Solutions to some Math 2090-3 homework problems

§4.1, #19

The inversions of the permutation (n, (n — 1), (n —2),---,2,1) are given by:
(n,(n—1)),(n,(n—2)),...,(n,1)
((TL - 1)7 (n - 2))7 ((n - 1)7 (n - 3))7 Tt ((n - 1)7 1)

Note that there are n — 1 inversions in the first row, n — 2 in the second row, and finally
1 in the last row. Therefore, the total number of inversions equals to

n(n—l).

m—-1)+Mn-2)4+---+1= 5

Thus the sign attached to the term

A1 nad2n—-1A3n—-2"""0an1

is (—1)™(n=1)/2,

§4.2, #21

The determinant of the coefficient matrix is given by

2
—k
6

= —k+6+12k+3k>—4—-6=3k>+ 11k —4= 3k — 1)(k +4).

W N =
—_ =

Note that the given system has an infinite number of solutions if and only if the above
determinant is zero, which yields the values of k =1/3 and k = 4.

§4.2, #27

Bring out —1 from the first row and 1/2 from the second row to get

1 -3 1 1 -1 3 -1
2 -1 7|= 3 4 =2 14
3 1 13 3 1 13

Then add the second row to the first row:

-1 3 -1 3 1 13
4 =2 14|=1/4 -2 14].
3 1 13 3 1 13

Since the first and third rows are identical, the determinant equals to O.
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§4.2, #29

First note that det(A) is a polynomial of degree 3. Hence the equation det(A) = 0 has
three roots. Then observe the following:

(a) Whne z = 0, the third column is zero and so det(A4) = 0.

(b) When z = —1, the second and third columns are identical and so det(A) = 0.

(¢) When x = 2, the first and third columns are proportional and so det(A) = 0.

Therefore, we conclude that all values of x for which det(A) = 0 are 0, —1 and 2.

§4.2, #39

First note that the determinant is a polynomial in z,y, z of degree 3. Then observe the

following:

(a) When we put z = y, the determinant is 0 because the first and second rows are
identical. This means that the determinant has a factor = — y.

(b) When we put x = z, the determinant is 0 because the first and third rows are identical.
This means that the determinant has a factor x — z.

(¢) When we put y = z, the determinant is 0 because the second and third rows are
identical. This means that the determinant has a factor y — z.

From the above facts we conclude that

= clz —y)(r—2)(y - 2), (1)

— = =
ISEINS
ST

where c is a constant. To determine the constant ¢, note that the determinant has a term
yz2. On the other hand, the right hand side of Equation (1) has a term —cyz2. Hence
¢ = —1. Finally, put ¢ = —1 into Equation (1) to get

2
2
2

1
} =—(@-y)r—-2)(y—2)=(@-yly-2)(-2).

INEENS
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§4.3, #20

Use the first row cofactor exapnsion to get

_Ox PO —r 1 —1 —z 0 -1 —z 0 1
—y -1 0 1 |=T|Y 0 1 |\ +yl-y -1 1 |—2|-y -1 0
Y —z -1 0 —z 1 0 —z 1 -1

=-z(—z—y—z)+yly+z+z)—z2(-z—-y—2)
=z(z+y+2)+ylz+y+z)+z(z+y+2)
=@x+y+z)(r+y+2)

= (z+y+2)%



On the other hand, this problem can also be solved in an indirect way as follows. First
add the third and fourth columns to the second column to get

0 T Y z 0 z+y+z vy z a1 1
—x 0 1 -1 —x 0 1 -1

T R O 0 0 1 =—(z+y+z)|-y 0 1
—2 1 -1 0 —z 0 -1 0 -2 b0

Then in the last determinant add the second and third rows to the first row to obtain

- 1 -1 —rz—y—2z 0 0 0 1
-y 0 1 ]|= —y 0 1l|l=(—z—y—2) 1 O‘:—(:c—l—y—i—z).
-z =1 0 —2 -1 0
Therefore, we have
—Oaz g 31/ —Zl oo Lol
=—(@+y+2)|—y 0 1 |=(@@+y+2)>
-y —1 0 1 2 1 0

§5.2, #11
The answer in the book is wrong. The set R? with the addition and scalar multiplication
as defined in this problem is not a vector space.

First proof. The set R? is not closed under scalar multiplication. For example

1

52,1 = (1,(=1)"%) = (1,9)

which is not an element in R2.

Second proof. It is easy to see that the element satisfying Axiom 3 is given by (0,1).
But then
(33'1,0) + (CL, b) = (331 + a,O),

which is impossible to be equal to (0,1). This means that (z1,0) has no additive inverse
for any x;. Thus Axiom 4 is not satisfied.

§5.7, #9

We use the given four vectors in R* to form the following matrix:

NI NG
0 =~ OO &~
N O W
S = Ot W



What we need to find is a basis for the rowspace of this matrix. Apply the row operations:
(1) multiply the first row by —2 and then add it to the second and fourth rows, (2) multiply
the first row by —1 and then add it to the third row. This results the following matrix:

1 4 1 3
0 0 1 -1
0 0 -1 1
0 0 O 0

Next, add the second row to the third row to get
1

1 -1
0 O
0 O

O O O =

1
0
0
0

Therefore, the first and second row vectors form a basis for the row space and so the vectors
(1,4,1,3) and (0,0,1,—1) form a basis for the space spanned by the given four vectors.

§6.1, #19(b)

First we need to write (21, z2) as a linear combination of ¥; = (1,1) and v5 = (1, —1) and
so let
(z1,22) = ca1(1,1) + e2(1, —1).

Comparing the components, we see that ¢; + ¢o = x1 and ¢y — co = z5. Solve for ¢; and

co to get
T+ T2 T — T2

1= 2 ) C2 = 2

Then use the linearity of 7" and the given information on T'(v7) and T'(¥;) to get

1+ . T, — .
T($1,$2): 12 2T(’U1)+ 12 2T(’U2>
T+ T —
== @3+ = (L
x1 + 322
- (P ).

In particular, we have T'(4, —2) = (—1, 10).

§6.1, #21

Use the linearity of 1" to rewrite the given information as

2T(171) + 3T(172) =1+ Vg, (1)
T _)1)+T(272) :1)1+U2. (2)
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Apply 3 x Eq. (2) — Eq. (1) to get
T(5)) = 8%, — 47,
Then apply Eq. (1) + (—2) x Eq. (2) to get

T(%,) = —57, + 30s.

§6.3, #7

The kernel of T consists of all functions y such that T'(y) = 0, namely ¢y’ —y = 0. This
differential equation has auxilliary equation 7> — 1 = 0, which has two roots r = 1, —1.
Hence the differential equation y” — y = 0 has two linearly independent solutions e* and
e~ *. Tt follows that a basis for the kernel of T is given by {e®, e~*}.

§6.3, #17

First we need to find what T'(?) equals to for any v € V. Note that any ¥ € V can be
expressed as
U = 101 + ca¥s + c30s.

Use the linearity of T" and the given information to get

T(Clﬁl —|— 02172 —|— 03173) = ClT(ﬁl) + CQT(ﬁg) + CgT(Hg)
= 61(2161 — ZUQ) + CQ(U71 — wg) + 63(1171 + 2’1172)

= (261 +co + 63)1171 + (—Cl — Co + 263)’(52.
Therefore, the action of T"on V is given by
T(Cll_fl + 62172 + (33173) = (261 + co + Cg)’lﬁl + (—Cl —Co + 263)7172. (1)

Now, let us find Ker(7"). By Equation (1) we need to find all vectors c;9 + cots + 373 in
V such that
(201 + co + 03)1171 + (—Cl — C2 + 263)1172 = 0.

But {w, w2} is a basis for W and so

261—|—02—|—63:0,
—c1 —co + 2¢c3 = 0.

Use the Gauss-Jordan elimination to get the solution:
Cc1 — —3t, Cy = 5t, C3 = t.
Thus the kernel of T' consists of all vectors ¢ of the form

U = —3t0; + 5ty + U3
= t(—30; + 502 + U3).
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This means that the kernel of T is given by
Ker(T) = {t(—3171 + 5172 =+ 173) | t e R}

Thus Ker(T') is spanned by the vector —37; + 59 + U3 and so dim[Ker(T")] = 1.
Next, we find the range of T. For this purpose we need to find out what vector
W = aw 4+ bWy in W is the image of some vector ' in V. By Equation (1) we need to solve
the equation:
2c1 +c2 +c3 = a,
—c1 — ¢+ 2¢3 =b.

Use the Gauss-Jordan elimination to solve this system of linear equations:
c1=-3t+a+b, co=5—a—2b, c3=t. (2)
Note that for any a and b we can always find ¢y, co, c3 as given by Equation (2) such that
T(c101 + coUs + c303) = (2¢1 + 2 + ¢3)W1 + (—¢1 — o + 2¢3)Wa = awy + bids.

This means that for any vector @ in W, we can always find a vector ¢ in V such that
T (¥) = w. Hence Range(T) = W and so dim[Range(T")] = 2.

1 2
3 4

68.9 Extra problem Let A = { } . Find e?.

The characteristic polynomia is easily found to be p(\) = A2 —5X—2. Hence the eigenvalues

are given by
5+ v33 5—V33
=2 =2
2 2
We can derive the corresponding eigenvectors:

A

—

o {3+4\/ﬁ}’ = {3—4¢§}'

Let S be the matrix S = [¢1, U2], namely,

5=|arvm 3—va) D

Then we have the following identity
2 ]
. .
0 2

Multiply S from the left and S~! from the right to get

B
QO

5+

ST1AS =

5+v33
A=S5| 7 ! !
0 5—v33



Therefore, e is given by

Now, we can use row operations to find S~1:

—3++33 1
g1 _ 8v/33 2V/33 (3)
| sevB
8v/33 24/33

Finally, put Equations (1) and (3) into Equation (2) and carry out matrix multiplication
to get

5433

(-3+v33)e 3 +(3+v33) =B

2 —e 2
A 2133 V33
3( A _ 24T (3+v33) e " 1 (—34vEm)
V33 2/33
§9.5, #53

Let X; and X5 be the Laplace transforms of x; and x5, respectively. Take the Laplace
transform of the given differential equations with the initial conditions to get

SX1—1:2X1—X2, (1)
sXo = X1 +2Xo. (2)

From Equation (2), we solve for Xs

1
X9 = X;. 3
2=_—5X1 (3)
Put this X5 into Equation (1):
1
SX1—1:2X1— 2X1,
which can be rewritten as
(8 - 2)X1 -+ —Xl = 1,
or )
-2 1
(s—2)"+ X —1
s—2
Thus we find X; to be )
S_
X, = . 4
T (s —2)2 41 )



Use the First Shifting Theorem to take the inverse Laplace transform to get
xr| = e? cost.
Next, use Equations (3) and (4) to find X,

1

Xo=— .
2T (s—2)2+1

Again use the First Shifting Theorem to take the inverse Laplace transform to get

zo = et sint.



