To show that $\pi_1(\text{Th}(\gamma_k)) = 0$, it now suffices to show that $i_* \colon \pi_1(Gr_{k-1}) \to \pi_1(Gr_k)$ is surjective, so the image of $\pi_1(Gr_{k-1})$ inside $\pi_1(Gr_k)$ is all of $\mathbb{Z}/2$. But this is induced b the map $O(k-1) \to O(k)$ given by

$$O(k-1) \longrightarrow O(k)$$

$$A \longmapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

This is surjective on connected components, which implies that the induced map $\pi_1 BO(k-1) \to \pi_1 BO(k)$ is surjective. Finally, we know that $Gr_i \cong BO(i)$, so $\pi_1(Gr_{k-1}) \to \pi_1(Gr_k)$ is surjective. Hence,

$$\pi_1(\operatorname{Th}(\gamma_k)) = 0$$
,

so the Hurewicz theorem applies and we may conclude that $\pi_i(Th(\gamma_k)) = 0$ for i < k.

(2) Now we need to show that i_* is an isomorphism. On cohomology, i^* is an isomorphism $H^i(Gr_{k+1}) \to H^*(Gr_k)$ up to degree k+1. Hence, for cohomology of the Thom bundles, i^* is an isomorphism for j < 2k+2:

$$i^*: H^j(Th(\gamma_{k+1})) \cong H^j(Th(\gamma_k \oplus \epsilon^1)).$$

Hence, Proposition 3.27 applies and therefore i_* is an isomorphism up to dimension 2k. In particular i_* is an isomorphism on homotopy groups $\pi_{n+k+1}(-)$ for n < k.

Theorem 3.28 (Thom). *For* k > n + 2,

$$\mathfrak{N}_n \cong \pi_{n+k}(Th(\gamma_k))$$

Notice that the right-hand-side of this isomorphism is well-defined by Lemma 3.25 for k > n.

3.4 L-equivalence and Transversality

To prove Theorem 3.28, we need a lot of results about smooth manifolds. Since the point of this class isn't to learn about smooth manifolds, we will cite a lot of these things without proof. Most of it comes out of Thom's original paper.

Remark 3.29. We will abuse notation and abbreviate $Gr_k := Gr_k(\mathbb{R}^N)$ for $N \ge 2k+5$. In the cases we care about in the lemmas below, we need a compact manifold; $Gr_k(\mathbb{R}^N)$ is compact. Moreover, maps here are well-defined and independent of N when N is sufficiently large. Likewise, write $\gamma_k := \gamma_{kN}$.

Definition 3.30. Let $f: X^n \to M^p$ be a C^n map from an n-manifold to a p-manifold. Let $N^{p-q} \subseteq M$ be a submanifold of M of codimension q. For $y \in N$, $T_yM \supseteq T_yN$. Let $x \in f^{-1}(y)$. We say that f is **transverse to N at y** if

$$df_x\colon T_xX\to T_yM \underset{r\longrightarrow}{\longrightarrow} T_yM/_{T_yN}$$

Notice that if $f^{-1}(y) = \emptyset$, transversality automatically holds.

Example 3.31. Let $X = \mathbb{R}$, $M = \mathbb{R}^2$, and $N = \mathbb{R}$.

At y, $T_x X woheadrightarrow T_y M /_{T_y N}$ is transverse. At y', $T_x X \xrightarrow{0} {^T_y}'^M /_{T_{u'} N}$ is not transverse.

Definition 3.32. A homotopy $X \times [0,1] \to Y$ is an **isotopy** if for all $t \in [0,1]$, the map $X \times \{t\} \to Y$ is smooth.

Definition 3.33. Let N be a submanifold of a manifold M of codimension q. A **tubular neighborhood** of N in M is an embedding of a q-disk bundle on N into M such that N is the zero section.

Theorem 3.34. Assume that

- X is a smooth n-manifold;
- M is a p-manifold;
- $N \subseteq M$ is a paracompact submanifold of M of codimension q;
- T is a tubular neighborhood of N in M;
- $f: X \to M$ is a C^n map;
- $y \in T_u M$ and $x \in f^{-1}(Y)$.

Then we may conclude the following.

- (a) If $f: X \to M$ is transverse to N, then $f^{-1}(N)$ is a C^n submanifold of X of codimension q.
- (b) There is a homeomorphism A of T arbitrarily close to the identity and equal to the identity on ∂T , such that $A \circ f$ is transverse to N.
- (c) If $f: X \to M$ is transverse to N, then N is compact. Then for any A (as in (b)) sufficiently close to the identity, $A \circ f$ is transverse to N and $f^{-1}(N)$, $(A \circ f)^{-1}(N)$ are isotopic in X.

Remark 3.35. Theorem 3.34(b) says that we may always wiggle the tubular neighborhood a little bit so that, after with composing with f, it is transverse to N. Theorem 3.34(c) implies that $f^{-1}(N)$ and $(A \circ f)^{-1}(N)$ are isomorphic. Similar results hold for manifolds M with boundary.

Now let's relate this to cobordism.

Theorem 3.36. Let $f, g: X \to M$ be C^m maps where $m \ge n$, both transverse to a submanifold N of codimension q. If f and g are homotopic, then $f^{-1}(N)$ is cobordant to $g^{-1}(N)$.

Proof. We may assume that this homotopy is smooth. So consider $F: X \times I \to M$. By Theorem 3.34(b) there is some A such that $A \circ F$ is transverse to N. By Theorem 3.34(c), $f^{-1}(N)$ is isotopic to $(A \circ F|_{X \times \{0\}})^{-1}(N)$. In particular, this implies that $f^{-1}(N)$ is *cobordant* to $(A \circ F|_{X \times \{0\}})^{-1}(N)$. Likewise, $g^{-1}(N)$ is cobordant to $(A \circ F|_{X \times \{1\}})^{-1}(N)$.

Now by Theorem 3.34(a), $(A \circ F)^{-1}(N)$ is a submanifold of $X \times I$ with boundary

$$(A\circ F|_{X\times\{0,1\}})^{-1}(N)=(A\circ F|_{X\times\{0\}})^{-1}(N)\cup (A\circ F|_{X\times\{0\}})^{-1}(N)$$

Composing with the cobordisms in the first paragraph, we obtain a cobordism between $f^{-1}(N)$ and $g^{-1}(N)$.

This motivates the following definition.

Definition 3.37. Let W_0 , W_1 be two k-submanifolds of an n-manifold X. Then we say that W_0 and W_1 are **L-equivalent in** X if there exists a manifold Y with boundary $W_0 \sqcup W_1$ and an embedding $f: Y \to X \times I$ such that

$$f^{-1}(X \times \{0\}) = W_0$$
 and $f^{-1}(X \times \{1\}) = W_1$.

We write $L_k(X)$ for the set of L-equivalence classes of k-submanifolds.

Example 3.38. If $W_0 = S^1 \sqcup S^1$ and $W_1 = S^1$ inside the plane X, but $W_0 \cap W_1 \neq \emptyset$, then there's no embedded cobordism between them. But there is an embedded pair of pants linking them in $X \times I$.

Lemma 3.39. If n>2k+2, then $L_k(S^n)$ is an abelian group. The map $\varphi\colon L_k(S^n)\to \mathfrak{M}_k$ taking the L-equivalence class of W to the cobordism class of W is an isomorphism. Quantum class of W is an incomplete class of W in W in W in W is an incomplete class of W in W in W in W is an incomplete class of W in W in W in W in W in W is an incomplete class of W in W in

Proof. For n > 2k + 2, any two embedded k-submanifolds can be homotoped (and indeed, isotoped) to be disjoint. Thus, disjoint union is a well-defined operation on $L_k(S^n)$.

We say that $[\emptyset]$ is the identity in $L_k(S^n)$.

 $L_k(S^n)$ has inverses given by the horseshoe L-equivalence: Therefore, 2[W] = 0, so [W] = -[W]. Hence $L_k(S^n)$ is a group.

Now to show that the map $\phi\colon L_k(S^n)\to \mathfrak{N}_k$ is an isomorphism, it suffices to check that this is a bijection since these have the same group structure.

To check surjectivity, assume $[W] \in \mathfrak{N}_k$. Then there is an embedding

$$W \hookrightarrow \mathbb{R}^{2k+2} \hookrightarrow S^n$$

(recall that we are assuming that $n \ge 2k + 2$ Remark 3.29). So [W] is a class in $L_k(S^n)$.

To check injectivity, consider an embedded submanifold $W \hookrightarrow S^n$ such that [W] = 0 in \mathfrak{N}_k . Write $W = \partial B$ for a (k+1)-manifold B. Embed B into S^n via

$$f: B \hookrightarrow \mathbb{R}^{2(k+1)} \hookrightarrow S^n$$
.

Use Urysohn's Lemma to pick a function $\phi \colon B \to I$. Then $\phi^{-1}(0) = W$, and $\phi^{-1}(1) = \emptyset$. Then $(f, \phi) \colon B \to S^n \times I$ witnesses an L-equivalence between W and \emptyset . Hence, [W] = 0 in $L_k(S^n)$.

Construction 3.40. For X an n-manifold, we define a map $J: L_{n-k}(X) \to [X, Th(\gamma_k)]$ by first choosing an embedding $X \hookrightarrow \mathbb{R}^{\mathbb{N}}$. Then for each $w \in W$, we have a normal bundle at w inside X:

$$N_wW := (T_wW)^{\perp} \cap T_wX.$$

Then N_wW is a k-plane in $\mathbb{R}^{\mathbb{N}}$, so an element of $Gr_k = Gr_k(\mathbb{R}^{\mathbb{N}})$ (see Remark 3.29). This gives a map $f: W \to Gr_k$.

Now let N be a tubular neighborhood of W in X; think of it as a pullback of the disk bundle of γ_k : $N = f^*(D(\gamma_k))$. Then f induces a map \widetilde{f} : $Th(f^*(\gamma_k)) \to Th(\gamma_k)$. So define

$$f'\colon X\to Th(\gamma_k)$$

Remark 3.29. We will abuse notation and abbreviate $Gr_k := Gr_k(\mathbb{R}^N)$ for $N \ge 2k+5$. In the cases we care about in the lemmas below, we need a compact manifold; $Gr_k(\mathbb{R}^N)$ is compact. Moreover, maps here are well-defined and independent of N when N is sufficiently large. Likewise, write $\gamma_k := \gamma_{kN}$.

= (m, m, s) \((m, n, m)\)
= \(M \cap (m, c \cup m)\)

by

$$f'(x) = \begin{cases} * & \text{if } x \notin N, \\ \widetilde{f}(x) & \text{if } x \in N. \end{cases}$$

The image of W under J is this map $f': X \to Th(\gamma_k)$.

Now, Gr_k embeds into $Th(\gamma_k)$ as the zero section. So

$$(f')^{-1}(Gr_k) = W.$$

Why do we find this construction useful? Let $X = S^{n+k}$. Then we have a map

$$L_n(S^{n+k}) \to \pi_{n+k} \operatorname{Th}(\gamma_k).$$

To prove Theorem 3.28, we want to show that this is an isomorphism of groups. Then we may apply Lemma 3.39 to conclude that

$$\mathfrak{N}_k \cong \mathsf{L}_n(\mathsf{S}^{n+k}) \cong \pi_{n+k} \, \mathsf{Th}(\gamma_k)$$

Remark 3.41. When might we expect [X, Y] to be a group?

If we have f, g: $X \to Y$ with X **cogrouplike**, meaning that it has a nice map $p: X \to X \lor X$, then we might define the product of f and g by

$$X \xrightarrow{p} X \lor X \xrightarrow{f \lor g} Y \lor Y \xrightarrow{\text{fold}} Y.$$

For example, the pinch map $S^n \to S^n \vee S^n$ satisfies this property.

Alternatively, if we had a retraction map $r: Y \times Y \to Y \vee Y$, then we might define the product of f and g by

$$X \xrightarrow{\text{diag}} X \times X \xrightarrow{f \times g} Y \times Y \xrightarrow{r} Y \vee Y \xrightarrow{\text{fold}} Y$$

Classically, the conditions for this second approach to work were answered in **cohomotopy theory**, which studies homotopy classes of maps into spheres instead of out of spheres. This theory is now pretty much defunct.

Lemma 3.42. J is independent of the choice of $X \hookrightarrow \mathbb{R}^{\mathbb{N}}$.

Proof. If $i_0, i_1: X \hookrightarrow \mathbb{R}^N$, we may assume for large enough \mathbb{N} that $i_0(X) \cap i_1(X) = \emptyset$. Moreover, we may assume that there is an embedding $X \times I \to \mathbb{R}^N$ that is i_0 on $X \times \{0\}$ and i_1 on $X \times \{1\}$. Finally, we may assume that $X \times I$ is embedded orthogonally to its boundary.

Let W be some k-submanifold of X. The embedding above restricts to an embedding of $W \times I \to \mathbb{R}^{\mathbb{N}}$. A tubular neighborhood N of $W \times I$ under this embedding is orthogonal to the boundary of $X \times I$ by our assumption; thus $N \cap X \times \{0\}$ is a tubular neighborhood of $\mathfrak{i}_0(W)$ and $N \cap X \times \{1\}$ is a tubular neighborhood of $\mathfrak{i}_1(W)$. We can then apply the construction of J to this N and the embedding of $W \times I$ to produce a map $X \times I \to Th(\gamma_k)$. This restricts to the maps constructed for W under \mathfrak{i}_0 and \mathfrak{i}_1 , respectively. Thus, the two maps are homotopic.

Lemma 3.43. L-equivalent submanifolds give homotopic maps under J.

Proof sketch. Let W_0 , W_1 be L-equivalent. So there is some submanifold $B \subseteq S^{n+k} \times I$ with $B \cap (S^{n+k} \times \{i\}) = W_i$. Let T be a tubular neighborhood of B. Then $T \cap (S^{n+k} \times \{i\})$ is a tubular neighborhood of W_i . We get a map

$$S^{n+k} \times I \to Th(\gamma_k)$$

that is a homotopy.

Now claim that J is a group homomorphism.

Given $W,W'\subseteq S^{n+k}$, and tubular neighborhoods N,N' of W and W' inside S^{n+k} , $N\sqcup N'$ is a tubular neighborhood of $W\sqcup W'$. Applying J to W and W', we get two maps $f\colon W\to Gr_k$ and $f'\colon W'\to Gr_k$. The group operation on $L_n(S^{n+k})$ is given by disjoint union, so if we collapse everything outside of a tubular neighborhood of $W\sqcup W'$ inside S^{n+k} , we can realize the disjoint union of f with f' as

$$S^{n+k} \to S^{n+k} \vee S^{n+k} \xrightarrow{f \vee f'} Th(\gamma_k) \vee Th(\gamma_k) \xrightarrow{\nabla} Th(\gamma_k).$$

This is exactly the same as the group operation on $[S^{n+k}, Th(\gamma_k)]$. Hence, J is a group homomorphism.

This next lemma shows that J is injective.

Lemma 3.44. Let $f, f': X \to Th(\gamma_k)$. If f is homotopic to f' and both are transverse to Gr_k , then $f^{-1}(Gr_k)$ is L-equivalent to $(f')^{-1}(Gr_k)$.

Proof sketch. Let $F: X \times I \to Th(\gamma_k)$ be a homotopy. Then $F^{-1}(Gr_k)$ is a submanifold, and gives the desired L-equivalence.

This lemma actually gives us something more: an inverse to J sending $f\colon S^{n+k}\to Th(\gamma_k)$ to $f^{-1}(Gr_k)$. Hence, we have shown the following.

Lemma 3.45.
$$L_n(S^{n+k}) \cong \pi_{n+k}(Th(\gamma_k)).$$

Modulo checking some details, this in fact shows Theorem 3.28.

Characteristic Numbers and Doundaries

Chollar, 3, 6 (Corollar, to Theorem 7.28). If M is an penalifold all of whose harageristic numbers are zero, they M is the Journary of an (n+1) manifold

Probl. Suppose that we have an inmanifold M and an embedding $M \hookrightarrow p^{n+1}$ (recall k > n+2, so such an embedding exists). Under the isomorphism $L_n(S^{n-k}) \cong \pi_{n+1}(Ih(\gamma_k))$ we have a map $f: S^n \xrightarrow{k} \to Tb(\gamma_k)$ with $M = f^{-1}(Gr_k)$. Thus, f restricts to a map $\hat{f}: M \to Gr_k$.