1. Memorize the following formulas:

$$\begin{array}{ll} \frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx} & \frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx} \\ \frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx} & \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \\ \frac{d}{dx}\sin u = \cos u\frac{du}{dx} & \frac{d}{dx}\cos u = -\sin u\frac{du}{dx} \\ \frac{d}{dx}\tan u = \sec^2 u\frac{du}{dx} & \frac{d}{dx}\cot u = -\csc^2 u\frac{du}{dx} \\ \frac{d}{dx}\sec u = \sec u\tan u\frac{du}{dx} & \frac{d}{dx}\csc u = -\csc u\cot u\frac{du}{dx} \\ \frac{d}{dx}e^u = e^u\frac{du}{dx} & \frac{d}{dx}a^u = a^u\ln a\frac{du}{dx} \\ \frac{d}{dx}(\sin^{-1}u) = \frac{1}{\sqrt{1-u^2}}\frac{du}{dx} & \frac{d}{dx}(\cos^{-1}u) = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx} \\ \frac{d}{dx}(\ln|u|) = \frac{1}{u}\frac{du}{dx} & \frac{d}{dx}(\log_a|u|) = \frac{1}{u\ln a}\frac{du}{dx} \end{array}$$

- 2. Logarithmic differentiation. (Find $\frac{dy}{dx}$ for $y=x^x$, $y=x^{\sin x}$.)
- 3. An important fact: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$. (Prove this fact from the definition of the number e, i.e., $\lim_{h\to 0} \frac{e^h-1}{h} = 1$. Review the class notes.)
- 4. Practice problems: Find the limits (1) $\left(1+\frac{3}{n}\right)^n$, (2) $\left(1+\frac{1}{n}\right)^{2n}$, (3) $\left(\frac{n}{n+1}\right)^n$.
- 5. Write down the definitions of the six hyperbolic functions.
- 6. Plot the graphs of the functions $y = \sinh x$, $y = \cosh x$, $y = \tanh x$.
- 7. Prove the formulas: $\frac{d}{dx}(\sinh x) = \cosh x$, $\frac{d}{dx}(\cosh x) = \sinh x$, $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$.
- 8. Solve the equations: $\sinh x = 3$, $\cosh x = 5$, $\tanh x = \frac{1}{2}$.
- 9. Related rates: Review class notes and work out the homework problems.
- 10. Linear approximation: $f(x) \approx f(a) + f'(a)(x-a)$ for x near a.
- 11. Define the y-differential. Find the y-differentials for $y = e^{\sin x}$, $y = \sec(x^2 + 3x)$.
- 12. Work out those seven assigned problems from Review Exercises pp. 268-270.
- 13. Review class notes for absolute maximum, absolute minimum, extreme values, local maximum, local minimum.
- 14. State the Extreme Value Theorem.
- 15. Define critical numbers. (Find the critical numbers of the functions given by: (1) $f(x) = x^3 + x^2 3x$, (2) $f(x) = x^{1/3}(x+1)$.)
- 16. Fermat's theorem: If f has a local maximum or minimum at c, then c is a critical number of f.
- 17. Review the Closed Interval Method.
- 18. State Rolle's theorem and the Mean Value Theorem.
- 19. Increasing/Decreasing Test.
- 20. The First Derivative Test.
- 21. Explain concavity and inflection point.

- 22. Explain the Concavity Test.
- 23. The Second Derivative Test.
- 24. What are indeterminate forms? How many of them are there?
- 25. Explain L'Hospital's rule and try the following typical examples:
 - (1) $\lim_{x\to 0} \frac{\sin x}{e^x 1}$, (2) $\lim_{x\to \infty} \frac{\ln x}{\sqrt{x}}$, (3) $\lim_{x\to 0} x \ln x$, (4) $\lim_{x\to \pi/2} (\sec x \tan x)$,
 - (5) $\lim_{x\to 0} x^{2x}$, (6) $\lim_{x\to 0} |\ln x|^x$, (7) $\lim_{x\to 0} (\cos x)^{1/x}$.

MATH 1550

Review for Exam (4)

Fall 2001

- 1. Review the guidelines for curve sketching and do the homework problems in §4.5.
- 2. Review optimization technique and do the homework problems in §4.7.
- 3. Study Newton's method.
- 4. Define antiderivative and do homework problems from §4.10.
- 5. Do #21, #27, and #69 from Chapter 4 Review Exercises.
- 6. State the definition of area as given in the Definition on page 372.
- 7. Use this definition to find the area of the triangle bounded by $y = \frac{h}{b}x$, x = b, and the x-axis. Here b and h are positive numbers.
- 8. Describe a partition, a set of evaluation points, and the corresponding Riemann sum.
- 9. Define the definite integral $\int_a^b f(x) dx$.
- 10. Use this definition to find $\int_0^2 x^3 dx$. (Hint: $\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$.)
- 11. Do #11, #15, #17, #31, #32, #36 from $\S 5.2$.
- 12. State both parts of the Fundamental Theorem of Calculus.
- 13. Do all homework problems and in addition $\#32, \, \#38$ from §5.3.
- 14. Define indefinite integral $\int f(x) dx$.
- 15. Memorize the indefinite integral formulas in the handout.
- 16. Do all homework problems from §5.4.