1).

(2) We say T reduces to T ′ after an iterative removal of chairs if T is
constructible from T ′ by iteratively attaching chairs.

Recall that a tree T is assumed to be finite and neither empty nor the
singleton graph in this paper. We write Pn for the path graph with n vertices.

Theorem 3.6. Let T be a tree. There exists a signing making T net regular
if and only if T is constructible from P2 by iteratively attaching chairs. In
that case, the sign of the original P2 edge is +1 and the sign of each successive
chair is given in Figure 2.

Proof. It is obvious that a tree iteratively constructible from P2 by attaching
chairs (with the signing as indicated above) is net regular. For the opposite
direction, argue by induction on the number of vertices |T |. The base case
of |T | = 2 (i.e., T = P2) is trivial.

Now if T is net regular with |T | > 2, pick a leaf w−1. By net regularity,
w−1 is incident to exactly one edge, w−1w0, with sign +1. Pick a vertex w in
T (w0;w−1) so that dist (w0, w) is maximal. If dist (w0, w) = 1, then T must
consist of a central point, w0, with a bunch of spokes. Precisely, T consists
of the vertices w−1, w0, w = w1, . . . , wN with edges w0w−1, w0w1, . . . , w0wN .
It is clear that such a graph is not net regular. Therefore, dist (w0, w) ≥ 2
and Lemma 3.4 applies.
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Let C be an external chair of T with vertex v0 of C labeled as in Figure
1. Notice that net regularity forces C to have the labeling from Figure 2.
Define T ′ to be the tree obtained from T by removing all edges of C and
all vertices of C except for v0. By the labeling of C, it follows that T ′ is
still net regular (with the signing given by restriction from T to T ′). By
construction, 2 ≤ |T ′| < |T |. The induction hypothesis implies that T ′ is
iteratively constructible from P2 by attaching chairs which, in turn, shows
that T is as well.

As an immediate corollary of Theorem 3.6, we recover the fact that

|T | ≡ 2 mod 4

when T is net regularizable.

Corollary 3.7. If T is constructible from P2 by iteratively attaching k chairs,
then |T | = 2 + 4k and there are precisely k edges labeled with a −1.

Lemma 3.8. Suppose T is net regular with edge w−1w0 ∈ E.
(1) If σ (w−1w0) = +1, then T (w0;w−1) reduces to the graph P1, as in

Figure 5, after an iterative removal of chairs.

w0

w−1

+1

Figure 5:

(2) If σ (w−1w0) = −1, then T (w0;w−1) reduces to the graph P3, as in
Figure 6, after an iterative removal of chairs.
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w0

w−1

+1+1

−1

Figure 6:

Proof. By repeated application of Lemma 3.4, after an iterative removal of
chairs, T (w0;w−1) reduces to a graph T ′ satisfying dist (w0, w) = 1 for any
other vertex w of T ′ (if there are any). The result now follows by net regu-
larity.

Theorem 3.9. Let T be a tree. There exists a signing making T net regular
if and only if:

(1) For each edge uv, |T (v;u)| is congruent to 1 or 3 mod 4.
(2) For each vertex v, the number of incident edges vu with |T (v;u)| ≡ 1

is one greater than the number of incident edges vu with |T (v;u)| ≡ 3.
In this case, σ (uv) = +1 when |T (v;u)| ≡ 1 and σ (uv) = −1 when

|T (v;u)| ≡ 3.

Proof. Clearly conditions (1) and (2) are sufficient. To see they are necessary,
suppose T is net regular. Let uv be an edge with σ (uv) = +1. By Lemma 3.8,
T (v;u) reduces to P1 after an iterative removal of chairs so that |T (v;u)| ≡ 1.
Similarly, if σ (uv) = −1, then T (v;u) reduces to P3 after an iterative removal
of chairs so that |T (v;u)| ≡ 3.

For the following, recall that we normalize all net regular trees to have
net degree d± (T ) = 1.

Corollary 3.10. A net regularizable tree has a unique choice of signing that
makes it net regular.

Corollary 3.11. If T is net regular and uv is an edge, then T is constructible
from that particular edge uv by iteratively attaching chairs if and only if
σ (uv) = +1 if and only if |T (v;u)| ≡ 1 mod 4.
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4 Generating Functions

Write tNR (k) for the number of net regularizable trees with 2 + 4k vertices
and t (n) for the number of (unlabeled) trees with n vertices. Write NR (x) =∑∞

0 tNR (n)xn for the generating function for the number of net regularizable
trees. It is natural to suspect that tNR (k) may not have a closed formula.
Instead, in this section, we calculate the first few terms of NR (x). Before we
begin, we observe that

tNR (k) ≥ t (k)

by Theorem 3.1 and Corollary 3.7. This appears to be extremely far from
sharp.

Theorem 4.1. The generating function for the number of net regularizable
trees is

NR (x) = 1 + x+ 2x2 + 6x3 + 22x4 + 95x5 + 465x6 + 2,470x7

+ 13,965x8 + 82,333x9 + 501,469x10 + 3,131,490x11 + 19,955,360x12

+ 129,294,514x13 + 849,505,193x14 + 5,648,076,997x15 + · · ·

The proof of this result will occupy the next few pages.

4.1 Chair Trees

Define a chair tree to be a tree constructible from a fixed initial marked chair
C0 by iteratively attaching chairs to any vertex except v0 (Figure 1). Write
CT (x) =

∑∞
1 anx

n for the corresponding generating function. Precisely, an
is the number of chair trees constructed from n chairs. By trivial inspection
and a few minutes of drawing, CT (x) = x+ 3x2 + 15x3 + · · · .

Define a multiset of chair trees to be a union of chair trees all of whose
distinguished vertices v0 are identified. Write MCT (x) to be the generating
function for the multiset of chair trees. The empty multiset of chair trees is
allowed so that MCT (0) = 1. As is well known,

MCT (x) = e
∑∞

k=1
1
k
CT(xk). (1)

By hand it can be easily seen that MCT (x) = 1 + x+ 4x2 + 19x3 + · · · .
Finally, define a P3 chair tree to be tree built by attaching (at v0) a

multiset of chair trees at each vertex of P3. Write PCT (x) for the generating
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function for the P3 chair trees. Again, the empty P3 multiset of chair trees
is allowed so that PCT (0) = 1. By hand, it can be shown that PCT (x) =
1 + 2x+ 9x2 + · · · .

By examining the diagram of the fixed initial marked chair in Figure 7
and adding a multiset of chair trees at v4, a P3 chair tree at v1, v2, v3, and

v2

v0

v3v1

v4

Figure 7:

also counting the initial marked tree, we see that

CT (x) = x MCT (x) PCT (x) . (2)

Notice that the generating function for PCT (x) involves many symmetries
that may not at first be apparent. For example, if a chair is added at v2,
then there are actually three equivalent children of v2 to which another chair
may be added.

In preparation for determining various of these generating functions, let

p = (p1, p2, . . .) = (

a1︷ ︸︸ ︷
q1, . . . , q1,

a2︷ ︸︸ ︷
q2, . . . , q2, . . .)

be a partition of n ∈ N so that p1 ≥ p2 ≥ · · · > 0 with
∑

i pi = n and
q1 > q2 > · · · > 0 with

∑
i aiqi = n. Then if F (x) is the generating function

for a combinatorial class of objects F , recall that the generating function for
selecting exactly n unordered objects from F is

Fn (x) ≡ 1

n!

∑
p∈Part(n)

n!∏
j q

aj
j aj!

∏
i

F (xpi) . (3)

For example, the partitions of 2 are (1, 1) and (2) so that

F2 (x) =
1

2

(
F (x)2 + F

(
x2
))
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and the partitions of 3 are (1, 1, 1), (2, 1), and (3) so that

F3 (x) =
1

6

(
F (x)3 + 3F

(
x2
)
F (x) + 2F

(
x3
))
.

Turn now to PCT (x). By separating out the chairs attached to the
central vertex v of P3 as in Figure 8 (where a attached chairs are pictured)

v

u1

· · ·
ua+2 w1

−1 · · ·

−1

wa

Figure 8:

it follows that

PCT (x) =
∑
a≥0

xa PCTa (x) MCTa+2 (x) . (4)

Combined with Equations 1 and 2, Equation 4 gives an easily automated
iterative method for calculating CT (x), MCT (x), and PCT (x). For ex-
ample, if CT (x) =

∑∞
k=0 akx

k and PCT (x) =
∑∞

k=0 bkx
k, one finds that

Equation 4 implies

b0 = 1, b1 = 1 + a1, b2 = 2 + 3a1 + a21 + a2,

b3 =
1

3
(12 + 22a1 + 12a21 + 2a31 + 6a2 + 6a1a2 + 3a3), . . .

Combining this with Equations 1 and 2, we can inductively solve for CT (x)
and obtain

CT (x) = x+ 3x2 + 15x3 + 79x4 + 463x5 + 2,842x6 + 18,261x7 + 120,834x8

+ 819,229x9 + 5,658,536x10 + 39,685,005x11 + 281,826,519x12

+ 2,022,583,829x13 + 14,645,875,257x14 + 106,873,747,884x15 + · · · .
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In turn, this allows to calculate that

MCT (x) = 1+x+4x2+19x3+104x4+612x5+3,821x6+24,746x7+165,060x8

+ 1,125,442x9 + 7,810,707x10 + 54,988,526x11 + 391,760,249x12

+ 28,19,145,479x13 + 20,461,211,968x14 + 149,608,592,569x15 + · · ·

and

PCT (x) = 1 + 2x+ 9x2 + 43x3 + 242x4 + 1437x5 + 9058x6 + 59,062x7

+ 396,207x8 + 2,713,848x9 + 18,906,784x10 + 133,534,659x11

+ 953,964,640x12 + 6,881,027,743x13 + 50,044,650,836x14 + · · · .

4.2 Dissymmetry Theorem

With an eye towards using the Dissymmetry Theorem ([2], §4.3.3) that came
out of the work of Otter [7], let NRmv (x) be the generating function (indexed
by the number of chairs) for net regular trees with a marked vertex, NRme (x)
be the generating function (indexed by the number of chairs) for net regular
trees with a marked edge, and NRmde (x) be the generating function (indexed
by the number of chairs) for net regular trees with a marked directed edge.

By looking at the edges incident to a marked vertex v0 and using Lemma
3.8, it follows that every net regular tree with marked vertex v0 is constructed
iteratively by adding chairs anywhere but v0 to any diagram of the form found
in Figure 9 (the picture below shows a edges labeled with −1): It follows
that

NRmv (x) =
∞∑
a=0

xa MCTa+1 (x) PCTa (x) .

Therefore it is easy to calculate that

NRmv (x) = 1 + 2x+ 8x2 + 39x3 + 212x4 + 1,251x5 + 7,793x6 + 50,474x7

+336,556x8 + 2,294,871x9 + 15,927,450x10 + 112,144,478x11 + 799,058,373x12

+5,750,838,752x13 + 41,744,478,744x14 + 305,264,349,331x15 + · · · .

The study of an edge marked net regular tree breaks into two cases. Write
e for the marked edge. Trees with σ (e) = +1 clearly contribute MCT2 (x) to
NRme (x). Trees with σ (e) = −1 are more involved. By looking at the edges
incident to one of the vertices of e and using Lemma 3.8, it follows that every
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v0

u1

...

ua+1

w1

· · ·
−1

−1

wa

Figure 9:

net regular tree with marked vertex v0 is constructed iteratively by adding
chairs anywhere but v0 to any diagram of the form found in Figure 10 (we
draw only the left side here as the right side is similar): The contribution to
NRme (x) is therefore

x

(
∞∑
a=0

xa MCTa+2 (x) PCTa (x)

)
2

so that

NRme (x) = MCT2 (x) + x

(
∞∑
a=0

xa MCTa+2 (x) PCTa (x)

)
2

.

Then it is straightforward to then calculate that

NRme (x) = 1+2x+7x2+35x3+194x4+1,165x5+7,347x6+48,047x7+322,695x8

+ 2,212,780x9 + 15,426,593x10 + 109,014,425x11 + 779,106,834x12

+ 5,621,553,296x13 + 40,894,998,297x14 + 299,616,331,396x15 + · · · .

For the last piece, it is similarly clear that

NRmde (x) = MCT (x)2 + x

(
∞∑
a=0

xa MCTa+2 (x) PCTa (x)

)2

.
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e
−1

· · ·

u1

...

ua+2

w1

· · ·
−1

−1

wa

Figure 10:

From this it follows that

NRmde (x) = 1 + 3x+ 13x2 + 68x3 + 384x4 + 2,321x5 + 14,675x6 + 96,051x7

+645,286x8+4,425,318x9+30,852,574x10+218,027,413x11+1,558,209,847x12

+ 11,243,097,534x13 + 81,789,971,848x14 + 599,232,603,730x15 + · · · .

Finally, the Dissymmetry Theorem tells us that

NR (x) = NRmv (x) + NRme (x)− NRmde (x) .

Theorem 4.1 follows.

5 Closing Remarks

It would be interesting to give a closed form relation that implicitly deter-
mines NR (x). Although the results of the previous section allows a fairly
rapid calculation of NR (x) up to degree 15, the techniques do not immedi-
ately provide a closed form relation.

It would also be interesting to determine the generating function for net
regular trees of a specified diameter d. Toward that end, we mention a few
results. First of all, for k ≥ 2 (for k = 0 the only diameter is 1 and for
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k = 1 the only diameter is 3), it can be shown that net regular trees of order
n = 2 + 4k have all diameters d ∈ {4, . . . , n/2}.

Given such a d, we will define certain fundamental diagrams from which
all diameter d net regular trees may be constructed by the addition of chairs.
Begin with an arbitrary choice of S ⊆ {1, 2, . . . , d− 3} subject to the re-
quirements that |S| ≡ d− 3 mod 2 and d+ |S| ≤ n/2 (the later condition is
automatically satisfied when d ≤ 2 + k). For such a choice of |S|, there is a
unique associated word in the letters {A,B, ∗} of length d− 1 beginning and
ending with A in positions 0 and d− 2 so that (1) a ∗ is written in positions
corresponding to Sc and (2) A’s and B’s are uniquely filled in to the positions
corresponding to S so that (a) the number of stars between successive A’s
or successive B’s is even and (b) the number of stars between successive A’s
and B’s is odd. We say two subsets S are equivalent if their corresponding
words agree up to a reversal of order.

For each representative of an equivalence class of subsets S, begin with
the path Pd and add edges as follows: (1) add no edges to the first and last
vertex, (2) to the second and penultimate vertex, append a leaf, (3) take the
associated word and remove the first and last letters and identify, in order,
the resulting word with the remaining vertices, (4) for each ∗, add a leaf,
(5) for each A, three leaves, and (6) for each B, add a single incident edge
which, in turn, is connected to two leaves. The diagrams constructed in this
way are called the fundamental diagrams. For example, with n = 22, d = 7 ,
and S = {2, 4} ⊆ {1, 2, 3, 4}, the corresponding word is A ∗ B ∗ AA and the
corresponding fundamental diagram is found in Figure 11.

Figure 11:

It can be shown that a fundamental diagram has a unique choice of sign
making it net regular. Then it is possible to show that all net regular trees
of order n and diameter d arise by adding (n− d− |S|) /2 chairs anywhere
to a fundamental diagram within the “triangle” that does not increase its
diameter (as S varies over all legal equivalence classes of subsets). The
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number of fundamental diagrams can be counted with the help of Burnside’s
Counting Lemma. When d ≤ k + 2, it turns out that this number is

2b(d−5)/2c + 2d−5

(OEIS A005418, [14]) which gives a lower bound on the number net regular
trees of order n and diameter d. When d ≥ k+ 3, there is a formula given in
terms of partial sums of a row of Pascal’s triangle and so does not seem to
admit a nice closed formula—although growth estimates are still possible.
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