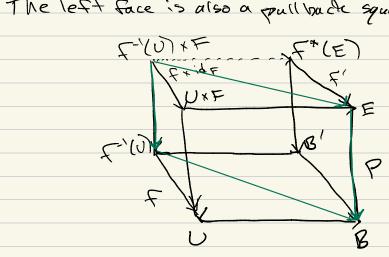
Def 3.6. P: E > B liber bundle w/fiber F f: B' > B any map The pullback of palong f is the fober bundle given by the pull back square B'XBE ->E P'  $B' \xrightarrow{\xi} B$ We write this bundle as  $f^*p: f^*E \to B'$ . It has fiber F. Lenna 3.7: F\*p is well-defined. IL: t-10) KE (F\*(E) Let 21 be the toivialization coves of P.

Let 21 be the trivialization cover of p. UTS: 3 an open cover s.t. &U & 21,
there is a gallback square " p is trivial over 0" UXF -> E 20%1 Claim: {f'(U): UE UZ is an appropriate oper cout.
This is well-defined, since fis confirmous. For each UE DL, the solid black diagram commutes. P is a fiber bundle => Front face is a pullback square.
The left face is also a pullback square.



So the green rectangle is a pullback square.

Made with Goodnotes

Since the right face is a pull make square by definition of ft E, the partial inverse property gives us that the back face is a p.b. square.

Def 3.9: For i=1,2, let p:: E; > B

be a fiber burdle with fiber Fi.

The product burdle E, xB Ez > B is

the diagonal map in the p. b. square

 $\begin{array}{cccc}
E_1 & \times_B E_2 & \longrightarrow & E_1 \\
\downarrow & & \downarrow & P_2 \\
E_2 & & P_1 & & B
\end{array}$ 

This is a fiber bundle with fiber FixFz)

When produce is also a vector bundles,

the grad bundle is also a vector bundle w/ fiber

To Fz. We call produce whitney sum.

Made with Goodnotes

Ex 3.8:

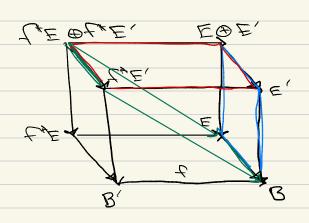
Lemma 3,10: If p, and p2 arc iso morphic bundles over B and F: B' >> B is any map, then then

from B1. if p is any bundle over 13 pxp, and pxp2 are isomorphise. Lenna 3.11: Let p: E > B and p': E' > B

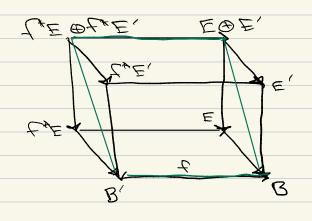
be vector bundles and let f: B' > 13 ty(EDE) & t\*(E) Ot\*(E) M: (onsider the commutative calle

The front, bottom, left, and right are pullbacks by definition.

Left + boffom p.b. => composition p.b.



Right p.b. => top p.b. by inverse prop.



Top & front p.b. => composition p.b.

We just showed f\* E & F\* E' also works. So by the wiversal grop. of pull back squares, L\*(E@E) ≈ C\*(E) Ø +\*(E-) Ex 3.12: The tangent bundle to any smooth monifold is a pullback of a map from the transfold into a Gross marriar. Let M be a smooth n-nonifold and let T: M LO TEN be a smooth embedding. Define &: M=1 C, (150) \* Ho Sineas subspace of IRN parallel to ?

(the tangent place to Mat x) Now

5\* You = {(x,w,v) EMx You: v is in the target space to M at F (x) 3.

This composition boks like

B, Ł B
EOE,

We know f\* (EDE) fits in the top left corner, by LeAnition of f\*.

8 me = {(w,v): w & G, (R), v & W & TER } gv = gvoo F\*E=B'+BE > J\* YND TM. Thin 3.13: (Classification than for vector bundles over compact surfaces) Sps B is compact. Let Vect, (B) be the set of isomorphism classes of n-din'l vector bundles over B. Write IB, On J for the set of homotopy classes of maps B & On.

Then the map P:[B,G,] = Vect, (B)

is a bijection. Cor 3.14: If X and Y are homotopy equivalent Finite CW compleres then Vect, (x) and vect, (y) are in bijertion

all bundles over X are frivial.

In particular, if X is contractible

Made with Goodnotes

Def 3.15- We say that a honotopy class & E[B, G,]

classifies P. E > B

for any fed, E = f\* 8, Any such choice of Fig a classifying map for E. Ex 3.16: Consider  $\oplus$ :  $\mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$ induced by  $(a_1, a_2, \dots) \oplus (b_1, b_2, \dots) = (a_1, b_1, a_2, b_2 \dots)$ A point (vyv') & Gm x Gn is a pair of subspaces of IRM. → V ×V' is a subspace of 1200 × 1200. Write O(vxv') = vav'. This is an n+m-place in 1200, so it lives in Gman.

This induces  $\Theta$ :  $G_{m \times G_{n}} \to G_{m \times n}$ Let  $f: B \to G_{n}$  and  $f': B \to G_{n}$  be classifying mays

For F = Md = F', resp.

Longider  $f_{\Theta}: B \to B \times B \xrightarrow{f \times f'} G_{m \times G_{n}} \xrightarrow{\Theta} G_{m + n}$ .

Then Fox = EDE

Downorsons classifies Whitney sums.