Knot invariant and the Reidemeister theorem

LSU Math: Informal Geometry & Topology Seminar

Benjamin Armokyi Appiah

bappia2@lsu.edu

Department of Mathematics Louisiana State University Baton Rouge, Louisiana.

July 03, 2025.

Outline

Motivation

Knots and Links

Knot Invariant

The Reidemeister Moves

The Reidemeister Theorem

Pictorial prove of the Reidemeister theorem

Motivation

This talk draws motivation from "On Ribbon graphs and Virtual links" a paper by S. Baldridge, L. Kauffman, and W. Rushworth. (2022)

Consider the diagram

a. unknot

Consider the diagram

a. unknot

Consider the diagram

a. unknot

c. figure-eight

Knots

Consider the diagram

a. unknot

b. treion

c. figure-eight

Examples of **Knots**.

Knots

Definition 1 (knot)

A *knot* is a closed, non-self-intersecting curve (S^1) smoothly embedded in three-dimensional space (i.e. \mathbb{R}^3).

Links

Examples of Links.

Links

Definition 2 (Link)

A link is a collection of one or more knots that may be entangled.

Knot Invariant

Definition 3 (Knot Invariant)

A *knot invariant* is a property or quantity associated with a knot that remains unchanged under ambient isotopy (i.e. continuous deformation without cutting or passing through itself).

Knot Invariant

Definition 3 (Knot Invariant)

A *knot invariant* is a property or quantity associated with a knot that remains unchanged under ambient isotopy (i.e. continuous deformation without cutting or passing through itself).

Examples 4

The simplest example of knot invariant;

► Tricolorability (i.e. either all three strands are the same color or all different at each crossing).

Knot Invariant

Definition 3 (Knot Invariant)

A *knot invariant* is a property or quantity associated with a knot that remains unchanged under ambient isotopy (i.e. continuous deformation without cutting or passing through itself).

Examples 4

The simplest example of knot invariant;

- Tricolorability (i.e. either all three strands are the same color or all different at each crossing).
- Reidemeister moves.

Knot Invariant

Definition 3 (Knot Invariant)

A *knot invariant* is a property or quantity associated with a knot that remains unchanged under ambient isotopy (i.e. continuous deformation without cutting or passing through itself).

Examples 4

The simplest example of knot invariant;

- Tricolorability (i.e. either all three strands are the same color or all different at each crossing).
- Reidemeister moves.

Other examples; Alexander polynomial, Jones polynomial, Khovanov homology, and many more.

These are three local moves on knot diagrams introduced by Kurt Reidemeister in 1926.

The Reidemeister Moves

These are three local moves on knot diagrams introduced by Kurt Reidemeister in 1926.

Definition 5 (Reidemeister Move I)

Is described as the *twist/untwist* because it adds or removes a single twist in the strand.

The Reidemeister Moves

These are three local moves on knot diagrams introduced by Kurt Reidemeister in 1926.

Definition 5 (Reidemeister Move I)

Is described as the *twist/untwist* because it adds or removes a single twist in the strand.

Definition 6 (Reidemeister Move II)

Is described as the *poke/unpoke* because it adds or removes two crossings that are adjacent and cancel each other (one over, one under).

Definition 6 (Reidemeister Move II)

Is described as the *poke/unpoke* because it adds or removes two crossings that are adjacent and cancel each other (one over, one under).

Definition 7 (Reidemeister Move III)

Is described as the *slide over* because it moves a strand over or under a crossing between two other strands.

Definition 7 (Reidemeister Move III)

Is described as the *slide over* because it moves a strand over or under a crossing between two other strands.

The Reidemeister Theorem

Theorem 8 (Reidemeister Theorem)

Two knot diagrams are topologically equivalent if and only if one can be transformed into the other by a finite sequence of Reidemeister moves (Move I, II, and III).

References

[CAdms] C. Adams. *The Knot Book*. W.H. Freeman and Company, 1994.

[DRolf] D. Rolfsen. *Knots and Links*. AMS Chelsea Publishing UK ed. Edition, 2023.

End of Presentation

