MATH 2090-3

Review for Exam (2)

- 1. Define the invertibility of a square matrix.
- 2. **Theorem:** An $n \times n$ matrix A is invertible if and only rank(A) = n.
- 3. How to check when a matrix A is invertible and, if so, how to find its inverse? (Apply the Gauss-Jordan elimination to the matrix $[A \mid I]$)
- 4. If A is an invertible matrix, then the solution of $A\vec{x} = \vec{b}$ is given by $\vec{x} = A^{-1}\vec{b}$.
- 5. State the definition of the determinant of a matrix $A = [a_{ij}]$. Use the definition to find the determinant of a 2 × 2 matrix.
- 6. If A is a triangular matrix, what is the value of its determinant?
- 7. How to use the row operations to evaluate the determinant?
- 8. **Theorem:** A square matrix A is invertible if and only if $det(A) \neq 0$.
- 9. Theorem: det(AB) = det(A) det(B).
- 10. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$
- 11. Define minors and cofactors of a matrix.
- 12. State the cofactor expansion (by a row and by a column)
- 13. Define the cofactor matrix and adjoint of a matrix.
- 14. **Theorem:** If A is invertible, then its inverse is given by $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.
- 15. State Cramer's formula and use it to solve a system of linear equations.
- 16. State the definition of a vector space.
- 17. Define the following standard vector spaces: $\mathbb{I}\!\!R^n$, M_{mn} , M_n , P_n , P, C[a,b].
- 18. What is a subspace of a vector space?
- 19. **Theorem**: A nonempty subset of a vector space is a subspace if and only if it is closed under addition and scalar multiplication.
- 20. A linear combination of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ is a vector of the form $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$.
- 21. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in V$. The set of all linear combinations of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is a subspace of V. It is called the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.
- 22. Define linear independence and linear dependence.
- 23. **Theorem:** The vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ with $n \ge 2$ are linearly dependent if and only if at lease one of them can be written as a linear combination of others.
- 24. Define a basis for a vector space.
- 25. Give standard bases for the vector spaces in Item 17 above.
- 26. Define the dimension of a vector space and find the dimensions of the six standard vector spaces.
- 27. Define the null space of a matrix.
- 28. How to find a basis for and the dimension of the null space nullsp(A) of a matrix A?

MATH 2090-3

- 1. Define the row space and column space.
- 2. How to find a basis for the row space?
- 3. How to find a basis for the column space of a matrix A?

<u>Method 1</u>: Reduce A to REF or RREF. The column vectors of A corresponding to those column vectors containing the leading ones in the REF or RREF form a basis for the column space of A.

<u>Method 2</u>: Use the fact that the column space of A is the row space of A^T and work on A^T .

- 4. Theorem: $\dim[rowsp(A)] = \dim[colsp(A)] = rank(A)$.
- 5. Define the null space and nullity of a matrix.
- 6. **Rank-Nullity Theorem**: Let A be an $m \times n$ matrix. Then $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$.
- 7. State the definition of a linear transformation T from V into W.
- 8. Let $T: V \to W$ be a linear transformation. Show that $T(\vec{0}) = \vec{0}$ and $T(-\vec{v}) = -T(\vec{v})$ for all $\vec{v} \in V$.
- 9. **Theorem:** A mapping $T : \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation if and only if it is given by $T(\vec{x}) = A\vec{x}$, where A is an $m \times n$ matrix. In fact, $A = [T(\vec{e_1}), T(\vec{e_2}), \ldots, T(\vec{e_n})]$, where $\{\vec{e_1}, \vec{v_2}, \ldots, \vec{e_n}\}$ is the standard basis for \mathbf{R}^n .
- 10. Define the kernel and range of a linear transformation T from V into W.
- 11. Show that Ker(T) is a subspace of V and Range(T) is a subspace of W.
- 12. If $T: \mathbf{R}^n \to \mathbf{R}^m$ is given by an $m \times n$ matrix A, then

$$\operatorname{Ker}(T) = \operatorname{nullspace}(A), \quad \operatorname{Range}(T) = \operatorname{colsp}(A).$$

- 13. How to find the kernel and range of a linear transformation?
- 14. **Rank-Nullity Theorem** (general case): If $T : V \to W$ is a linear transformation, then dim[Ker(T)] + dim[Range(T)] = dim(V).
- 15. Define eigenvalues, eigenvectors, characteristic polynomial, and characteristic equation.
- 16. Define eigenspace E_{λ} for an eigenvalue λ . Fact: dim $(E_{\lambda}) \leq$ multiplicity of λ .
- 17. **Theorem**: Eigenvectors corresponding to distinct eigenvalues are linearly independent.
- 18. State the definition of a matrix being nondefective.
- 19. **Theorem:** A matrix A is nondefective if and only if $\dim(E_{\lambda}) =$ multiplicity of λ for all eigenvalues λ of A.
- 20. State the definition that a matrix is diagonalizable. **Fact**: A matrix is diagonalizable if and only if it is nondefective.
- 21. If A is nondefective, how to find a matrix S such that $S^{-1}AS$ is a diagonal matrix?
- 22. Homogeneous vector differential equations and its fundamental matrix.
- 23. State the general solution of a nonhomogeneous VDE.