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To show that ⇡1(Th(�k)) = 0, it now suffices to show that i⇤ : ⇡1(Grk-1) !
⇡1(Grk) is surjective, so the image of ⇡1(Grk-1) inside ⇡1(Grk) is all of
Z/2. But this is induced b the map O(k- 1) ! O(k) given by

O(k- 1) O(k)

A

✓
A 0

0 1

◆

This is surjective on connected components, which implies that the in-
duced map ⇡1BO(k- 1) ! ⇡1BO(k) is surjective. Finally, we know that
Gri ⇠= BO(i), so ⇡1(Grk-1) ! ⇡1(Grk) is surjective. Hence,

⇡1(Th(�k)) = 0,

so the Hurewicz theorem applies and we may conclude that ⇡i(Th(�k)) =
0 for i < k.

(2) Now we need to show that i⇤ is an isomorphism. On cohomology, i⇤ is
an isomorphism Hi(Grk+1) ! H⇤(Grk) up to degree k+ 1. Hence, for
cohomology of the Thom bundles, i⇤ is an isomorphism for j < 2k+ 2:

i⇤ : Hj(Th(�k+1)) ⇠= Hj(Th(�k � "1)).

Hence, Proposition 3.27 applies and therefore i⇤ is an isomorphism up to
dimension 2k. In particular i⇤ is an isomorphism on homotopy groups
⇡n+k+1(-) for n < k.

Theorem 3.28 (Thom). For k > n+ 2,

Nn
⇠= ⇡n+k(Th(�k))

Notice that the right-hand-side of this isomorphism is well-defined by
Lemma 3.25 for k > n.

3.4 L-equivalence and Transversality

To prove Theorem 3.28, we need a lot of results about smooth manifolds. Since
the point of this class isn’t to learn about smooth manifolds, we will cite a lot of
these things without proof. Most of it comes out of Thom’s original paper.

Remark 3.29. We will abuse notation and abbreviate Grk := Grk(RN) for
N � 2k+ 5. In the cases we care about in the lemmas below, we need a compact
manifold; Grk(RN) is compact. Moreover, maps here are well-defined and
independent of N when N is sufficiently large. Likewise, write �k := �kN.
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Definition 3.30. Let f : Xn ! Mp be a Cn map from an n-manifold to a p-
manifold. Let Np-q ✓ M be a submanifold of M of codimension q. For y 2 N,
TyM ◆ TyN. Let x 2 f-1(y). We say that f is transverse to N at y if

dfx : TxX ! TyM ! TyM�
TyN

is an epimorphism.
f is transverse to N if this holds for all x,y.

Notice that if f-1(y) = ∆, transversality automatically holds.

Example 3.31. Let X = R, M = R
2, and N = R.

y

y 0

f(X)

N

M

At y, TxX ⇣ TyM/TyN is transverse.

At y 0, TxX
0
-! Ty 0M/Ty 0N is not transverse.

Definition 3.32. A homotopy X⇥ [0, 1] !Y is an isotopy if for all t 2 [0, 1], the
map X⇥ {t} ! Y is smooth.

Definition 3.33. Let N be a submanifold of a manifold M of codimension q. A
tubular neighborhood of N in M is an embedding of a q-disk bundle on N into
M such that N is the zero section.

Theorem 3.34. Assume that

• X is a smooth n-manifold;

• M is a p-manifold;

• N ✓ M is a paracompact submanifold of M of codimension q;

• T is a tubular neighborhood of N in M;

• f : X ! M is a Cn map;

• y 2 TyM and x 2 f-1(Y).
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Then we may conclude the following.

(a) If f : X ! M is transverse to N, then f-1(N) is a Cn submanifold of X of
codimension q.

(b) There is a homeomorphism A of T arbitrarily close to the identity and
equal to the identity on @T , such that A � f is transverse to N.

(c) If f : X ! M is transverse to N, then N is compact. Then for any A (as in
(b)) sufficiently close to the identity, A � f is transverse to N and f-1(N),
(A � f)-1(N) are isotopic in X.

Remark 3.35. Theorem 3.34(b) says that we may always wiggle the tubular
neighborhood a little bit so that, after with composing with f, it is transverse
to N. Theorem 3.34(c) implies that f-1(N) and (A � f)-1(N) are isomorphic.
Similar results hold for manifolds M with boundary.

Now let’s relate this to cobordism.

Theorem 3.36. Let f,g : X ! M be Cm maps where m � n, both transverse to
a submanifold N of codimension q. If f and g are homotopic, then f-1(N) is
cobordant to g-1(N).

Proof. We may assume that this homotopy is smooth. So consider F : X⇥ I ! M.
By Theorem 3.34(b) there is some A such that A � F is transverse to N. By
Theorem 3.34(c), f-1(N) is isotopic to (A � F|X⇥{0})

-1(N). In particular, this
implies that f-1(N) is cobordant to (A � F|X⇥{0})

-1(N). Likewise, g-1(N) is
cobordant to (A � F|X⇥{1})

-1(N).
Now by Theorem 3.34(a), (A � F)-1(N) is a submanifold of X⇥ I with bound-

ary

(A � F|X⇥{0,1})
-1(N) = (A � F|X⇥{0})

-1(N)[ (A � F|X⇥{0})
-1(N)

Composing with the cobordisms in the first paragraph, we obtain a cobordism
between f-1(N) and g-1(N).

This motivates the following definition.

Definition 3.37. Let W0, W1 be two k-submanifolds of an n-manifold X. Then
we say that W0 and W1 are L-equivalent in X if there exists a manifold Y with
boundary W0 tW1 and an embedding f : Y ! X⇥ I such that

f-1(X⇥ {0}) = W0 and f-1(X⇥ {1}) = W1.

We write Lk(X) for the set of L-equivalence classes of k-submanifolds.
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Example 3.38. If W0 = S1 t S1 and W1 = S1 inside the plane X, but W0 \
W1 6= ∆, then there’s no embedded cobordism between them. But there is an
embedded pair of pants linking them in X⇥ I.

Lemma 3.39. If n > 2k+2, then Lk(S
n) is an abelian group. The map � : Lk(S

n) !
Nk taking the L-equivalence class of W to the cobordism class of W is an iso-
morphism.

Proof. For n > 2k+ 2, any two embedded k-submanifolds can be homotoped
(and indeed, isotoped) to be disjoint. Thus, disjoint union is a well-defined
operation on Lk(S

n).
We say that [∆] is the identity in Lk(S

n).
Lk(S

n) has inverses given by the horseshoe L-equivalence: Therefore, 2[W] =
0, so [W] = -[W]. Hence Lk(S

n) is a group.
Now to show that the map � : Lk(S

n) ! Nk is an isomorphism, it suffices
to check that this is a bijection since these have the same group structure.

To check surjectivity, assume [W] 2 Nk. Then there is an embedding

W ,! R
2k+2 ,! Sn

(recall that we are assuming that n � 2k+ 2 Remark 3.29). So [W] is a class in
Lk(S

n).
To check injectivity, consider an embedded submanifold W ,! Sn such that

[W] = 0 in Nk. Write W = @B for a (k+ 1)-manifold B. Embed B into Sn via

f : B ,! R
2(k+1) ,! Sn.

Use Urysohn’s Lemma to pick a function � : B ! I. Then �-1(0) = W, and
�-1(1) = ∆. Then (f,�) : B ! Sn ⇥ I witnesses an L-equivalence between W

and ∆. Hence, [W] = 0 in Lk(S
n).

Construction 3.40. For X an n-manifold, we define a map J : Ln-k(X) !
[X, Th(�k)] by first choosing an embedding X ,! R

N. Then for each w 2 W, we
have a normal bundle at w inside X:

NwW := (TwW)? \ TwX.

Then NwW is a k-plane in R
N, so an element of Grk = Grk(RN) (see Re-

mark 3.29). This gives a map f : W ! Grk.
Now let N be a tubular neighborhood of W in X; think of it as a pullback of

the disk bundle of �k: N = f⇤(D(�k)). Then f induces a map ef : Th(f⇤(�k)) !
Th(�k). So define

f 0 : X ! Th(�k)
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by

f 0(x) =

�
⇤ if x 62 N,
ef(x) if x 2 N.

The image of W under J is this map f 0 : X ! Th(�k).
Now, Grk embeds into Th(�k) as the zero section. So

(f 0)-1(Grk) = W.

Why do we find this construction useful? Let X = Sn+k. Then we have a
map

Ln(S
n+k) ! ⇡n+k Th(�k).

To prove Theorem 3.28, we want to show that this is an isomorphism of groups.
Then we may apply Lemma 3.39 to conclude that

Nk
⇠= Ln(S

n+k) ⇠= ⇡n+k Th(�k)

Remark 3.41. When might we expect [X, Y] to be a group?
If we have f,g : X ! Y with X cogrouplike, meaning that it has a nice map

p : X ! X_X, then we might define the product of f and g by

X
p
-! X_X

f_g
---! Y _ Y

fold
--! Y.

For example, the pinch map Sn ! Sn _ Sn satisfies this property.
Alternatively, if we had a retraction map r : Y ⇥ Y ! Y _ Y, then we might

define the product of f and g by

X
diag
---! X⇥ X

f⇥g
---! Y ⇥ Y

r
-! Y _ Y

fold
--! Y.

Classically, the conditions for this second approach to work were answered
in cohomotopy theory, which studies homotopy classes of maps into spheres
instead of out of spheres. This theory is now pretty much defunct.

Lemma 3.42. J is independent of the choice of X ,! R
N.

Proof. If i0, i1 : X ,! R
N, we may assume for large enough N that i0(X) \

i1(X) = ∆. Moreover, we may assume that there is an embedding X⇥ I ! R
N

that is i0 on X⇥ {0} and i1 on X⇥ {1}. Finally, we may assume that X⇥ I is
embedded orthogonally to its boundary.

Let W be some k-submanifold of X. The embedding above restricts to an
embedding of W ⇥ I ! R

N. A tubular neighborhood N of W ⇥ I under this
embedding is orthogonal to the boundary of X⇥ I by our assumption; thus
N \ X⇥ {0} is a tubular neighborhood of i0(W) and N \ X⇥ {1} is a tubular
neighborhood of i1(W). We can then apply the construction of J to this N and
the embedding of W ⇥ I to produce a map X⇥ I ! Th(�k). This restricts to the
maps constructed for W under i0 and i1, respectively. Thus, the two maps are
homotopic.
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Lemma 3.43. L-equivalent submanifolds give homotopic maps under J.

Proof sketch. Let W0, W1 be L-equivalent. So there is some submanifold B ✓
Sn+k ⇥ I with B \ (Sn+k ⇥ {i}) = Wi. Let T be a tubular neighborhood of B.
Then T \ (Sn+k ⇥ {i}) is a tubular neighborhood of Wi. We get a map

Sn+k ⇥ I ! Th(�k)

that is a homotopy.

Now claim that J is a group homomorphism.
Given W,W 0 ✓ Sn+k, and tubular neighborhoods N,N 0 of W and W 0 inside

Sn+k, NtN 0 is a tubular neighborhood of W tW 0. Applying J to W and W 0,
we get two maps f : W ! Grk and f 0 : W 0 ! Grk. The group operation on
Ln(Sn+k) is given by disjoint union, so if we collapse everything outside of a
tubular neighborhood of W tW 0 inside Sn+k, we can realize the disjoint union
of f with f 0 as

Sn+k ! Sn+k _ Sn+k f_f 0
---! Th(�k)_ Th(�k)

r
-! Th(�k).

This is exactly the same as the group operation on [Sn+k, Th(�k)]. Hence, J is a
group homomorphism.

This next lemma shows that J is injective.

Lemma 3.44. Let f, f 0 : X ! Th(�k). If f is homotopic to f 0 and both are trans-
verse to Grk, then f-1(Grk) is L-equivalent to (f 0)-1(Grk).

Proof sketch. Let F : X⇥ I ! Th(�k) be a homotopy. Then F-1(Grk) is a sub-
manifold, and gives the desired L-equivalence.

This lemma actually gives us something more: an inverse to J sending
f : Sn+k ! Th(�k) to f-1(Grk). Hence, we have shown the following.

Lemma 3.45. Ln(Sn+k) ⇠= ⇡n+k(Th(�k)).

Modulo checking some details, this in fact shows Theorem 3.28.

3.5 Characteristic Numbers and Boundaries

Corollary 3.46 (Corollary to Theorem 3.28). If M is an n-manifold all of whose
characteristic numbers are zero, then M is the boundary of an (n+ 1)-manifold.

Proof. Suppose that we have an n-manifold M and an embedding M ,! Sn+k

(recall k > n + 2, so such an embedding exists). Under the isomorphism
Ln(Sn+k) ⇠= ⇡n+k(Th(�k)), we have a map f : Sn+k ! Th(�k) with M =
f-1(Grk). Thus, f restricts to a map ef : M ! Grk.
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