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3.3 The proof of the classification theorem

The rest of this chapter is dedicated to the proof of Theorem 3.13 and
generalizing it beyond to compact spaces.

The proof of each step proceeds by first proving the necessary statements
for trivializable bundles, and then by using the fact that there is a finite cover
by opens over which the bundle is trivial. The main technical tool for doing
this gluing is a partition of unity.

Definition 3.18. A partition of unity for X subordinate to a finite open
cover {Ui}ni=1 is n functions ωi:X I such that for every x → X,

n∑

i=1

ωi(x) = 1,

and such that the support of each ωi is contained inside Ui.

For a finite cover these always exist. (For a more in-depth discussion of
partitions of unity, see for example [Hat, Appendix to Chapter 1] or [AB06,
Section 2.19].)

Step 1: ω is well-defined

The function ε is clearly well-defined as a function

Hom(B,Gn) Vectn(B),

from the set of maps B Gn to the isomorphism classes of n-bundles. The
question of well-definedness therefore hangs on whether or not homotopic
maps produce isomorphic vector bundles. This is implied by the following
more general statement:

Lemma 3.19. Let X be compact. Let p:E X ↑ I be a n-dimensional
vector bundle. Let f :X I be any map, and write Xf for its graph
inside X ↑ I. Then the isomorphism type of the restriction of E to Xf is
independent of the choice of f . In particular, letting f be the constant map
at 0 or 1 it follows that the restrictions of E to X ↑ {0} and X ↑ {1} are
isomorphic.

Proof. For any f :X I, write Ef for the restriction of E to Xf . We will
show that Ef is isomorphic to E0, the case where f is the constant map at
0.
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To begin, consider the case of a trivial bundle (X ↑ I)↑ F . The bundle
Ef is isomorphic to the space

{(x, t, y) → X ↑ I ↑ F | t = f(x)} .

There is an explicit isomorphism Ef E0 by

(x, f(x), y) (x, 0, y).

We generalize this approach to a somewhat stronger statement. Let
f, f →:X I be two functions, and suppose that

{
x → X

∣∣ f(x) ↓= f →(x)
}
↔ U

for some open U ↔ X such that U ↑ I in the trivialization cover of p. In
other words, f and f → are the same except inside a patch over which p is
trivial. Then we can define an isomorphism g:Ef Ef → by

g(e) =

{
e if p(e) /→ U ↑ I

ω↑1(x, f →(x), y) if ω(e) = (x, f(x), y) → U ↑ I ↑ F

where ω: p↑1(U ↑ I) U ↑ I ↑F is the trivialization of p over U ↑ I. This
is continuous because the points where f and f → are distinct are contained
inside U ↑ I.

To glue these into a global isomorphism, he key observation is that the
trivialization cover contains a subcover of sets of the form {Uω ↑ I}ω↓A,
where the Uω cover X. Using the compactness of X we can then reduce
to working within each of these sets separately, which is exactly the special
case handled above.

To show that we can always trivialize over sets of the form U ↑I we first
need the following observation: if E is trivializable over U↑[a, b] and U↑[b, c]
then it is trivalizable over [a, c]. If the two trivialization isomorphisms agree
on U ↑ {b}, we are done since we can just glue them together. Otherwise,
given ω1:E|U↔[a,b] U ↑ [a, b]↑F and ω2:E|U↔[b,c] U ↑ [b, c]↑F ↑F ,

there is an induced automorphism h:U ↑ {b}↑ F U ↑ {b}↑ F given by
ω1ω

↑1
2 . Extend this to an automorphism h:U ↑ [b, c]↑ F U ↑ [b, c]↑ F

by ignoring the [b, c]-coordinate. This gives an alternate trivialization h ↗
ω:E|U↔[b,c] U ↑ [b, c]↑F . This agrees with ω1 on U ↑ {b}, and thus the
earlier case applies.

Using this we show that the trivialization cover of p contains a subcover
{Uω ↑ I}ω↓A where {Uω}ω↓A is a cover of X. Indeed, for any (x, t) → X ↑ I
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there exists an open subset Uxt↑Vxt over which E is trivializable. Fixing x,
since I is compact there exist 0 = t0 < · · · < tn = 1 such that [ti↑1, ti] ↔ Vxt→i

for some t→i → [0, 1]. Define Ux
def
=

⋂n
i=1 Uxt→i

, and note that E is trivializable
over Ux ↑ [ti↑1, ti] for all i. Using the above observation, we conclude that
U must be trivializable over Ux ↑ I, as desired.

Since X is compact, {Uω}ω↓A contains a finite subcover {Ui}ni=1. Since
this is finite, it has associated with it a subordinate partition of unity
{ωi}ni=1.

Define fi:X I by

fi(x) = f(x)
n∑

j=i+1

ωj(x), (3.20)

so that f0 = f and fn = 0. Thus to prove the lemma it su!ces to prove that
Efi↑1

↘= Efi for all i ≃ 1; this is exactly the special case considered above,
since fi↑1 and fi di”er only inside the support of ωi.

Corollary 3.21. If f, g:X Y are homotopic and E Y is a vector
bundle over Y then f↗E and g↗E are isomorphic.

Proof. Let h:X ↑ I Y from f to g. Let ct:X I be the constant
function at t. By Lemma 3.19, the restrictions of h↗E to the graph of
ct is independent of t. By definition, f↗E (resp. g↗E) is isomorphic to the
restriction of h↗E toXc0 (resp. Xc1). Since these restrictions are isomorphic,
f↗E ↘= g↗E.

This completes Step 1 of the proof.

Step 2: Rephrasing as fiberwise-injective maps

In order to analyze ε an alternate way of looking at vector bundles will be
useful. We will need to be able to both construct an arbitrary bundle as a
pullback of the universal bundle, and also show that, up to homotopy, this
is unique. The goal is to construct a representation of vector bundles which
is easier to compute with than the one we currently have. The key points
here will be that fiberwise-injective maps E R↘ will correspond exactly
to representations of E as a pullback of the universal bundle. Moreover,
homotopic maps will correspond to homotopic representations. Given this
representation, checking that ε is surjective will correspond to a represen-
tation as a fiberwise-injective map existing, and checking that ε is injective
will correspond to checking that all fiberwise-injective maps are appropri-
ately homotopic. In this step we develop the details of this representation.
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Definition 3.22. Let p:E B be a vector bundle. A fiberwise-injective
map E R↘ is a map which is a linear injection when restricted to p↑1(b)
for any b → B.

Two fiberwise injections g, g→:E R↘ are homotopic through fiberwise-
injective maps if there exists a homotopy G:E ↑ I R↘ such that for all
t → I, G(·, t) is fiberwise-injective.
Example 3.23. There is a fiberwise-injective map proj: ϑn R↘ given by
taking the composition

ϑn ↔ Gn ↑R↘ proj2
R↘.

Example 3.24. Suppose that B is compact and let p:E B be a rank-
n fiber bundle. We can construct a fiberwise-injective map E R↘ as
follows. Let {Ui}mi=1 be a finite subcover of the trivialization cover, and let
{ωi}mi=1 be a subordinate partition of unity. Over each Ui we can define a
fiberwise-injective map

g̃i: p
↑1(Ui)

εi
Ui ↑Rn pr2

Rn

and then extend it to a map gi:E Rn (which will not be fiberwise-
injective) by setting

gi(e) =

{
ωi(p(e))g̃i(e) if e → Ui

0 otherwise.

To assemble all of these to a fiberwise-injective map g:E R↘, we simply
define

g(e) = (g1(e), g2(e), . . . , gm(e)) → (Rn)m ↔ R↘.

Thus we see that all bundles can be represented using fiberwise-injective
maps. In fact, fiberwise injections represent more than just the bundle data:
the set of fiberwise injections is in bijection with the representations of a
bundle as a pullback of the universal bundle.

Proposition 3.25. Let proj be the fiberwise-injective map ϑn R↘ de-
fined in Example 3.23. Let p:E B be a vector bundle. There is a
bijection
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sending the square on the left to proj ↗ f →.

Proof. The map proj ↗ f → is fiberwise-injective, since the restriction of f → to
any fiber is an isomorphism, and the composition of an isomorphism and
an injection is an injection. On the other hand, suppose we are given a
fiberwise-injective map g:E R↘. Define f :B Gn and g→:E ϑn by

f(b) = g(p↑1(p(e))) and g→(e) = (f(p(e)), g(e)).

The map g factors as proj ↗ g→. Thus we obtain a commutative square

E ϑn

B Gn.

g→

pn

f

p

To check that it’s a pullback square, it su!ces to construct an isomorphism
between E and the fiber product (see Example 3.3)

B ↑Gn ϑn = {(b, (ϖ, x)) → B ↑ ϑn ↔ B ↑ (Gn ↑R↘) | f(b) = ϖ}

compatible with the projection maps; this is the map

e (p(e), (f ↗ p(e), g(e))) .

This is a fiberwise isomorphism because g is fiberwise-injective and the fibers
are finite-dimensional vector spaces, and is therefore a bundle isomorphism,
as desired.

This gives functions in both directions which are mutually inverse, so it
is a bijection, as desired.

Moreover, if two fiberwise-injective maps are homotopic through fiberwise-
injective maps, the bottom maps in the corresponding pullback squares are
also homotopic:

Lemma 3.26. Let G:E ↑ I R↘ be a homotopy through fiberwise-
injective maps. Then the maps B Gn corresponding to G(·, 0) and G(·, 1)
are homotopic.

Proof. Consider the map F :B↑I Gn given by F (b, t) = G(p↑1(b)↑{t}).
By definition, G(p↑1(b) ↑ {t}) is an n-dimensional subspace of R↘, and
thus gives a point in Gn. This is continuous because G is, and thus gives a
homotopy as desired.
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Thus to show that there is exactly one homotopy class of maps B Gn

corresponding to a vector bundle, it su!ces to show that all fiberwise-
injective maps are homotopic through fiberwise-injective maps.

Lemma 3.27. Let p:E B be a vector bundle. Any two fiberwise-injective
maps E R↘ are homotopic through fiberwise-injective maps.

Proof. Let g0, g1:E B be the two fiberwise-injective maps. Whenever
g0(e) ↓= 0 it must also be the case that g1(e) ↓= 0, since gi can only map the
0 in each fiber to 0 (since the restriction to each fiber is a linear injection).

It is tempting to define G by setting G(e, t) = g0(e)t + g1(e)(1 ⇐ t).
However, in the case when g0(e), g1(e) ↓= 0 but g1(e) = ϱg0(e) for some
negative scalar ϱ, this will have a problem: when t = ⇐ϱ/(1 ⇐ ϱ) this will
be 0, and G(⇐, t) will not be injective on the fiber containing e. Luckily,
this is the only thing that can go wrong, and thus this formula shows that
g0 and g1 are homotopic through fiberwise injections if it is never the case
that g0(e) = ϱg1(e) for any e with g0(e) ↓= 0.

Moreover, the relation “homotopic through fiberwise-injective maps” is
an equivalence relation, so it su!ces to construct a chain of maps which are
each homotopic to each other through fiberwise-injective maps.

Consider the injection L0:R↘ R↘ defined by

(a1, a2, a3, . . .) (a1, 0, a2, 0, a3, . . .).

Both g0 and L0↗g0 are fiberwise-injective, and there does not exist an e such
that g0(e) = ϱL0(g0(e)) for a negative ϱ. Thus the above formula shows that
g0 and L0 ↗ g0 are homotopic through fiberwise-injective maps. Analogously
define L1:R↘ R↘ to send (a1, a2, . . .) to (0, a1, 0, a2, 0, . . .), so that
g1 and L1 ↗ g1 are homotopic through fiberwise-injective maps. The maps
L0 ↗ g0 and L1 ↗ g1 are homotopic through fiberwise-injective maps, since
they never share any nonzero coordinates Thus g0 and g1 are homotopic
through fiberwise-injective maps, as desired.

Step 3: Checking bijectivity

With the above results, we can now prove that ε is a bijection.

Proof that ε is a bijection. First, consider surjectivity. Given a rank-n vec-
tor bundle p:E B, it can be represented as a pullback of the universal
bundle if and only if (by Proposition 3.25) the set of fiberwise injections
E R↘ is nonempty. By Example 3.24, these always exist, so ε is surjec-
tive.
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Now consider injectivity. Suppose that ε([f ]) = ε([f →]), so that there
exists an isomorphism ς: f↗(ϑn) (f →)↗(ϑn). In particular, this means
that there exists a diagram

ϑn f↗ϑn (f →)↗ϑn ϑn

Gn B Gn
f f →

ω

In this diagram, both the left square and the right square are pullback
squares, and thus correspond to fiberwise injections f↗ϑn R↘ and
(f →)↗ϑn R↘. Since all fiberwise-injective maps are homotopic through
fiberwise-injective maps, (by Lemma 3.27) applying Lemma 3.26 shows that
f and f → are homotopic. Thus [f ] = [f →], as desired.

3.4 Beyond compactness

Theorem 3.13 is beautiful, but somewhat unsatisfying. Firstly, although
compact spaces arise often, we often want to work with more general spaces.
Moreover, the space Gn is itself not compact, and so it appears that we
are classifying all vector bundles on compact spaces using a structure on a
noncompact space (which is aesthetically unsatisfying). It turns out that
the above proof actually works in a much wider class of spaces, which will
in particular include all CW-complexes (and thus also Gn).

In order to do this, let us inspect the proof above to see where compact-
ness was used:

(a) In the proof of Lemma 3.19 it is used to ensure that the partition of
unity {ωi}ni=1 exists, in order to define the maps fi (see (3.20)).

(b) In the same proof it is also used because the final isomorphism is a
composition of m isomorphisms Efi↑1 Efi .

(c) In Example 3.24 it is used to ensure that the partition of unity {ωi}mi=1
exists, in order to extend the maps g̃i continuously to all of E.

(d) The finiteness of m is also used in order to have (Rn)m ↔ R↘. This
portion of the proof will still work if m is countably infinite, although
not if it is uncountably infinite, since almost all of the coordinates in
the function we construct will be 0.
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