1. Define the invertibility of a square matrix.

2. **Theorem**: An $n \times n$ matrix A is invertible if and only if $\text{rank}(A) = n$.

3. How to check when a matrix A is invertible and, if so, how to find its inverse?
 (Apply the Gauss-Jordan elimination to the matrix $[A | I]$)

4. If A is an invertible matrix, then the solution of $A\vec{x} = \vec{b}$ is given by $\vec{x} = A^{-1}\vec{b}$.

5. State the definition of the determinant of a matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$. Use the definition to find the determinant of a 2×2 matrix.

6. If A is a triangular matrix, what is the value of its determinant?

7. How to use the row operations to evaluate the determinant?

8. **Theorem**: A square matrix A is invertible if and only if $\det(A) \neq 0$.

9. **Theorem**: $\det(AB) = \det(A)\det(B)$.

10. If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

11. Define minors and cofactors of a matrix.

12. State the cofactor expansion (by a row and by a column)

13. Define the cofactor matrix and adjoint of a matrix.

14. **Theorem**: If A is invertible, then its inverse is given by $A^{-1} = \frac{1}{\det(A)} \text{adj}(A)$.

15. State Cramer’s formula and use it to solve a system of linear equations.

16. State the definition of a vector space.

17. Define the following standard vector spaces: \mathbb{R}^n, M_{mn}, M_n, P_n, P, $C[a, b]$.

18. What is a subspace of a vector space?

19. **Theorem**: A nonempty subset of a vector space is a subspace if and only if it is closed under addition and scalar multiplication.

20. A linear combination of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is a vector of the form

 $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n$.

21. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in V$. The set of all linear combinations of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is a subspace of V. It is called the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

22. Define linear independence and linear dependence.

23. **Theorem**: The vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ with $n \geq 2$ are linearly dependent if and only if at least one of them can be written as a linear combination of others.

24. Define a basis for a vector space.

25. Give standard bases for the vector spaces in Item 17 above.

26. Define the dimension of a vector space and find the dimensions of the six standard vector spaces.

27. Define the null space of a matrix.

28. How to find a basis for and the dimension of the null space nullsp(A) of a matrix A?
1. Define the row space and column space.

2. How to find a basis for the row space?

3. How to find a basis for the column space of a matrix \(A \)?
 - **Method 1:** Reduce \(A \) to REF or RREF. The column vectors of \(A \) corresponding to those column vectors containing the leading ones in the REF or RREF form a basis for the column space of \(A \).
 - **Method 2:** Use the fact that the column space of \(A \) is the row space of \(A^T \) and work on \(A^T \).

4. **Theorem:** \(\dim[\text{rowsp}(A)] = \dim[\text{colsp}(A)] = \text{rank}(A) \).

5. Define the null space and nullity of a matrix.

6. **Rank-Nullity Theorem:** Let \(A \) be an \(m \times n \) matrix. Then \(\text{rank}(A) + \text{nullity}(A) = n \).

7. State the definition of a linear transformation \(T \) from \(V \) into \(W \).

8. Let \(T : V \rightarrow W \) be a linear transformation. Show that \(T(\vec{0}) = \vec{0} \) and \(T(-\vec{v}) = -T(\vec{v}) \) for all \(\vec{v} \in V \).

9. **Theorem:** A mapping \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a linear transformation if and only if it is given by \(T(\vec{x}) = A\vec{x} \), where \(A \) is an \(m \times n \) matrix. In fact, \(A = [T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n)] \), where \(\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\} \) is the standard basis for \(\mathbb{R}^n \).

10. Define the kernel and range of a linear transformation \(T \) from \(V \) into \(W \).

11. Show that \(\text{Ker}(T) \) is a subspace of \(V \) and \(\text{Range}(T) \) is a subspace of \(W \).

12. If \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is given by an \(m \times n \) matrix \(A \), then \(\text{Ker}(T) = \text{nullspace}(A), \ \text{Range}(T) = \text{colsp}(A) \).

13. How to find the kernel and range of a linear transformation?

14. **Rank-Nullity Theorem** (general case): If \(T : V \rightarrow W \) is a linear transformation, then \(\dim[\text{Ker}(T)] + \dim[\text{Range}(T)] = \dim(V) \).

15. Define eigenvalues, eigenvectors, characteristic polynomial, and characteristic equation.

16. Define eigenspace \(E_\lambda \) for an eigenvalue \(\lambda \). **Fact:** \(\dim(E_\lambda) \leq \text{multiplicity of } \lambda \).

17. **Theorem:** Eigenvectors corresponding to distinct eigenvalues are linearly independent.

18. State the definition of a matrix being nondefective.

19. **Theorem:** A matrix \(A \) is nondefective if and only if \(\dim(E_\lambda) = \text{multiplicity of } \lambda \) for all eigenvalues \(\lambda \) of \(A \).

20. State the definition that a matrix is diagonalizable. **Fact:** A matrix is diagonalizable if and only if it is nondefective.

21. If \(A \) is nondefective, how to find a matrix \(S \) such that \(S^{-1}AS \) is a diagonal matrix?

23. State the general solution of a nonhomogeneous VDE.