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Abstract

We say that a set Λ Ă Rn holds a Poisson summation formula in terms of

tempered distribution if it supports a measure µ which is a tempered distribution

such that its Fourier transform pµ is also a measure.

The aim of my thesis is to understand whether a Poisson summation formula

can hold for any uniformly discrete subsets of Rn. If it holds for a set then what will

be its characterization. We will see that for the lattice Zn, a Poisson summation

formula holds. Naturally, we can ask whether there are other uniformly discrete

sets for which it holds. Initially, Cordoba has investigated this case with some

control conditions on Dirac masses. The result was later generalized by Nir Lev

and Olevskii recently in 2014.

We begin this report with an introduction on tempered distributions and

defining some operations on tempered distributions. We will also explain the well

known identity, the Poisson summation formula which holds for a suitable class

of functions. Then, we will state and prove Cordoba’s first, second result and Nir

Lev and Olevskii’s result.

One of the key concept used in the proof of Nir Lev and Olevskii’ result is

‘Meyer sets’. Meyer sets was discovered by Yves Meyer in 1970’s. It has applica-

tions in Number theory also. We will also explain and understand these sets.
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Chapter 1

Tempered distribution

1.1 Introduction

The Schwartz space SpRnq is defined to be the space of all smooth functions on

Rn that are rapidly decreasing at infinity with all their derivatives. That is

SpRn
q “ tφ P C8pRn

q : |xαpBβφqpxq| ă 8u

for all α, β P Nn. Let α “ pα1, ..., αnq and β “ pβ1, . . . , βnq then

|α| “ α1 ` . . .` αn ;

xα “ xα1
1 x

α2
2 . . . xαnn

and

B
β
“ B

pβ1`β2`...`βnq{Bxβ11 x
β2
2 . . . xβnn .

We now define increasing sequence of norms || ¨ ||N , where N P N, as

||φ||N “ sup
xPRn,|α|,|β|ďN

|xαpBβφqpxq|.

Hence for all φ P SpRnq we have that ||φ||N ă 8 for every N .

We say that a sequence φk Ñ φ in SpRnq whenever ||φk´φ||N Ñ 0, as k Ñ 8,

for every N .

1



Tempered distribution 2

Now let us define tempered distribution S 1. Tempered distribution is the

space of all complex continuous linear functionals on SpRnq.

Proposition 1.1. Suppose µ is a tempered distribution. Then there is a positive

integer N and a constant C ą 0, such that

|µpφq| ď C||φ||N , for all φ P SpRn
q.

Proof. From the definition of metric it follows that the sets UN,ε “ tφ P SpRnq :

||φ||N ă εu, where ε ą 0 and N P N, forms a basis around 0 P SpRnq. Since µ is a

tempered distribution, it is continuous at 0. Thus, there exists a neighbourhood

UN,ε around 0 such that |µpφq| ď 1 whenever φ P UN,ε. Let 0 ă ε1 ă ε and consider

the Schwartz function ψ “ pε1{||φ||Nqφ. We see that ψ P UN,ε. Therefore,

pε1{||φ||Nq|µpφq| “ |µpψq| ď 1

Hence if we let C “ 1{ε1 then

|µpφq| ď C||φ||N

. �

Let us look at an example of tempered distributions.

Example 1.1. Let δx be the translate of Dirac delta ‘function’, where x P Rn. The

‘function’ δx acts on a Schwartz function φ in the following way

δxpφq “ φpxq

Clearly, it is a linear functional on SpRnq. Let φk Ñ φ in SpRnq. Hence we get

|δxpφk ´ φq| “ |φkpxq ´ φpxq| Ñ 0 as k Ñ 8. Thus, δx is continuous.

1.2 Operations on tempered distributions

First we will define the support of a tempered distribution.

Definition 1.2. For a tempered distribution µ we say that µ vanishes in an open

set if µpφq “ 0, for all Schwartz function φ having their support in that open set.
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Thus the support of a tempered distribution is defined to be the complement

of largest open set on which µ vanishes.

Now we will define few operations on tempered distributions.

• We will define the product of a slowly increasing smooth function with a

tempered distribution. Slowly increasing means that for each α, pBαψqpxq “

Op|x|Nαq, for some Nα ą 0. Let ψ be a slowly increasing C8 function and µ

be a tempered distribution, then we define the product ψ ¨ µ by

pψ ¨ µqpφq “ µpψφq @φ P SpRn
q

• A key feature of tempered distributions is that it can be differentiated any

number of times. We define the derivative Bαµ of a tempered distribution

µ as

pB
αµqpφq “ p´1q|α|µpBαφq, whenever φ P SpRn

q

.

Note that the above two operations on a tempered distribution is again a

tempered distribution.

• We extend the notion of convolution of appropriate functions to the con-

volution of Schwartz functions and tempered distributions which is again a

smooth function. Let ψ P SpRnq and µ be a tempered distribution then the

function ψ ˚ µ is defined as

ψ ˚ µpxq “ µpψ̃xq

where ψ̃xpyq “ ψpx´ yq.

Proposition 1.3. Suppose µ is a tempered distribution and ψ P SpRnq.

Then ψ ˚ µ is a slowly increasing smooth function.

Proof. Let xn Ñ x as nÑ 8, then |ψ̃xnpyq´ψ̃xpyq| “ |ψpxn´yq´ψpx´yq| Ñ

0 as nÑ 8 uniformly in y. And, all the partial derivative of ψ̃xn exists and
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converges uniformly to the corresponding partial derivative of ψ̃x. Hence

ψ̃xn Ñ ψ̃x in SpRnq. Since µ is continuous we get that

ψ ˚ µpxnq “ µpψ̃xnq Ñ µpψ̃xq “ ψ ˚ µpxq

as nÑ 8. Similarly we have

pB
α
pψ ˚ µqqpxnq “ µpBαpψ̃xnqq Ñ µpBαpψ̃xqq “ pB

α
pψ ˚ µqqpxq

as nÑ 8.

Since µ is a tempered distribution, there exist C ą 0 and N P N such that

|µpφq| ď C||φ||N for φ P SpRnq. Observe that

||B
α
pφq||N ď ||φ||N`|α|

and

||φ̃x||N ď cp1` |x|Nq||φ||N

for φ P SpRnq. Thus,

pB
αψ ˚ µqpxq “ p´1q|α|µpBαψ̃xq ď Cc||ψ||N`|α|p1` |x|

N
q “ Op|x|Nq.

Hence , φ ˚ µ is a slowly increasing smooth function. �

Proposition 1.4. Let µ be a tempered distribution whose support is A and

φ P SpRnq has a compact support B. Then the support of φ ˚ µ is contained

in A`B.

Proof. The support of ψ̃x is x´B. Thus, for each x such that µpψ̃xq ‰ 0, we

must have that AXpx´Bq ‰ ø. Let y P AXpx´Bq, then x “ y`px´ yq P

A`B. Thus supppψ ˚ µq Ď A` B. �

• The definition of Fourier transform pµ for a tempered distribution µ is

pµpφq “ µppφq, @φ P SpRn
q.

Since, φ Ñ pφ is a continuous linear mapping and µ is also continuous, we

have that pµ is also a tempered distribution.



Chapter 2

The Poisson summation formula

and Cordoba’s first result

First we will understand what is a Poisson summation formula. And for what kind

of functions does it hold. Then we will present the Poisson summation formula in

terms of tempered distribution. And then, we will state and prove Cordoba’s first

result.

2.1 Poisson summation formula

Theorem 2.1. Suppose that f P L1pRq, then the series

F ptq “
ÿ

nPZ

fpt` nq

converges in L1r0, 1s and is a period 1 function. The Fourier coefficient is obtained

as

pF pkq “ pfpkq, k P Z.

In addition if
ř

nPZ
| pfpnq| ă 8, then the Fourier series of F converges and we have

the almost everywhere equality

F ptq “
ÿ

nPZ

fpt` nq “
ÿ

mPZ

pfpmqe2πimt.

5
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Proof. Let N P N and t P r0, 1s. Consider the partial sums

FNptq “
N
ÿ

´N

fpt` nq.

Then

||FN`K ´ FN ||L1r0,1s ď
ÿ

Nă|n|ďN`K

1
ż

0

|fpt` nq|dt

ď

ż

|x|ąN

|fpxq|dx

which tends to 0 as N,K tends to infinity since f is an L1pRq function. So

FN Ñ F P L1r0, 1s.

Next, by Dominated convergence theorem we have

pF pkq “

1
ż

0

ˆ

ÿ

nPZ

fpt` nq

˙

e´2πiktdt

“
ÿ

nPZ

1
ż

0

fpt` nqe´2πiktdt

“
ÿ

nPZ

n`1
ż

n

fpxqe´2πikpx´nqdx

“

8
ż

´8

fpxqe´2πikxdx

“ pfpkq.

If
ř

nPZ
| pfpnq| ă 8, then the Fourier series of f convergence uniformly to an

L1r0, 1s function g. By the uniqueness of Fourier transform, g “ F a.e. Therefore,

F ptq “
ÿ

nPZ

fpt` nq “
ÿ

mPZ

pfpmqe2πimt a.e.

If f is continuous,

F p0q “
ÿ

nPZ

fpnq “
ÿ

mPZ

pfpmq

�
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There are many applications of Poisson summation formula. One of the ap-

plication is Benedicks theorem, which states that

Theorem 2.2. Let f P L1pRq be such that

|supppfq||suppp pfq| ă 8

Then f “ 0 a.e.

Proof. Let us assume that f, pf P L1XC0pRq. And by using dilations assume that

|supppfq| ă 1.

Let A :“ tx P R : fpxq ‰ 0u and B :“ tξ P R : pfpξq ‰ 0u. Let

Gpξq “
ÿ

nPZ

χBpξ ` nq

where χB is the indicator function of the set B. Then

ż

0

1
ÿ

nPZ

χBpξ ` nqdξ “ |B| ă 8.

So Gpξq is finite almost everywhere. It follows that there exists a subset E Ď

r0, 1s, |E| “ 1 such that for ξ P E, pξ ` Zq XB is a finite set.

For each η P E, define a 1 - periodic function

φnpxq “
ÿ

nPZ

fpx` nqe´2πiηpx`nq.

Then φη P L
1r0, 1s and xφηpkq “ pfpη ` kq. Since |B| ă 8 we have that supppxφηq

is finite for a.e η P r0, 1s. Hence
ř

nPZ |
xφηpnq| ă 8 and by Poisson summation

formula we get

φηpxq “
ÿ

kPZ

xφηpkqe
2πixk.

It follows that φη is a trigonometric polynomial and can have only finitely many

zeroes in r0, 1s, unless it is identically zero.
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On the other hand, note that

|φηpxq| ď
ÿ

n

χApx` nq|fpx` nq|

ď ||f ||8
ÿ

n

χApx` nq.

But
ż

0

1
ÿ

n

χApx` nqdx “ |A| ă 1.

Therefore,
ř

n χApx` nq ă 1 i.e.
ř

n χApx` nq “ 0 for a positive measure. Hence

φη “ 0 for a positive measure. This means that for almost all η P r0, 1s, φη “ 0,

so pfpη ` nq “ 0 a.e η P r0, 1s. Hence pf “ 0 a.e. The result can be generalized to

L1 functions since L1 X C0 is dense in  L1

�

2.2 Cordoba’s first result

For a function f lying in appropriate function space, we have a Poisson summation

formula in n - dimension, i.e.

ÿ

mPZn
fpmq “

ÿ

kPZn

pfpkq.

Hence for a Schwartz function, Poisson summation formula holds.

The Poisson Summation Formula in terms of tempered distribution is as fol-

lows,

xδZn “ δZn .

If φ P SpRq then

xδZnpφq “
ÿ

mPZn

pφpmq

and

δZnpφq “
ÿ

mPZn
φpmq.
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Basically, a Poisson summation formula in terms of tempered distribution

means that if µ “ δZn is a tempered distribution as well as a measure supported

by Zn then its Fourier transform is also a measure.

Definition 2.3. A set Λ Ă Rn is called uniformly discrete if

dpΛq :“ inf
λ,λ1PΛ,λ‰λ1

|λ´ λ1| ą 0

Can we find any other uniformly discrete sets X of Rn such that if a measure

µ supported by X is a tempered distribution and its Fourier transform is also a

measure. The next proposition gives the answer.

Proposition 2.4. If A : Rn Ñ Rn is an invertible linear transformation and if

X “ AZn and Y “ pA´1qtZn, then the Poisson summation formula for the sets X

and Y is

xδX “
1

detpAq
δY (2.1)

Proof. Let φ be a Schwartz function on Rn and x P X (i.e. x “ Az for some

z P Zn), then we have that

pφpxq “

ż

φpyqe´2πiăy,xądy

“

ż

φpyqe´2πiăy,Aządy

“

ż

φpyqe´2πiăpAqty,ządy

Since we know that ă y,Az ą“ă pAqty, z ą. Now by substituting y “ pAtq´1s

we get,

pφpxq “
1

detpAq

ż

φppAt
q
´1sqe´2πiăs,ząds

pφpxq “ pψpzq
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where ψpxq “ φppAtq´1xq. Therefore, we get

xδXpφq “
ÿ

xPX

pφpxq

“
1

det A

ÿ

zPZn

pψpzq

“
1

det A

ÿ

zPZn
ψpzq pby PSFq

“
1

det A

ÿ

yPY

φpyq

“
1

det A
δY pφq

hence proving the proposition. �

Are there any sets other than lattices for which a Poisson summation holds?

Cordoba tried to investigate this assuming different conditions. His first result is

stated below.

Theorem 2.5. Let X “ txku and Y “ tyku be uniformly discrete subsets of Rn,

and let tcku be positive real numbers. Let µ1 “
ř

ckδxk and µ2 “
ř

δyk be tempered

distributions. If pµ1 “ µ2, then there exists a linear transformation A : Rn Ñ Rn

such that X “ AZn and Y “ pA´1qtZn with detpAq “ 1. In particular, ck “ 1.

Proof. We will prove this theorem for the case of dimension 1. The theorem in

1 dimension means that X “ Z and Y “ Z. So only Z can satisfy the above

hypothesis.

Consider a continuous positive function φ with supppφq Ă r´1, 1s, and such that

φp0q “ 1, pφpξq ą 0 @ξ P R, pφp0q “ 1 and pφ ď cp1 ` |ξ|q´1´δ. For example, let

φ “ p1 ´ |x|p´1, 1qq. Then pφpξq “

ˆ

sinπξ
πξ

˙2

. And φ satisfies all the mentioned

properties.

1. We claim that under the hypothesis, 0 P X & 0 P Y.

Suppose 0 R X. Now choose ε0 ą 0 such that dpX, 0q ą ε0. Then for all

0 ă ε ă ε0, |xk|{ε ą 1.

0 “
ÿ

ckφ

ˆ

xk
ε

˙

“ ε
ÿ

pφpεxkq ą 0,
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Which gives us the contradiction. By similar arguments we can show that

0 P Y .

2. We show that xj.yk P Z for all j,k. Let,

φa,b,εpxq “ e2πiaxφpε´1
px´ bqq.

Then,

pφa,b,εpξq “ εe´2πibpξ´aq
pφpεpξ ´ aqq

Fix b “ xj and let ε ă min
i‰k
t|xi ´ xk|u. Then we have,

ÿ

k

ckφa,xj ,εpxkq “
ÿ

k

cke
2πiaxkφpε´1

pxk ´ xjqq “ cje
2πiaxj

“ ε
ÿ

k

e´2πipyk´aqxj
pφpεpyk ´ aqq

Hence,

1 “
ε

cj

ÿ

k

e2πiykxj
pφpεpyk ´ aqq.

Taking xj “ 0, we also get,

1 “
ε

cj

ÿ

k

pφpεpyk ´ aqq

and by comparing we get e2πiykxj “ 1 and so yk.xj P Z.

3. Choose t “ xj such that t is minimal and t ą 0.

Let, Axj “ t.1 ùñ A “ r1s. Put, yk “ pA´1qtyk “ yk. By Poisson

summation formula, we get,

t
ÿ

pφptpyk ´ aqq “ 1 (2.2)

Taking a “ yk0 we get,

tpφp0q ` t
ÿ

k‰k0

pφptpyk ´ yk0qq “ 1 ùñ t ď 1.
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Since tyk P Z we can write yk “ mk{t. Integrating both sides of (2.2),

ż 1
2

´1
2

1 “

ż 1
2

´1
2

t
ÿ

k

pφptpyk ´ aqqda

“
ÿ

k

ż 1
2

´1
2

tpφptpyk ´ aqqda

Choose z “ tpyk ´ aq, we have

ż

R

pφpyqdy “ φp0q “ 1

“
ÿ

k

ż tpyk`
1
2
q

tpyk´
1
2
q

pφpzqdz

“

ż

Yrtpyk´
1
2
q,tpyk`

1
2
qs

pφpzqdz.

But since pφpuq ě 0, we must have Yrtpyk´
1
2
q, tpyk`

1
2
qs “ Yrmk´ t{k,mk`

t{ks “ R a.e. Hence, t “ 1 & tyku “ Z. Now since xjyk P Z @j we also have

txku “ Z.

�



Chapter 3

Cordoba’s second result

3.1 Introduction

In the previous chapter we have seen that the only uniformly discrete sets which

hold a Poisson summation formula with equal Dirac masses are lattices. In other

words, if µ is a measure with equal Dirac masses and if µ̂ is also a measure with

Dirac masses equal to 1 , then the support of µ has to be a lattice. And it turns out

that the masses of µ is also equal to 1. In Cordoba’s second result the restriction

on Dirac masses is relaxed to some extent. In this chapter we will prove Cordoba’s

second result.

Before that let us look at an example.

Example 3.1. Consider the two disjoint lattices Λ1 “ 1{2`2Z and Λ2 “ Z and let

Λ “ Λ1 Y Λ2. Let a1, a2 be distinct complex numbers. Now, consider the tempered

distribution

µ “ a1

ÿ

xPΛ1

δx ` a2

ÿ

yPΛ2

δy

Let us analyze how the fourier transform of µ looks like. Let φ P SpRq.

pµpφq “ µppφq “ a1

ÿ

xPΛ1

zφpxq ` a2

ÿ

yPΛ2

yφpyq (3.1)

13
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Observe that for the latter sum of R.H.S we can just apply PSF of Z. Let x “

1{2` 2n, then

pφpxq “ pφp1{2` 2nq

“ p1{2qpφpy{2qe´πiy{2qppnq

By applying PSF we get

ÿ

xPΛ1

zφpxq “
ÿ

nPZ

p1{2qpφpy{2qe´πiy{2qppnq “
ÿ

nPZ

p1{2qpφpn{2qe´πin{2q

“ p1{2q
ÿ

mPZ{2

φpmqe´πim

Therefore,

pµ “
ÿ

mPZ{2

pa1{2qe
´πimδm `

ÿ

nPZ

a2δn. (3.2)

We see that suppppµq Ď ZY Z{2, which is a uniformly discrete set.

We can write Z “ 2ZX p1` 2Zq. Then

pµ “
ÿ

mPZ{2

„

pa1{2qe
´πim

` pa2{2qp1` e
´2πim

q



δm.

Hence suppppµq Ă Z{2.

�

In the above example for a distribution, whose support is union of two disjoint

lattices having two distinct masses, has a Fourier transform whose support is again

a uniformly discrete set but with different masses. Now we can ask what happens

if we consider a distribution with support being finite disjoint union of subsets of

Rn having distinct masses and assume that its Fourier transform is also a measure

with different masses. It turns out that the support of such distribution is a finite

superpositions of periodic structures. Cordoba has proved that the support has

to be a finite disjoint union of translates of full dimensional lattices. Let us state

and prove Cordoba’s result.
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3.2 Preliminaries

This section contains lemmas and statements which are used to prove Cordoba’s

result.

Definition 3.1. A ring of sets is a family of sets closed under unions and set

theoretic differences. That is, a family of sets R is said to be a ring if

1. ø P R

2. if A, B P R then AY B P R

3. if A, B P R then AzB P R.

One of the most important lemma that will be used in the proof of Cordoba

is by P. Cohen for idempotent measures on a group G. The lemma is stated below

without the proof.

Lemma 3.2. On locally compact abelian groups G

µ ˚ µ “ µðñ suppppµq P coset ring of dual group of pG.

i.e. suppppµq is the finite union of sets of the form px ` Hqzpx1 ` H1qzpx2 `

H2qz . . . zpxs ` Hsq where x, x1, . . . , xs P
ˆ̂G and H,H1, . . . ,Hs ă

ˆ̂G.

Before we go to the next lemma let us look into a definition which will be

needed in the next chapter also. Observe that any ball of radius 1.5 in R it

intersects the lattice Z. Such a set is called relatively dense set.

Definition 3.3. A set S Ă Rn is said to be relatively dense if there is R ą 0

such that every ball of radius R in Rn intersects S.

Any lattice is a relatively dense set.

Lemma 3.4. Let txju Ă Rn be a discrete subset which is not relatively dense, and

suppose that µ “
ř

ajδxj is a tempered distribution whose Fourier transform pµ

can be expressed in the form pµ “
ř

bkδyk and satisfies the condition

ÿ

yαPQ

|bα| ď C ď 8, for every unit cube Q P Rn (‹q

Then µ ” 0.
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Proof. A set S is not relatively dense if for every positive number t one can find a

ball Bpzt; tq which is disjoint with the set S.

Let ψ P SpRnq be a Schwartz function whose supppψq P Bp0; 1q and pψp0q “ 1.

We can choose ψ to be a bump function which has the above mentioned properties.

Now, for a fixed yk consider the function

Φpxq “ ep2πiyk.xqψ

ˆ

x´ zt
t

˙

where t ą 0 and zt is such that Bpzt; tq X txju “ ø. Since |
xj´zt
t
| ą 1 @ xj and

supppψq P Bp0; 1q, we have that

µ̂pΦ̂q “ µpΦq “ 0

which gives

0 “ tn
ÿ

α

bαΨ̂ptpyα ´ ykqqe
p2πizt.pyα´ykqq

which implies that

bk “
ÿ

α‰k

bαΨ̂ptpyα ´ ykqqe
p2πizt.pyα´ykqq

This yields,

|bk| ď
ÿ

α‰k

|bα||Ψ̂ptpyα ´ ykqq| .

Take the limit when t goes to infinity and use the condition (‹) to get bk “ 0.

Now, we have that µ̂ “ 0 and therefore, µ “ 0. �

Before going to the next lemma, recall that the only discrete subgroups of

Rn are lattices. Also, a subgroup H of Rn is not discrete if and only if each

neighbourhood of 0 in Rn contains infinitely many elements of H.

Lemma 3.5. If A “ px`Hqzpx1`H1qzpx2`H2q . . . zpxr`Hrq ‰ ø, is a uniformly

discrete set, where x, x1, . . . , xr P Rn and H,H1, . . . , Hr ă Rn. Then H is a

discrete group.

Proof. We will prove this by induction on r.
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Let r “ 1. If px ` Hq X px1 ` H1q “ ø then A “ px ` Hq and H has to be

uniformly discrete if A is uniformly discrete.

If px ` Hq X px1 ` H1q ‰ ø, then there exists elements h P H, h1 P H1 such

that x` h “ x1 ` h1. We have

px`Hq X px1 `H1q “ x` h`H XH1

and

A “ x` pHzph`H XH1qq

Since H is a disjoint union of cosets of H XH1, we have that A is uniformly

discrete implies that H XH1 is discrete.

We claim that H is discrete. If not, then each open ball Bp0; sq in Rn must

contain infinite number of points in H. Since h ` H X H1 is discrete, Bp0, sq X

ph ` H X H1q is finite. Therefore, pA ´ xq X Bp0; sq is an infinite set. This is a

contradiction since A is a uniformly discrete set.

If r ą 1, then we have that

A “ px`H z x1 `H1q X . . .X px`H z xr `Hrq ‰ ø

A is uniformly discrete implies that at least one of the set px `H z xl `Hlq ‰ ø

is uniformly discrete. Therefore, by the case r “ 1 we get that H is a discrete

subgroup. �

Lemma 3.6. Suppose B “ te1, . . . , emu are linearly independent vectors in Rn.

Then for every r ą 0 the set

Dr “ tv “ k1e1 ` . . .` kmem | dpv,Znq ă r ; kj P Z, j “ 1, . . . ,mu

cannot be contained in a finite union of pm´ 1q dimensional planes.

Proof. The lemma says that the set of all points of the lattice generated by B
which is at a distance of less than r from the lattice Zn cannot be contained in

finite union of pm ´ 1q dimensional planes of Rn. Proof is by induction on m
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and using the theorem of Hermann Weyl stating that pkθ1, . . . , kθsq is uniformly

distributed modulo 1 if t1, θ1, . . . , θsu are linearly independent over the rationals.

Case : m “ 1. If e1 has all rational coordinates, then consider k P Z such that

ke1 has all integer coordinates and belong to Zn. Hence, for any r ą 0, Dr has

infinitely many points. If e1 has s ě 1 distinct irrational coordinates, by Weyl’s

theorem pkθ1, . . . , kθsq is equidistributed modulo 1 and hence dense in r0, 1ss. By

this we can conclude that Dr has infinitely many points.

Case : m ą 1 . Let it be true for m´1 . Fix km, then tv “ k1e1` . . .`kmemu

is contained in an m ´ 1 dimensional plane. Now, by the first case there are

infinitely many km such that dpkm,Znq ă r for each r ą 0. This concludes that

Dr cannot be contained in a finite union of pm´ 1q dimensional planes. �

3.3 Cordoba’s Result

Definition 3.7. Let xRn be the dual of the group Rn with compact open topology.

Consider the space xRn with discrete topology and call it xRn
d . The dual of xRn

d is

called Bohr compactification of Rn and denoted by bRn.

Note that the bRn is compact with respect to compact open topology and Rn

is dense bRn. Recall Banach- Alaoglu theorem and Riesz representation theorem

which are stated below.

Theorem 3.8 (Banach- Alaoglu). The closed unit ball with respect weak˚ topology

is compact for a Banach space B.

Theorem 3.9 (Riesz representation theorem). Let X be a compact hausdorff

space. Let CpXq be a linear space of all continuous real valued functions X with

supremum norm and RadonpXq be a linear space of signed Radon measures on

X with total variation as its norm. Then pCpXqq˚ – RadonpXq, where – is an

isometric isomorphism of linear spaces.

Cordoba’s result has been introduced earlier in this chapter. Now we will

state and prove the result.

Theorem 3.10. Let the set Λ “
N
Y
j“1

Λj be a finite disjoint union of subsets of Rn

such that Λ is a uniformly discrete set
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Given distinct complex numbers tajuj“1,...,N consider the tempered distribution

µ “
N
ÿ

j“1

aj
ÿ

xPΛj

δx

Assume that the Fourier transform µ̂ can also be expressed in the form of

µ̂ “
ÿ

α

bαδyα

and satisfies the property

ÿ

|bα|
yαPQ

ď C ď 8, for every unit cube Q P Rn. (*)

Then we have that each set Λj is a finite disjoint union of translates of n´ dimen-

sional lattices.

.

Proof. We will prove this theorem for the case when N “ 2.

Let Ψ be the function which was chosen in lemma 3.4. For each positive

integer M , consider the measure,

νm “
1

Mn
Ψ
´ .

M

¯

.µ̂ “
1

Mn

ÿ

α

bαΨ
´yα
M

¯

δyα .

The condition (*) implies that for each M , νm is a measure of finite total variation

and is bounded uniformly on M : ||νm|| ď c ă 8.

There is a natural extension of νm as a finite measure ν̄ in bRn i.e. the

restriction of ν̄m to Rn is same as νm. By Riesz representation theorem and

Banach Alaoglu’s theorem, there is a subsequence which we shall also denote by

tν̄mu, which converges to a finite measure ν̄ in weak˚ topology.

We have that

ˆ̄νpζq “ lim
MÑ8

ˆ̄νMpζq “ lim
MÑ8

Ψ̂pM ¨q ˚ µpζq

“ lim
MÑ8

ra1

ÿ

xPΛ1

Ψ̂pMpζ ´ xqq ` a2

ÿ

xPΛ2

Ψ̂pMpζ ´ xqqs.
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Therefore by Riemann-Lebesgue lemma we get

ˆ̄νpζq “

$

’

’

’

&

’

’

’

%

a1, if ζ P Λ1

a2, if ζ P Λ2

0, if ζ R Λ.

As a next step, we claim that for each Λj, there is a finite measure µj on bRn

satisfying

µ̂jpζq “ 1, if ζ P Λj; µ̂jpζq “ 0, if ζ R Λj.

To prove this, consider ν̄1 “ ν̄ ˚ ν̄ ´ a1ν̂.

ˆ̄ν1pζq “ ˆ̄ν2
´ a1 ˆ̄νpζq “

$

&

%

a2
2 ´ a1a2, if ζ P Λ2

0, if ζ R Λ2.

Therefore the measure µ2 “
1

a22´a1a2
ν̄1 satisfies the above mentioned properties for

Λ2. Similarly, take ν̄2 “ ν̄ ˚ ν̄ ´ a2ν̄ and the measure µ1 “
1

a21´a1a2
ν̄2 for Λ1

Observe that µ1 and µ2 both are idempotent measure whose supports are Λ1

and Λ2 respectively. Therefore we can apply P. Cohen’s theorem to conclude that

Λ1 and Λ2 belong to the coset ring of Rn with discrete topology which is the dual

group of bRn.

That is, each Λj is of the form

A “ px`Hqzpx1 `H1qzpx2 `H2q . . . zpxr `Hrq ‰ ø

and by 24 4.1, H is a discrete subgroup of Rn (with usual topology), which is a

lattice. Furthermore, D elements hj P Hj such that

A “ x` tHzph1 `H XH1qz . . . zphr `H XHrqu.

Note the fact that if G1 ă G2 where G2 is a discrete and if G1 and G2 have

same dimension as lattices then G2 “ finite union of cosets of G1.
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Using this fact we can write

A “ x` tpy1 `K1q Y . . .Y pys `KsquzA1

where K1 . . . Ks are subgroups of H having same lattice dimension as H and A1

is contained finite union of hyperplanes.

Consider the identity: for any sets X1, X2, Y1, Y2

pX1zY1qYpX2zY2q “ X1YX2z rpX2
c
XX1XY1qYpX1

c
XX2XY2qYpY1XY2qs. (*)

(*) yields that each Λj can be written in the form

Λj “ px1 `H1q . . . pxl `Hlq YB1z B2

whereHj are n-dimensional lattices of Rn and the discrete sets B1, B2 are contained

in finite union of hyperplanes.

Let us express each Λj as disjoint union of translated lattices.

Suppose that pxl`HlqXpxk`Hkq ‰ ø, then there exists elements hl P Hl, hk P

Hk such that xl ` hl “ xk ` hk, that is:

pxl `Hlq X pxk `Hkq “ xl ` hl `Hl XHk

pxl `Hlq Y pxk `Hkq “ xl ` hl `Hl YHk

We claim that j is uniformly discrete implies that Hl XHk has dimension n. If it

is not so, we can assume that Hl “ Zn after an application of an invertible linear

transformation T .

Hk “ tm1e1 ` . . .`mnen | mi P Zu

where ei “ pθ
i
1, . . . , θ

i
nq and at least one of the θij is not rational. If all them are

rationals, then Hk X Zn is n dimensional which is contrary to our assumption.

But, an application of 24 4.2 yields that the set

tx P Hk | Dy P Hl, 0 ă dpx, yq ă ru

cannot be contained in finite union of hyperplanes. Therefore, Hl YHkzB cannot

be a uniformly discrete set for any set B which is contained in a finite union of
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hyperplanes. This is a contradiction, since it tells us that Λj is not uniformly

discrete.

Further, if Hl XHk ‰ ø and has dimension n, then Hl YHk “ finite disjoint

union of cosets of Hl X Hk ‰ ø. After a finite applications of this procedure we

can write each Λj as

Λj “ pz1 ` Y1q Y . . .Y pzm ` Ymq Y C1 z C2

where the n dimensional lattices pzk`Ykq are disjoint and the discrete sets C1, C2

are contained in finite union of hyperplanes.

Now, consider the sets

Λ˚j “ pz1 ` Y1q Y . . .Y pzm ` Ymq

Define the measure µ1 “ a1

ř

xPΛ˚1

δx ` a2

ř

xPΛ˚2

δx . By using the Poisson summation

for lattices mentioned in previous chapter, we have that µ̂1 is a measure satisfying

the condition (*). In that case µ ´ µ1 is also a measure whose Fourier transform

satisfies (*). The support of µ ´ µ1 is contained in a finite union of hyperplanes

and hence is not relatively dense. By lemma 3.4 conclude that µ “ µ1 and we

must have Λj “ Λ˚j for j “ 1, 2. This concludes the proof. �

For the case when N ą 2 the same steps can be followed for the proof.

As shown in the example 2.1, since Λ1 Y Λ2 is a uniformly discrete set we

were able to write it as union of cosets of a common lattice. But is it true in

general. Cordoba’s theorem only concludes that each Λj is a finite disjoint union

of translates of n´dimensional lattices. But J.C. Lagarias says something more.

He remarks that since Λ is a uniformly discrete set then there is a common

lattice L such that each of the Λj is a union of cosets of common lattice L. Indeed,

since disjoint union of such translates pL1 ` a1q Y pL2 ` a2q cannot be uniformly

discrete unless both can be written as a finite union of cosets of a common full

rank L. This follows from Kronecker’s theorem in Diophantine approximation.

Let us look at it in the dimension 1 case. Kronecker’s theorem says that given

any real x, any irrational θ and any ε ą 0, there exists integers h and k ą 0 such
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that

|kθ ´ h´ x| ă ε.

Without loss of generality assume that L1 “ Z and let L2 “ βZ. If β “ p{q, a

rational number, then L1 and L2 can be written as a union of cosets of a common

lattice, i.e. L1 “ pZY . . .Y ppp´ 1q ` pZq and L2 “ pZY pp{q` pZq Y . . .Y ppq´
1{qqp` pZq. Hence nothing to prove.

Let β be an irrational then pL1 ` a1q Y pL2 ` a2q cannot be written as union

of cosets of a common lattice. Let x “ a1´ a1 and θ “ β. By Kronecker’s lemma,

for every ε ą 0 there exists h, k P Z and k ą 0 such that

|kβ ´ h´ a1 ` a2| ă ε ùñ |pkβ ` a2q ´ ph` a1q| ă ε

where pkβ` a2q P pa2`L2q and ph` a1q P pa1`L1q. This proves that pL1` a1qY

pL2 ` a2q is not uniformly discrete.

What happens if we relax all the conditions on Dirac masses. Nir Lev and

Olevskii have ivestigated this hypothesis. We will see their result in the next

chapter. �



Chapter 4

Quasicrystals and Poisson

summation formula

4.1 Introduction

In 2014 Nir Lev and Alexander Olevskii characterized the measures on R for

which both their support and spectrum are uniformly discrete. A similar result

was obtained for positive measures in Rn. But we will only understand the former

characterization. We will also study an important object known as “Meyer sets”.

Definition 4.1. Spectrum of a tempered distribution µ denoted by specpµq is the

support of its Fourier transform.

Let Λ Ă Rn be a uniformly discrete set. Consider a complex measure µ on

Rn supported on Λ:

µ “
ÿ

λPΛ

µpλqδλ, µpλq ‰ 0, dpΛq ą 0. (4.1)

Assume that µ is a tempered distribution and its Fourier transform is also a

measure supported by a uniformly discrete set S:

pµ “
ÿ

sPS

pµpsqδs (4.2)

The set S is the spectrum of the measure µ.

24
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Theorem 4.2. Let µ be a measure on R satisfying 4.1 and 4.2. Then the support

Λ is contained in a finite union of translates of a certain lattice. The same is true

for the dual lattice S.

Before we proceed we will need some preliminaries.

Notation: Denote Brpxq :“ ty P Rn : |y| ă r. And for Brp0q we simply

denote it by Br.

By a “distribution” we mean a tempered distribution on Rn. By a “measure”

we mean a complex, locally finite measure which is also a tempered distribution.

Lemma 4.3. Let µ be a measure in Rn supported by a uniformly discrete set Λ.

Then µ is a tempered distribution if and only if

|µpλq| ď Cp1` |λ|Nq, λ P Λ

for some positive constants C and N .

Proof. Let φ be a Schwartz function such that supppφq Ă Bδ where δ “ dpΛq and

φp0q “ 1. Let µ be a tempered distribution. Then there exists constants B,N ą 0

and N P Z such that |µpφq| ď B||φ||N , @φ P SpRnq. Let φλ “ φpx´ λq. Then we

get that

||φλ||N ď C 1p1` |λ|qN ||φ||N .

And we also have that p1 ` |λ|qN ď Op1 ` |λ|Nq. Therefore, combining all these

we get

|µpλq| “ |µpφλq| ď BC 1p1` |λ|qN ||φ||N ď Cp1` |λ|Nq.

Conversely, let |µpλq| ď Cp1 ` |λ|Nq, λ P Λ. Let φn Ñ φ in Schwartz space.

Then,

|µpφn ´ φq| ď
ÿ

λPΛ

|µpλq||φnpλq ´ φpλq|

ď C
ÿ

λPΛ

p1` |λ|Nq|φnpλq ´ φpλq|

ď C 1
ÿ

λPΛ

||φn ´ φ||N

As nÑ 8 the R.H.S of the above inequality tends to zero. Hence µ is a tempered

distribution. �
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Lemma 4.4. Let µ be a measure in Rn satisfying 4.1 and 4.2. Then

sup
λPλ
|µpλq| ă 8. (4.3)

Proof. Let φ be a Schwartz function such that pφp0q “ 1 and suppppφq Ă Bδ, where

δ “ dpΛq ą 0. Then

|µpλq| “ |µppφq| “ |pµpφq| ď
ÿ

sPS

|φpsq||pµpsq|.

By Lemma 4.3 there are constants C,N such that |pµpsq| ď Cp1` |s|Nq. Then

|µpλq| ď
ÿ

sPS

|φpsq|Cp1` |s|Nq ď

ż

Rn

|φpxq|Cp1` |x|Nqdx (4.4)

Since φ is a Schwartz function the R.H.S of 4.4 converges.Thus proving the lemma.

�

Definition 4.5. Let Λ Ă Rn. Then the upper and lower uniform densities are

defined respectively to be

D`pΛq :“ lim sup
RÑ8

sup
xPRn

#pΛXBRpxqq

|BR|

D´pΛq :“ lim inf
RÑ8

inf
xPRn

#pΛXBRpxqq

|BR|

The following version of density is also needed.

D#pΛq :“ lim inf
RÑ8

#pΛXBRq

|BR|

Clearly we have that D´pΛq ď D#pΛq ď D`pΛq. If Λ is a uniformly discrete

set then the above densities are finite. Let dpΛq “ δ. Then the open balls of radius

δ{2 around each λ P ΛXBRpxq are all disjoint for any x P Rn and for any R ą 0.

They lie inside the ball of radius R ` δ{2 around x. This gives us the volume

bound #ΛXBRpxq ď p
2R
δ
` 1qn uniformly for all x. Thus

sup
xPRn

#ΛXBRpxq

|BR|
ď C

ˆ

2

δ
`

1

R

˙n
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for some constant C ą 0. Hence,

lim sup
RÑ8

sup
xPRn

#ΛXBRpxq

|BR|
ď C

ˆ

2

δ

˙n

ă 8.

Threfore, all the other densities will also be finite.

Also D# and D´ are super additive because lim inf is super additive and D`

is sub additive because lim sup is sub additive.

Clearly we have that all the above mentioned densities are translation invari-

ant.

4.2 Delone and Meyer sets

Recall the definition of relatively dense set from the previous chapter.

Definition 4.6. Λ Ă Rn is called Delone set if Λ is a uniformly discrete set and

relatively dense set.

This means that the atoms of a Delone should not be too close to each other

as well as they cant be too far from others. For example any lattice is a Delone

set since it is uniformly discrete as well as relatively dense set.

Definition 4.7. Λ Ă Rn is called a Meyer set if Λ is a Delone set and there is a

finite set F such that Λ´ Λ Ă Λ` F .

Meyer has termed the set Λ with the above defined property as ‘Quasicrystals’,

but other mathematicians use the term ‘Meyer sets’ itself. Any lattice Γ is also a

Meyer set since Γ´ Γ “ Γ. For a lattice we can take F “ 0.

Lagarias has proved that Λ is a Meyer set if and only if Λ´ Λ is a uniformly

discrete set. Nir Lev and Olevskii prove a stronger result stated below:

Lemma 4.8. Let Λ Ă Rn be a delone set, such that D`pΛ´ Λq ă 8 . Then Λ is

a Meyer set.

Proof. Without loss of generality we may assume that 0 P Λ. Since by translating

Λ to Λ ´ x leaves Λ ´ Λ unchanged and F is replaced by F ` x, for any x P Rn.
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Since Λ is a Delone set and D`pΛ ´ Λq ă 8, we can fix R ą 0 such that every

ball of radius R intersects Λ and for all r ě R we have,

sup
xPRn

#pΛ´ Λq XBrpxq ďM. (‹q

Let h P Λ´Λ i.e. h “ y´x for some x, y P Λ. Choose a sequence x0, x1, . . . , xs

such that x0 “ x, xs “ 0, |xi ´ xi`1| ă R. Let yi “ xi ` h, then we have that

y0 “ y, ys “ h, |yi´ yi`1| ă R. Choose pi, qi P Λ such that |pi´ xi| ă R, |qi´ yi| ă

Rp0 ď i ď sq. We can always find such pi, qi since Λ is a relatively dense set. Let

us take p0 “ x, q0 “ y and ps “ 0. Consider the set F1 “ pΛ´Λq XB3R. We have

that

|pi ´ pi`1| ď |pi ´ xi| ` |xi ´ xi`1| ` |pi`1 ´ xi`1| ă 3R

Similarly, |qi ´ qi`1| ă 3R. Therefore, pi ´ pi`1, qi ´ qi`1 P F1p0 ď i ď sq. We see

that F1 is a finite set by (‹).

Set hi “ qi ´ pi. Then

hi ´ hi`1 “ pqi ´ qi`1q ´ ppi ´ pi`1q P F1 ´ F1

Also

|hi ´ h| “ |pqi ´ yiq ´ ppi ´ xiq| ă 2R,

hence

hi P V phq :“ pΛ´ Λq X ph`B2Rq.

Again by (‹), we obtain #V phq ď M . Thus the sequence h0, h1, . . . , hs has at

most M distinct values. Hence the sum

h0 ´ hs “ ph0 ´ h1q ` ph1 ´ h2q ` . . .` phs´1 ´ hsq

can be expressed as a sum of at most M ´ 1 terms. Each of the term phi ´ hi`1q

is an element of F1 ´ F1. And h0 ´ hs P F where

F :“ t
N
ÿ

j“1

vj | vj P F1 ´ F1, N ďM ´ 1u

Hence

h “ h0 “ h0 ` pqs ´ hsq “ qs ` ph0 ´ hsq P Λ` F.
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This proves that Λ´ Λ Ă Λ` F , so Λ is a Meyer set. �

Remark 4.9. The similar arguments can be used to prove the Lagarias’ result.

Instead of bounding the number of atoms in V phq using density we can use the

fact the Λ ´ Λ is a Delone set. That is, let r1 “ dpΛ ´ Λq then the open balls of

radius r1

2
around each w P V phq are all disjoint and lie inside the ball of radius

2R ` r1

2
around h. This gives us the volume bound #V phq ď

`

4R
r1
` 1

˘n
. Rest of

the arguments are same as the above.

The key concept in the proof of theorem 4.2 is “model sets”. Meyer introduced

model sets in 1972, constructed using “cut and project” method.

Let Γ be a lattice in Rn`m “ Rn ˆ Rm pm ě 0q. Let p1, p2 denote the

projections onto Rn,Rm, respectively. Choose Γ such that p1 restricted to Γ is

injective and p2pΓq is dense in Rm. Let Ω be a bounded set in Rm.

Definition 4.10. Under the above assumption, the model set M defined by Γ

and Ω is the set

MpRn
ˆ Rm,Γ,Ωq :“ tp1pγq : γ P Γ, p2pγq P Ωu.

Note that in the case when m “ 0, Rm is taken to be t0u and the model set

we get is just a lattice in Rn.

Lemma 4.11. Λ Ă Rn is a relatively dense set if and only if there exists a compact

set K such that Λ`K “ Rn.

Proof. This is easy to see. If Λ is a relatively dense set then there exists R ą 0

such that for any x P Rn, BRpxqX “ ø. Let K “ BR and let y P Rn. Then there

exists a λ P Λ such that |y ´ λ| ă R. Hence y P BRpλq.

Conversely, there exists an R ą 0 such that K ĂR pzq for some z P Rn. Hence

for any y P Rn, there exists λ P Λ such that y P λ `K. Thus, λ P BRpyq and the

lemma is proved �

Next, we can ask questions about the structure of Model sets. Are atoms

of models sets spaced very closely or are sparsely spread. The next proposition

addresses this.

Proposition 4.12. Any model set M “MpRn ˆ Rm,Γ,Ωq is a Delone set.
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Proof. Consider the set Mr :“ pM ´Mq X Br, where r ą 0. To prove that M is

a uniformly discrete set, it is enough to show that Mr “ t0u, for small enough r.

Indeed since, Mr “ t0u for small r implies that 0 is not a limit point in Λ´Λ. This

tells us that there does not exist any distinct λ1, λ2 PM such that |λ1 ´ λ2| ă r.

For each r ą 0, Kr :“ BrˆΩ´Ω is a compact set in RnˆRm. For small enough

r, Kr X Γ “ t0u. Otherwise, 0 would be limit point in Γ which is not possible.

For such r, if λ1, λ2 PM (there exists unique λ11, λ
1
2 such that pλ1, λ

1
1q, pλ2, λ

1
2q P Γ

and λ11, λ
1
2 P Ω) is such that |λ1 ´ λ2| ă r, then pλ1 ´ λ2, λ

1
1 ´ λ12q P Kr X Γ. So,

λ1 “ λ2, which proves that Mr “ t0u. Thus, M is a uniformly discrete set.

Let us prove that M is a relatively dense set. All we need to find is a compact

set C such that C ` Λ “ Rn. Let C1 and C2 be compact subset of Rn and Rm

respectively such that, Γ ` C1 ˆ C2 “ Rn ˆ Rm. Since p2pΓq is dense in Rm,

p2pΓq ` p´Ωq “ Rm and this forms a cover for the compact set C2. Hence there

exists a finite set F Ă Γ such that C2 Ă
Ť

fPF

pp2pfq`p´Ωqq. Let C “ C1´p1pF q. We

have RnˆRm “ Γ`C1ˆpp2pF q`p´Ωqq “ Γ`pC1´p1pF qqˆp´Ωq “ Γ`Cˆp´Ωq.

Now each px, 0q P Rn ˆ Rm can be written as

px, 0q “ γ ` pc,´ωq, γ P Γ, c P C,´ω P ´Ω.

Hence, px´ c, ωq “ γ and x P c` Λ, since p1pγq P Λ. Therefore, C ` Λ “ Rn. �

It turns out that model sets are Meyer set, proof of which is skipped. But let

us understand this from an example in dimension 1.

Example 4.1. Let α, β be distinct irrational numbers. Consider the invertible

linear transformation A, where

A “

˜

1 α

1 β

¸

The image of Z2 under this linear transformation is the lattice Γ which has the

property that p1 restricted to Γ is one-one and the p2pΓq is dense in R.

Let us take α such that 1
k`1

ă α ă 1
k

where k P N and β “ ´1
α

. Now let us

take Ω “ r0, 1s. And let

M “MpR ˆ R,Γ,Ωq.
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By Proposition 4.12, we have that M is a Delone set. Let us prove that its a

Meyer set, i.e. we need to find a finite set F such that M ´M ĂM ` F .

Let us look at the elements of M . We have that n`mα PM where n,m P Z,

if n `mβ P Ω. That is, for n P Z and m P Z such that pn ´ 1qα ď m ď nα, we

have n`mα PM . That is

M “ tn` tnαuα : pn´ 1qα ď tnαuu

Let us look at the each interval pi, i ` 1q, i P Z. Observe that there are at

least k integers and at most k ` 1 consecutive integers such that nα P pi, i ` 1q.

Hence every integer i will occur as the coefficient of α such that i “ tlαu and

pl ´ 1qα ď tlαu for some l P Z. Hence @i P Z there exists l P Z such that

l ` iα PM .

Also, if l ` tlαuα P M , then the next succeeding element of M is either

l ` k ` ptlαu` 1qα or l ` k ` 1` ptlαu` 1qα.

Now let us look at the elements of M ´M . Let z P M ´M then z “ x ´ y

where x “ n`tnαuα and y “ m`tmαuα be elements on M . Look at the coefficient

of α in x ´ y. Hence there exists an integer l such that tnαu ´ tmαu “ tlαu. By

using the following inequalities

tnαu´ 1 ď pn´ 1qα ď tnαu

tmαu´ 1 ď pm´ 1qα ď tmαu

pl ´ 1qα ď tlαu ď lα

we have that

l ´ k ´ 1 ď n´m ď l ` k ` 1

Now we take cases where n ´m “ l ` j and ´k ´ 1 ď j ď k ` 1. Then we have

that

l ` j ` tlαuα “ j ` pl ` tlαuαq PM ` F

where

F :“ t´k ´ 1,´k,´k ` 1, . . . , 0, . . . , k, k ` 1u

Hence M ´M ĂM ` F and M is a Meyer set.

�
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R. V. Moody has characterized Meyer sets in his paper “Meyer sets and their

duals”. The following theorem gives a characterization of Meyer sets, proof of

which can be referred from Moody’s paper.

Theorem 4.13. Let Λ be a Delone set in Rn. Then the following are equivalent:

(i) Λ is a Meyer set;

(ii) There exists a model set M and a finite set F such that Λ ĂM ` F .

The next lemma is also stated without proof.

Lemma 4.14. Let M “MpRnˆRm,Γ,Ωq be a model set in Rn, and suppose that

the boundary of Ω is a set of lebesgue measure zero in Rm. Then

D´pMq “ D`pMq “
mespΩq

detpΓq

Lemma 4.15. Let M “MpRnˆRm,Γ,Ωq be a model set and F be a finite set in

Rn. Then there is another model set M 1 “MpRn ˆRm,Γ1,Ω1q and a finite set F 1

such that

M ` F ĂM 1
` F 1, p1pΓ

1
q X ZrF 1s “ t0u, Γ Ă Γ1

where ZrF 1s is the additive group generated by the elements of F 1.

Proof. Let f1, . . . , fs be the elements of F . The vector space V “ QrF s generated

by elements of F is of finite dimension over Q. Let U :“ V X Qrp1pΓqs, a linear

subspace of V . Let W be any linear subspace of V such that V “ U `W . Then

each fi has a unique representation as fi “ ui ` wi, where ui P U,wi P W .

Since U Ă Qrp1pΓqs we have fi “ p
ri
qi
qp1pγi˚q, where ri

qi
P Q, γi˚ P Γ for

1 ď i ď s. Let q be the largest among q1, . . . , qs. Then we can write fi “ p1pγi{qq.

Define,

Γ1 :“ p1{qqΓ, Ω1 :“
s
ď

i“1

pΩ` p2pγi{qqq, F 1 “ tw1, . . . , wsu.

We see that Γ1 is a lattice in Rn`m, the restriction of p1 to Γ1 is injective (if

p1px{qq “ p1py{qq then p1pxq “ p1pyq which implies x “ y), and p2pΓ
1q is dense in

Rm. The set Ω1 is bounded in Rm and F 1 is a finite set in Rn. Also, clearly Γ Ă Γ1.

Let M 1 be the model set defined by Γ1 and Ω1. We need to show that M`F Ă

M 1 ` F 1. If λ P M ` F then λ “ p1pγq ` fj, γ P Γ and p2pγq P Ω. Further,
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λ “ p1pγ ` γj{qq `wj. We get this because fj “ p1pγj{qq `wj. Set γ1 “ γ ` γj{q,

then γ1 P Γ1 and p2pγ
1q P Ω1. Hence

λ “ p1pγ
1
q ` wj PM

1
` F 1.

Finally, observe that the set p1pΓ
1q X ZrF 1s Ă Zrw1, . . . , wss Ă W . Also, if y is an

element of p1pΓ
1q X ZrF 1s, then clearly y P Qpp1pΓqq and

y “
s
ÿ

i“1

niwi “
s
ÿ

i“1

nipfi ´ uiq P U

. Therefore, p1pΓ
1q X ZrF 1s “ t0u and the lemma is proved. �

For the case when m “ 0 the above lemma reduces to:

Lemma 4.16. Let L be a lattice in Rn. Then there is another lattice L1 and a

finite set F 1 such that

L` F Ă L1 ` F 1, L1 X ZrF 1s “ t0u, L Ă L1.

4.3 Proof of Theorem 4.2

Step 1 :

Our first step is to prove that Λ is a Delone set. We already assumed that Λ

is a uniformly discrete set. All we have to prove is that it is a relatively dense set.

For this we will need a lemma which will be stated without the proof.

Lemma 4.17. Given a ą 0 there is an R depending on a such that, if a measure

ν is supported by a uniformly discrete set Q in R, dpQq ą a, and if pν vanishes on

a ball of radius R, then ν “ 0.

Let a “ dpSq. If Λ is not a relatively dense set, then Dz P R, @r ą 0 such

that BrpzqXΛ “ ø. By applying the previous lemma to Q “ S, ν “ pµ we get that

pµ “ 0, which implies µ “ 0. We arrive at a contradiction.

Thus, Λ is a Delone set.

Step 2 :
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Next, we will prove that Λ is a Meyer set.

Notation. For h “ λ1 ´ λ2 P Λ´ Λ, denote

Λh :“ ΛX pΛ´ hq “ tλ P Λ : λ` h P Λu.

Clearly Λh is a non-empty subset of Λ since λ2 P Λh.

Let µ be a measure in R satisfying the conditions 4.1 and 4.2. For each P Λ

define a new measure

µh :“
ÿ

λPΛ

µpλqµpλ` hqδλ. (4.5)

Observe that it is a non-zero measure with supppµhq “ Λh. Hence 4.5 becomes

µh :“
ÿ

λPΛh

µpλqµpλ` hqδλ. (4.6)

By Lemma 4.4, sup
λPΛh

|µpλqµpλ ` hq| ă C for some constant C ą 0. Hence by

Lemma 4.3 µh is a tempered distribution.

Lemma 4.18. Let a :“ dpSq ą 0. Then we have specpµhq X Ba Ă t0u.

Proof. Let φ P SpRq such that supppφq Ă Bazt0u. Now consider the measure

ν “ pφ ˚ pµq ¨ pµ

Then the supppνq Ă pS` pBazt0uqq
Ş

S which is an empty set. Hence ν “ 0. Now

consider pν

0 “ pν “ ppφ ¨ µq ˚ µ

“
ÿ

λPΛ

ÿ

λ1PΛ

pφpλqµpλqµpλ1qδλ´λ1

“
ÿ

hPΛ´Λ

„

ÿ

λPΛh

pφpλqµpλqµpλ` hq



δh

“
ÿ

hPΛ´Λ

µhppφqδh

“
ÿ

hPΛ´Λ

xµhpφqδh.
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It follows that for every h P Λ´ Λ we have

xµhpφq “ 0.

Thus specpµhq is disjoint from Bazt0u. �

The above Lemma implies that xµh vanishes on the open interval p0, aq. This

is called a spectral gap.

Definition 4.19. A measure µ is said to have a spectral gap of size a ą 0 if the

Fourier transform pµ vanishes on a ball of radius a.

The following proposition gives a necessary condition for which a uniformly

discrete set Λ to support a measure has a spectral gap in dimension 1.

Proposition 4.20. Let Λ Ă R be a uniformly discrete set, dpΛq “ δ ą 0. Assume

that Λ supports a non-zero measure µ, such that pµ vanishes on an open interval

p0, aq for some a ą 0. Then

D#pΛq ě cpa, dq,

where cpa, dq ą 0 depends only on a and δ.

To prove this we need the next lemma.

Lemma 4.21. Let Λ be a finite set contained in p´R,Rqzp´δ, δq, where dpΛq “

δ ą 0, R ě 1, and let a ą 0. There is cpa, δq ą 0 such that if p#Λq{2R ă cpa, δq

then one can find a Schwartz function φ with the following properties:

φp0q “ 1, φpλq “ 0, specpφq Ă p0, aq, sup
|x|ąR

|φpxq| ď 1.

Proof. Assume that the number of points in Λ is even. Let n “ #Λ
2

and ε “ n{R.

Define the polynomial

P pzq “
ź

λPΛ

z ´ eiπλ{R

1´ eiπλ{R

Then P p1q “ 1. Using the fact that for |x| ď 1

|sinp
πx

2
q| “ sin|

πx

2
| ě |x|
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we have

max
|z“1|

|P pzq| ď
ź

λPΛ

2

2sin|πλ
2R
|
ď
ź

λPΛ

R

|λ|
.

If Λ is the set tjδ : 1 ď |j| ď nu then right hand side is maximized. And also

using the fact that n! ě pn
e
qn we get

max
|z“1|

|P pzq| ď
R2n

δ2npn!q2
ď

ˆ

eR

δn

˙2n

“

ˆ

e

δε

˙2εR

.

Given a ą 0, we choose a Schwartz function ψ satisfying

specpψq Ă p0, aq, ψp0q “ 1, η :“ sup
|x|ě1

|ψpxq| ă 1.

Let φ be a Schwartz function such that such that specpφq Ă p0, aq, φp0q “ 1 and

let r be such that sup
|x|ěr

|φpxq| ă 1. Hence take ψ “ φprxq which has all the required

properties. Set

ϕpxq :“ P peiπx{2q.pψpx{RqqtRu`1. (4.7)

Then ϕ is a Schwartz function, ϕp0q “ 1, ϕpλq “ 0 for λ P Λ. In terms of tempered

distribution we have that pϕ “ {P peiπx{2q ˚ {ψpx{Rq ˚ . . . ˚ {ψpx{Rq ptRu` 1 timesq.We

can write

P peiπx{2q “ a2ne
2niπx{R

` a2n´ 1ep2n´1qiπx{R
` . . .` a0

If φ P SpRq then

pP pφq “ P ppφq “ a2nφpn{Rq ` a2n´1φpp2n´ 1qn{2Rq ` . . .` a0φp0q.

Hence, the spectrum of P peiπx{2q is contained in r0, εs. While the spectrum of

second factor of 4.7 is contained in p0, a{2q, since spectrum of convolution is added.

Hence, if ε ă a{2 then specpϕq Ă p0, aq. Finally, we have

sup
|x|ěR

|ϕpxq| ď

„

γ

ˆ

e

δε

˙2εR

If ε is sufficiently small depending on a, δ then the expression inside the square

brackets is smaller than one. Hence the lemma is proved.

�
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Let us now prove proposition 4.20

Proof. We will prove this by contradiction. Assume that D#pΛq ă cpa, δq, where

cpa, δq is given by Lemma 4.21. We will show this implies µ “ 0.

It will be enough to prove the claim for finite measures. The general case

can be reduced to this one by multiplying µ with a Schwartz function φ, such

that |φ| ą 0 and specpφq Ă p´a{2, 0q. Consider a Schwartz function ψ such that

supppψq Ă p´a{4, 0q. Let φ “ zψ ˚ ψ, which gives the required properties. Then

φµ is a non-zero, finite measure (by Lemma 4.3) supported by Λ. Since xφµ “ pφ ˚ pµ

and support of convolution is added up and thus has a spectral gap p0, a{2q.

It will be enough to consider the case when 0 P Λ and to prove µp0q “ 0 by

translating of µ and Λ, since D#pΛ´ λq “ D#pΛq.

Let Λj :“ ΛXp´Rj, Rjqzt0u. Choose a sequenceRj Ñ 8 such that p#Λjq{p2Rjq ă

cpa, δq. Such a sequence can be chosen since lim inf is limit of a non-decreasing

sequence. Let φj be the function given by the Lemma 4.21 with Λ “ Λj and

R “ Rj. Since pµ vanishes on p0, aq we have

pµp pφjq “ 0

We also have that

pµp pφjq “ µpφjq “ µp0q `
ÿ

|λ|ěRj

φjpλqµpλq.

It follows that

|µp0q| ď
ÿ

|λ|ěRj

|µpλq|

The right hand side of the above inequality tends to 0 as j Ñ 0 since µ is a finite

measure. Hence µp0q “ 0 which concludes that µ “ 0. �

Since µh has a spectral gap on p0, aq, by above proposition we have that

D#pΛhq ě c, h P Λ´ Λ, (4.8)

where the constant c ą 0 depends on a “ dpSq and δ “ dpΛq.
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Now let us prove that D`pΛ ´ Λq ă 8. If we establish this then by Lemma

4.8, we get that Λ is a Meyer set.

Lemma 4.22. Let Λ be a uniformly discrete set in R. Suppose there is c “ cpΛq ą

0 such that D#pΛhq ą c for every h P Λ´ Λ. Then D`pΛ´ Λq ă 8.

Proof. Let x P R. Suppose that h1, h2, . . . , hn are distinct vectors belonging to the

set Λ´ ΛX Bδpxq, where δ “ dpΛq{2. We claim that Λhi X Λhj “ ø, pi ‰ jq. Let

λ P Λhi X Λhj and since Λ is a uniformly discrete set

hi ´ hj “ pλ` hiq ´ pλ` hjq P pΛ´ Λq XB2δ “ t0u

which is not possible. Hence Λh1 , ...,Λhn are pairwise disjoint subsets of Λ. Since

D# is super additive, it follows that

D#pΛq ě
N
ÿ

j“1

D#pΛhjq ě cN.

This shows that

sup
xPR

#pΛ´ Λq XBδpxq ď D#pΛq{c

Since lim sup is the limit of non-increasing sequence. Hence,

D`pΛ´ Λq ď
D#pΛq

c|Bδ|
ă 8.

�

Thus by applying Lemma 4.8 gives that Λ is a Meyer set.

Step 3 :

All there is left to show is that Λ is contained in a finite union of translates

of some lattice.

Since Λ is a Meyer set, by Theorem 4.13 there is a model set M “ MpR ˆ
Rm,Γ,Ωq and a finite set F such that Λ ĂM ` F . Then we would be done if we

show that M is a lattice in R, i.e. m “ 0.

Lemma 4.23. Let Λ be a Meyer set in R. Suppose there is c “ cpΛq such that

D`pΛhq ą c (4.9)
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for every h P Λ ´ Λ. Then Λ is contained in a finite union of translates of some

lattice.

Proof. (i) Let M “MpR ˆRm,Γ,Ωq and a finite set F be such that Λ ĂM ` F .

By Lemma 4.16 we may suppose that

p1pΓq X ZrF s “ t0u. (4.10)

Let λ P Λ is such that

λ “ p1pγpλ1qq ` θpλ1q “ p1pγpλ2qq ` θpλ2q

where γpλ1q, γpλ2q P Γ, p2pγpλ1qq, p2pγpλ2qq P Ω, θpλ1q, θpλ2q P F . Since the

restriction of p1 to Γ is injective and by condition 4.10 it follows that

γpλ1q “ γpλ2q, θpλ1q “ θpλ2q.

Hence λ admits a unique representation as

λ “ p1pγpλqq ` θpλq, γpλq P Γ, p2pγpλqq P Ω, θpλq P F (4.11)

(ii) Let h P Λ´ Λ, and suppose that λ1, λ2 P Λh. Denote

λ1j :“ λj ` h, j “ 1, 2

Then from 4.11 we have that

h “ λ1j ´ λj “ p1pγpλ
1
jq ´ γpλjqq ` pθpλ

1
jq ´ θpλjqq, j “ 1, 2.

By the condition 4.10 and since the restriction of p1 to Γ is injective, we must

have

γpλ11q ´ γpλ1q “ γpλ11q ´ γpλ1q.

Thus we obtain that to each h P Λ ´ Λ there corresponds an element Hphq P Γ

such that

γpλ` hq ´ γpλq “ Hphq, @λ P Λh. (4.12)
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(iii) Let E :“ tp2pγpλqq : λ P Λu. The E is a bounded set in Rm since E Ă Ω.

Given any δ ą 0, we can choose a vector ζ P E´E such that |ζ|2 ą diampEq2´δ2.

Observe that

E ´ E “ tp2pHphqq : h P Λ´ Λu,

hence ζ “ p2pHphqq for some h P Λ´ Λ. Let us fix such an h.

Now suppose that λ1, λ2 P Λh. By 4.12 we have that

Hphq “ γpλj ` hq ´ γpλjq, j “ 1, 2

This yields

ζ “ p2pHphqq “ p2pγpλj ` hq ´ γpλjqq j “ 1, 2.

By the parallelogram law we have that

|ζ|2 ` |p2pγpλ2q ´ γpλ1qq|
2
“

1

2
p|p2pγpλ2 ` hq ´ γpλ1qq|

2
` |p2pγpλ1 ` hq ´ γpλ2qq|

2
q

ď pdiampEqq2.

This yields us that

|p2pγpλ2q ´ γpλ1qq|
2
ă δ.

Denote Ephq :“ tp2pγpλqq : λ P Λhu. We conclude that for any given δ ą 0 one

can find h P Λ´ Λ such that diampEphqq ă δ.

(iv) Let h P Λ´ Λ and δ ą 0 be such that diampEphqq ă δ. We may find an

open ball Bδpzq such that Ephq Ă Bδpzq. Consider the model set

M 1
“MpR ˆ Rm,Γ, Bδpzqq.

Then we have that Λh Ă M 1 ` F . Since D` is sub-additive and invariant under

translations, this yields that

D`pΛhq ď p#F qpD
`
pM 1

qq.

By applying Lemma 4.14 we get

D`pΛhq ď p#F q

ˆ

V olpB1qδ
m

detpΓq

˙

.
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If m ě 1, then we may find elements h P Λ´Λ with D`pΛhq arbitrarily small,

which is a contradiction to 4.9. Therefore m has to be 0 and hence M a lattice.

Since Λ ĂM ` F , this concludes the proof. �



Further remarks

Cordoba, Nir Lev and Olevskii have assumed in the hypothesis that both support

and spectrum of a tempered distribution µ are uniformly discrete sets. But Nir

Lev and Olevskii have further investigated the case when support is uniformly

discrete but the spectrum is just a discrete closed set and the case when both of

them are just discrete closed sets.

In the former case they proved that the spectrum also has to be uniformly discrete.

In the latter case, it turns out the support contains only finitely many elements of

any arithmetic progression.

It is also interesting to know that an Israeli scientist named Dan Shechtman re-

cieved Nobel prize for the discovery of Quasicrystals in chemistry. But in mathe-

matical terms, it was already discovered by Yves Meyer in 1970’s known as Meyer

sets.

42
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