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To show that 7t (Th(yy)) = 0, it now suffices to show that i.: 71 (Grix_1) —
71 (Gry) is surjective, so the image of 711 (Gry_1) inside 711 (Gry) is all of
Z./2. But this is induced b the map O(k — 1) — O(k) given by

O(k—1) ——— 0O(k)

A 0
v )

This is surjective on connected components, which implies that the in-
duced map m1BO(k — 1) — 71 BO(k) is surjective. Finally, we know that
Gr; = BO(i), so 71 (Gri—1) — m1(Gry) is surjective. Hence,

71 (Th(y)) =0,

so the Hurewicz theorem applies and we may conclude that 7; (Th(yy)) =
0fori<k.

(2) Now we need to show that i, is an isomorphism. On cohomology, i* is
an isomorphism HY(Gry,1) — H*(Gry) up to degree k + 1. Hence, for
cohomology of the Thom bundles, i* is an isomorphism for j < 2k + 2:

i*: H(Th(yk1)) = H(Th(yk @ e')).

Hence, Proposition 3.27 applies and therefore i, is an isomorphism up to
dimension 2k. In particular i, is an isomorphism on homotopy groups
Tkt (—) forn < k. O

Theorem 3.28 (Thom). Fork > n + 2,

MNn = 1k (Thvy))

Notice that the right-hand-side of this isomorphism is well-defined by
Lemma 3.25 for k > n.

3.4 L-equivalence and Transversality

To prove Theorem 3.28, we need a lot of results about smooth manifolds. Since
the point of this class isn’t to learn about smooth manifolds, we will cite a lot of
these things without proof. Most of it comes out of Thom's original paper.

Remark 3.29. We will abuse notation and abbreviate Gry := Gri(RVN) for
N > 2k + 5. In the cases we care about in the lemmas below, we need a compact
manifold; Gry (RN) is compact. Moreover, maps here are well-defined and
independent of N when N is sufficiently large. Likewise, write vy := yxN.
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Definition 3.30. Let f: X™ — MP be a C™ map from an n-manifold to a p-
manifold. Let NP~9 C M be a submanifold of M of codimension q. Fory € N,
TyM D TyN. Letx € f~1(y). We say that f is'transverse to N at y if

_ TyM
s TX = TyM o Vg

is an epimorphism. .« ¢ 77/ LT L ot pae
f is transverse to N if this holds for all x, y.

Notice that if f~! (y) = @, transversality automatically holds.

Example 3.31. Let X = R, M = R?,and N = R.

M

Aty, TeX — T M/TUN is transverse.

0 .
Aty/, X = T‘J’M/TH,N is not transverse.

Definition 3.32. A homotopy X x [0, 1] =Y is anlisotopy if for all t € [0, 1], the
map X x {t} — Y is smooth.

Definition 3.33. Let N be a submanifold of a manifold M of codimension q. A
tubular neighborhood of N in M is an embedding of a g-disk bundle on N into
M such that N is the zero section.

Theorem 3.34. Assume that
e X is a smooth n-manifold;
e M is a p-manifold;

e N C M is a paracompact submanifold of M of codimension q;

T is a tubular neighborhood of N in M;

o f: X = MisaC" map;

y € TyMandx € f=1(Y).
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Then we may conclude the following.

(a) Iff: X — M is transverse to N, then f—1(N) is a C™ submanifold of X of
codimension q.

(b) There is a homeomorphism A of T arbitrarily close to the identity and
equal to the identity on 0T, such that A o f is transverse to N.

(c) If f: X = M is transverse to N, then N is compact. Then for any A (as in
(b)) sufficiently close to the identity, A o f is transverse to N and f~1(N),
(Aof)~T(N) are isotopic in X.

Remark 3.35. Theorem 3.34(b) says that we may always wiggle the tubular
neighborhood a little bit so that, after with composing with f, it is transverse
to N. Theorem 3.34(c) implies that f~1(N) and (A o f)~1(N) are isomorphic.
Similar results hold for manifolds M with boundary.

Now let’s relate this to cobordism.

Theorem 3.36. Let f,g: X — M be C™ maps where m > n, both transverse to
a submanifold N of codimension q. If f and g are homotopic, then f~1(N) is
cobordant to g~ (N).

Proof. We may assume that this homotopy is smooth. So consider F: X x I — M.
By Theorem 3.34(b) there is some A such that A o F is transverse to N. By
Theorem 3.34(c), f~T(N) is isotopic to (A o F\XX{O})_1 (N). In particular, this
implies that f~1(N) is cobordant to (A o F|X><{O})_] (N). Likewise, g~ (N) is
cobordant to (A o HXX{”)*1 (N).

Now by Theorem 3.34(a), (A o F)~1(N) is a submanifold of X x I with bound-

ary
(A0 Flxxg013) " (N) = (Ao Flxuio1) ™ (N)U(AoFlxyo)  (N)

Composing with the cobordisms in the first paragraph, we obtain a cobordism
between f~'(N) and g~ ' (N). O

This motivates the following definition.

Definition 3.37. Let W, W; be two k-submanifolds of an n-manifold X. Then
we say that W, and Wy are L-equivalent in X if there exists a manifold Y with
boundary Wy LI W7 and an embedding f: Y — X X I such that

X x{0) =Wy and f 1 (X x {1}) = W;.

We write Ly (X) for the set of L-equivalence classes of k-submanifolds.

44



Lecture 16: L-equivalence and Transversality 04 October 2017

Example 3.38. If Wy, = S' US! and W; = S! inside the plane X, but Wy N
Wy # @, then there’s no embedded cobordism between them. But there is an
embedded pair of pants linking them in X x 1.

Lemma 3.39. If n > 2k +2, then Ly (S™) is an abelian group. The map ¢: Ly (S™) —
~ My taking the L-equivalence class of W to the cobordism class of W is an iso-
% morphism.

W%/W‘” lhpes p- 7 St

Proof. For n > 2k 4 2, any two embedded k-submanifolds can be homotoped
(and indeed, isotoped) to be disjoint. Thus, disjoint union is a well-defined
operation on Ly (S™).

We say that [@)] is the identity in Ly (S™).

Lk (S™) has inverses given by the horseshoe L-equivalence: Therefore, 2[W] =
0, so [W] = —[W]. Hence Ly (S™) is a group.

Now to show that the map ¢: Ly (S™) — Ny is an isomorphism, it suffices

) to check that this is a bijection since these have the same group structure.
W To check surjectivity, assume [W] € 91y. Then there is an embedding

W
W

uw
) (Wﬁ”(w W R2kH2 <y gn

(

(recall that we are assuming that n > 2k + 2 Remark 3.29). So [W] is a class in
Li(S™).

To check injectivity, consider an embedded submanifold W — S™ such that
[W] = 0 in 9%.. Write W = 0B for a (k + 1)-manifold B. Embed B into S™ via

f: B R2HFD gy g1,

Use Urysohn’s Lemma to pick a function ¢: B — I. Then ¢~ 1(0) =W, and
¢~ 1(1) = @. Then (f, $): B — S™ x [ witnesses an L-equivalence between W
and @. Hence, [W] = 0in Ly (S™). O

Construction 3.40. For X an n-manifold, we define a map J: L,,_«(X) —
[X, Th(yy )] by first choosing an embedding X — RY. Then for each w € W, we
have a normal bundle at w inside X: 1 L spuiebes ch

Ny W = (TwW) Lt N TwX.

Then N,,W is a k-plane in RY, 5o an element of Gry = Gri(RN) (see Re-
mark 3.29). This gives a map f: W — Gry.

Now let N be a tubular neighborhood of W in X; think of it as a pullback of
the disk bundle of yi: N = f*(D(yy)). Then f induces a map f: Th(f*(vi)) —
Th(yy). So define

f': X — Th(yy)

Remark 3.29. We will abuse notation and abbreviate Gry = Gri(RN) for
N > 2k +5. In the cases we care about in the lemmas below, we need a compact
manifold; Gri(RVN) is compact. Moreover, maps here are well-defined and
independent of N when N is sufficiently large. Likewise, write yy := ykN-
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by
f’(x):{* ifx ¢N,

f(x) ifx e N.

The image of W under J is this map f’: X — Th(yy).
Now, Gri embeds into Th(yy ) as the zero section. So

(f)71(Gry) = W.

Why do we find this construction useful? Let X = S™**. Then we have a
map
Ln(sn+k) — Ttk Th(vi).

To prove Theorem 3.28, we want to show that this is an isomorphism of groups.
Then we may apply Lemma 3.39 to conclude that

My = Ln (S™TF) = 7, 1 Thivy)

Remark 3.41. When might we expect [X, Y] to be a group?
If we have f, g: X — Y with X cogrouplike, meaning that it has a nice map
p: X = XV X, then we might define the product of f and g by

X2 xvx e yyy foldy

For example, the pinch map S™ — S™ V S™ satisfies this property.
Alternatively, if we had a retraction map r: Y X Y — Y V'Y, then we might
define the product of f and g by

fold

.
X2 X 9y vy Sy y Pl y

Classically, the conditions for this second approach to work were answered
in cohemeotopy-theory, which studies homotopy classes of maps into spheres
instead of out of spheres. This theory is now pretty much defunct.

Lemma 3.42. ] is independent of the choice of X — RW.

Proof. If ip,i1: X — RN we may assume for large enough N that iy (X) N
11 (X) = @. Moreover, we may assume that there is an embedding X x I — RN
that is iy on X x {0} and iy on X x {1}. Finally, we may assume that X x I is
embedded orthogonally to its boundary.

Let W be some k-submanifold of X. The embedding above restricts to an
embedding of W x I — RN A tubular neighborhood N of W x I under this
embedding is orthogonal to the boundary of X x I by our assumption; thus
N N X x {0} is a tubular neighborhood of ip(W) and N N X x {1} is a tubular
neighborhood of i1 (W). We can then apply the construction of ] to this N and
the embedding of W X I to produce a map X x I — Th(yy). This restricts to the
maps constructed for W under iy and iy, respectively. Thus, the two maps are
homotopic. O
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Lemma 3.43. L-equivalent submanifolds give homotopic maps under J.

Proof sketch. Let Wy, Wy be L-equivalent. So there is some submanifold B C
Stk x Twith BN (S™% x {i}) = W;. Let T be a tubular neighborhood of B.
Then TN (S™+¥ x {i}) is a tubular neighborhood of W;. We get a map

SR T — Th(vy)

that is a homotopy. O

Now claim that | is a group homomorphism.

Given W, W' C S"*+¥ and tubular neighborhoods N, N’ of W and W’ inside
S™+k N U N’ is a tubular neighborhood of W LI W’. Applying J to W and W',
we get two maps f: W — Gry and f': W — Gry. The group operation on
Ln (S™*¥) is given by disjoint union, so if we collapse everything outside of a
tubular neighborhood of W LI W' inside S™**, we can realize the disjoint union
of f with " as

gtk gty gnk VI o o0 ) Thiye) 5 Thive).

This is exactly the same as the group operation on [S™*¥, Th(y})]. Hence, ] is a
group homomorphism.
This next lemma shows that ] is injective.

Lemma 3.44. Let f, f': X — Th(yy). If f is homotopic to f' and both are trans-
verse to Gry, then f— ' (Gry) is L-equivalent to (')~ (Gry).

Proof sketch. Let F: X x I — Th(yy) be a homotopy. Then F~1(Gry) is a sub-
manifold, and gives the desired L-equivalence. O

This lemma actually gives us something more: an inverse to ] sending
f: SMHK 5 Th(vy) to f~1(Gryk). Hence, we have shown the following.

Lemma 3.45. L, (S™+%) = 7, (Th(vy)).
Modulo checking some details, this in fact shows Theorem 3.28.

7

(I

(Zcte i€ NumBifs and Bounderdes

: b (hrollgpfto fheq 281t MAS an peffighitold gl M hose
agleglsticlumbpfs arefzergh s thefoupdary g an (g 1 fnanyd.
a

Prefl Sugbogfthat wfbdve a nifgJLM and gl erglleddify W— £
(r¥call J n + 2, ghfuch gffombed gy exists der tjfe omgfpifs
Ln(S = 1 ffTh(vi )ffwe havffa map < — Tg#yk) wi f
=1 (®F). Thus, festricts oamap f: M — Grg.

7

47



