1. Let X be a nonempty set. Define d(x,y)=0 if x=y and d(x,y)=1 if $x\neq y$.

(a) Show that any subset of X is both open and closed.

(b) Describe all compact subsets of X, i.e., give a necessary and sufficient condition for a subset of X to be compact.

2. Let $0 . For <math>x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n , define

$$d(x,y) = \sum_{k=1}^{n} |x_k - y_k|^p.$$

Show that d is a metric on \mathbb{R}^n .

3. On \mathbb{R} , define two metrics d_1 and d_2 by

$$d_1(x,y) = |x-y|,$$
 $d_2(x,y) = |\arctan x - \arctan y|.$

Show that d_1 and d_2 induce the same topology on \mathbb{R} .

4. Suppose R is a complete metric space.

(a) Let $S_n = S[x_n, r_n]$ be a decreasing sequence of closed spheres in R such that $\lim_{n\to\infty} r_n = 0$. Show that $\bigcap_{n=1}^{\infty} S_n$ consists of a single point.

(b) Let A_n be a decreasing sequence of closed subsets of R. Is it true that $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$?

5. Consider the metrics d_1 and d_2 on \mathbb{R} defined in Problem 3. Show that \mathbb{R} is incomplete with respect to the metric d_2 . (Thus two metric spaces may be homeomorphic, while one is complete and the other is incomplete.)

1. What is the completion of \mathbb{R} with respect to the metric

$$\rho(x,y) = |\tan^{-1} x - \tan^{-1} y|?$$

2. Let c be the set of all sequences of real numbers. For $x=(x_1,x_2,\ldots,x_n,\ldots)$ and $y=(y_1,y_2,\ldots,y_n,\ldots)$ in c, define

$$\rho(x,y) = \sup_{n>1} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$$

Show that ρ is a metric on c. Is the metric space (c, ρ) complete?

3. A nonempty subset A of a metric space is called bounded if its diameter d(A)

$$d(A) = \sup_{x,y \in A} \rho(x,y)$$

is finite. Prove that A is bounded if and only if there exist $x_0 \in A$ and $0 < r < \infty$ such that $A \subset S(x_0, r)$.

- 4. Show that a totally bounded subset of a metric space is bounded.
- 5. Let $\{a_n\}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n^2 < \infty$. The associated Hilbert cube is defined by

$$Q = \{(x_1, x_2, \dots, x_n, \dots); |x_n| \le a_n \, \forall n \ge 1\}.$$

Show that Q is totally bounded with respect to the metric on ℓ^2 .

1. Let M be a bounded subset of C[a,b]. Prove that the set of all functions

$$F(x) = \int_{a}^{x} f(t) dt, \quad a \le x \le b,$$

with $f \in M$ is precompact.

- 2. Check whether the set $\{\sin 2\pi nx; n=1,2,3,\ldots\}\subset C[0,1]$ is equi-continuous.
- 3. Check whether the set $\{x^n; n=1,2,3,\ldots\}\subset C[0,1]$ is equi-continuous.
- 4. Let X and Y be topological spaces and let f be a continuous function from X into Y. Prove that if A is compact, then f(A) is also compact.
- 5. Let Λ be an index set. For each $\lambda \in \Lambda$, let f_{λ} be a real-valued function defined on a metric space.
 - (a) Show that if f_{λ} 's are lower semi-continuous, then $\sup_{\lambda \in \Lambda} f_{\lambda}$ is also lower semi-continuous. Is the conclusion true for $\inf_{\lambda \in \Lambda} f_{\lambda}$?
 - (b) Show that if f_{λ} 's are upper semi-continuous, then $\inf_{\lambda \in \Lambda} f_{\lambda}$ is also upper semi-continuous. Is the conclusion true for $\sup_{\lambda \in \Lambda} f_{\lambda}$?

1. A collection F of functions on [a,b] is called *pointwise bounded* if for any $x \in [a,b]$ there exists a constant $0 < K < \infty$ (depending on x) such that

$$|f(x)| \le K, \quad \forall f \in F.$$

- (a) Prove that if $F \subset C[a, b]$ is uniformly bounded, then it is pointwise bounded.
- (b) Prove that if $F \subset C[a,b]$ is pointwise bounded and there exist constants $\varepsilon, \delta > 0$ such that

$$|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon, \quad \forall f \in F,$$
 (*)

then F is uniformly bounded.

Remark: Note that Equation (\star) is obviously satisfied when F is equi-continuous. Moreover, by (a) and (b) the necessary and sufficient conditions in the Arzelà-Ascoli theorem can be replaced by "pointwise bounded and equi-continuous."

• Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ in a vector space V are said to be *equivalent* if there exist constants a, b > 0 such that

$$a||x||_1 \le ||x||_2 \le b||x||_1, \quad \forall x \in V.$$

- 2. Show that two norms in a vector space are equivalent if and only if they induce the same topology.
- 3. For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, define

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}, \quad 1 \le p < \infty,$$

 $||x||_{\infty} = \max_{1 \le k \le n} |x_k|.$

Show that all norms $\|\cdot\|_p, 1 \leq p \leq \infty$, in \mathbb{R}^n are equivalent.

- 4. Prove that any two norms in \mathbb{R}^2 are equivalent. (In fact, this statement is true for any finite dimensional vector space.)
- 5. Let $\ell^2 = \{(x_1, x_2, \dots, x_n, \dots); \sum_{n=1}^{\infty} |x_n|^2 < \infty\}$. Check whether ℓ^2 is complete with respect to the norm defined by

$$\|(x_1, x_2, \dots, x_n, \dots)\| = \left(\sum_{n=1}^{\infty} \frac{1}{n} |x_n|^2\right)^{1/2}.$$

1. Let (\cdot, \cdot) be an inner product in a vector space X and let $\|\cdot\|$ be the norm induced by (\cdot, \cdot) , i.e., $\|x\| = \sqrt{(x, x)}$. Prove the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in X.$$

2. For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, define

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}, \quad 1 \le p < \infty,$$

 $||x||_{\infty} = \max_{1 \le k \le n} |x_k|.$

When p=2, we know that $\|\cdot\|_2$ is induced by an inner product. How about when $p\neq 2$? Namely, does there exist an inner product $\langle\cdot,\cdot\rangle$ such that $\|x\|_p=\sqrt{\langle x,x\rangle}$ for all $x\in\mathbb{R}^n$?

- 3. Does the parallelogram law imply that the norm is induced by an inner product?
- 4. (a) Given a Banach space X, let $\{S^n\}$ be a decreasing sequence of closed spheres in X. Prove that $\bigcap_n S_n$ is nonempty. (Note: It is not assumed that the radius of S_n tends to 0 as $n \to \infty$.)
 - (b) Is the conclusion in (a) still valid when X is an incomplete normed space?
- 5. (a) Find the Fourier series of the function

$$f(x) = \begin{cases} -1, & -\pi < x \le 0; \\ 1, & 0 < x \le \pi. \end{cases}$$

(b) Use the result of (a) and the Parseval identity to derive the equality

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} + \dots = \frac{\pi^2}{8}.$$

(c) Use the result of (b) to derive the equality

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}.$$

- 1. We have a Theorem "If M is a closed subspace of a Hilbert space H, then H is the orthogonal direct sum of M and its orthogonal complement M^{\perp} ." Is the conclusion still true when M is not assumed to be closed?
- 2. Let $M = \{(x_1, x_2, \dots, x_n, \dots) \in \ell^2; x_1 = x_2\}$. Show that M is a subspace of ℓ^2 . Is it closed? What is its orthogonal complement?
- 3. Let $M = \{(x_1, x_2, \dots, x_n, \dots) \in \ell^2; x_n = 0 \text{ for all even } n\}$. Show that M is a subspace of ℓ^2 . Is it closed? What is its orthogonal complement?
- 4. Let X be the set of all rational numbers in the interval [0,1]. An elementary subset of X is defined to be a finite union of disjoint intervals of the form $[a,b),[a,1] \subset X$. Let \mathcal{F} be the collection of all elementary subsets of X. Define

$$\mu([a,b)) = b - a, \quad \mu([a,1]) = 1 - a$$

and extend μ to \mathcal{F} by finite additivity. Prove that μ is not σ -additive on \mathcal{F} .

5. (§27) Suppose A is measurable and $\mu^*(A) = 0$. Show that every subset of A is also measurable.

1. Let \mathcal{F} be a field and let μ be finitely additive on \mathcal{F} . Prove that μ is σ -additive if and only if for any $A, A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$ with $A \subset \bigcup_{n=1}^{\infty} A_n$, the following holds

$$\mu(A) \le \sum_{n=1}^{\infty} \mu(A_n).$$

2. Let X = [0, 1). A set $A \subset X$ is called *elementary* if it is a disjoint union of intervals of the form

$$A = \bigcup_{i=1}^{n} [a_i, b_i). \tag{*}$$

Show that the collection \mathcal{E} of elementary sets is a field. For A given by Equation (\star) , define

$$m(A) = \sum_{i=1}^{n} (b_i - a_i).$$

Show that m is well-defined for each $A \in \mathcal{E}$ and is σ -additive on \mathcal{E} .

- A real-valued function F on \mathbb{R} is called a distribution function if it is non-decreasing, right continuous, $\lim_{x\to-\infty} F(x) = 0$, and $\lim_{x\to\infty} F(x) = 1$.
- 3. Let \mathcal{E} be the collection of elementary subsets of \mathbb{R} . Let F be a distribution function. For an elementary set A given by Equation (\star) (with an obvious modification), define

$$\mu(A) = \sum_{i=1}^{n} (F(b_i -) - F(a_i -)),$$

where F(c-) denotes the left-hand limit at c. Show that μ is σ -additive on \mathcal{E} .

- A measure m on a σ -field \mathcal{G} is called *complete* if m(A) = 0 and $B \subset A$ imply that $B \in \mathcal{G}$.
- 4. Let μ be σ -additive on a field \mathcal{F} . Let μ^* be the outer measure of μ and \mathcal{M} the collocation of all measurable sets. Show that μ^* is complete on \mathcal{M} .
- 5. Show that the Lebesgue measure on \mathbb{R} is translation invariant.

- 1. Is Egorov's theorem still true when $\mu(X) < \infty$ is not assumed?
- A sequence $\{f_n\}$ of measurable functions is said to *converge in measure* to a measurable function f if for any $\varepsilon > 0$, there exists an N such that

$$\mu(\lbrace x: |f_n(x) - f(x)| > \varepsilon\rbrace) < \varepsilon, \quad \forall n \ge N.$$

- 2. Prove that the following statements are equivalent:
 - (1) f_n converges to f in measure.
 - (2) For any $\varepsilon, \delta > 0$, there exists an N such that

$$\mu(\lbrace x: |f_n(x) - f(x)| > \varepsilon \rbrace) < \delta, \quad \forall n \ge N.$$

(3) For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mu(\lbrace x : |f_n(x) - f(x)| > \varepsilon\rbrace) = 0.$$

- 3. (a) Assume $\mu(X) < \infty$. Show that convergence almost everywhere implies convergence in measure, i.e., if f_n converges almost everywhere to f, then f_n converges in measure to f.
 - (b) Still assume that $\mu(X) < \infty$. Is the converse in part (a) true?
 - (c) Now, suppose $\mu(X) < \infty$ is not assumed. Is the implication in part (a) still true?
- For a sequence $\{A_n\}$ of sets, define

$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

It is quite easy to convince yourself that $x \in \overline{\lim}_{n \to \infty} A_n$ if and only if $x \in A_n$ for infinitely many n's. Thus the set $\overline{\lim}_{n \to \infty} A_n$ can be interpreted intuitively as

$$\overline{\lim}_{n\to\infty} A_n = \{x : x \in A_n \text{ for infinitely many } n's\}.$$

- 4. Let $\{A_n\}$ be a sequence of measurable sets such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Show that $\mu(\overline{\lim}_{n\to\infty} A_n) = 0$.
- 5. Prove that if f is Riemann integrable on [a, b], then it is Lebesgue integrable on [a, b] and

$$(L) \int_{[a,b]} f(x) \, dm(x) = (R) \int_a^b f(x) \, dx,$$

where (L) and (R) denote the Lebesgue and Riemann integrals, respectively, and m is the Lebesgue measure on [a, b].

1. Can the inequality in Fatou's lemma be replaced by equality?

2. Does the Lebesgue dominated convergence theorem remain true when the condition " $|f_n| \leq g$, μ -a.e. for an integrable function g" is not assumed?

3. Suppose f is an integrable function. Let $\{A_n\}$ be a decreasing sequence of measurable sets and let $A = \bigcap_{n=1}^{\infty} A_n$. Does it follow that $\int_A f \, d\mu = \lim_{n \to \infty} \int_{A_n} f \, d\mu$?

4. (a) Show that the function $f(x) = \frac{\sin x}{x}$ is not Lebesgue integrable on \mathbb{R} .

(b) Show that the improper Riemann integral $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$ exists and has the value

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} \, dx = \pi.$$

(Hint: For part (b) use contour integral in Complex Analysis.)

5. (a) Let $\mu(X) < \infty$. Prove that $L^p(\mu) \subset L^q(\mu)$ for any $1 \le q \le p \le \infty$. Is it true that

$$L^{\infty}(\mu) = \bigcap_{1 \le p < \infty} L^{p}(\mu)?$$

(b) Do we still have the inclusion in Part (a) when $\mu(X) = \infty$?

- 1. Let X be the interval [a, b], and let μ be ordinary Lebesgue measure on the line.
 - (a) Prove that the set \mathcal{P} of all polynomials on [a,b] with rational coefficients is dense in $L^p(X,\mu)$ for any $1 \leq p < \infty$. (Hence $L^p(X,\mu)$ is separable.)
 - (b) Show that the space $L^{\infty}(X,\mu)$ is not separable.
- 2. Let X be an uncountable set and let μ be the counting measure on X. Determine the separability of the space $L^p(X,\mu)$ for $1 \leq p \leq \infty$.
- 3. Give an example of a sequence of functions $\{f_n\}$ which converges everywhere on [0,1], but does not converge in the mean.
- 4. Give an example of a sequence of functions $\{f_n\}$ which converges uniformly, but does not converge in the mean or in the mean square.
- 5. Show that convergence in the mean needs not imply convergence in the mean square, whether or not $\mu(X) < \infty$.

Math 7311 Homework (11)

Due Nov 26, 2001

- 1. Let μ be an outer regular measure on a metric space. Let B be a Borel set with $\mu(B) < \infty$. Show that for any $\varepsilon > 0$, there exists a closed set $F \subset B$ such that $\mu(F) > \mu(B) \varepsilon$.
- 2. Let (X, \mathcal{F}, μ) be a measure space and let $f \in L^1(\mu)$. Prove that for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left| \int_A f \, d\mu \right| < \varepsilon$$

for all $A \in \mathcal{F}$ with $\mu(A) < \delta$.

(Note: The special case when f is a simple function has been proved in class. You may assume this fact.)

3. Let $f \in L^1([a,b])$ and define

$$F(x) = \int_{a}^{x} f(t) dt, \qquad a \le x \le b.$$

Show that F is a continuous function.

4. Let $x_1, x_2, \ldots, x_n, \ldots$ be the set of all rational points in \mathbb{R} , enumerated in any way, and let $h_n = 1/2^n$. Define a function

$$F(x) = \sum_{x_n < x} h_n, \quad x \in \mathbb{R}.$$

- (a) Show that F is discontinuous at every rational point and continuous at every irrational point.
- (b) Show that F is a distribution function. (cf. Homework (7))
- (c) What is the measure μ arising from F? (cf. Problem 3 in Homework (7))
- (d) Show that the function

$$f(x) = \begin{cases} n, & \text{if } x = x_n, \ n = 1, 2, \dots, \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

belongs to $L^p(\mu)$ for all $1 \leq p < \infty$, but not to $L^{\infty}(\mu)$. Find $||f||_1$ and $||f||_2$.

- (e) In the spirit of (d), describe all functions in $L^p(\mu)$.
- 5. Find the one-sided upper and lower derivatives \overline{D}_+f , \underline{D}_+f , \overline{D}_-f , \underline{D}_-f of the function

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x > 0, \\ 0, & \text{if } x \le 0 \end{cases}$$

at the point x = 0.

1. Compute the positive, negative, and total variation functions of the function

$$f(x) = x(x-1), \quad 0 \le x \le 1.$$

2. Prove that the function

$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}}, & \text{if } 0 < x \le 1, \\ 0, & \text{if } x = 0 \end{cases}$$

is of bounded variation on [0,1] if $\alpha > \beta$ but not if $\alpha \leq \beta$.

- 3. Check directly from the definition of absolute continuity that the Cantor function is not absolutely continuous.
- 4. Check directly from the definition of absolute continuity that the function

$$f(x) = \begin{cases} x\sin\frac{1}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0 \end{cases}$$

is not absolutely continuous on any interval containing the point x = 0.

5. Let f be absolutely continuous on the interval $[\varepsilon, 1]$ for each $\varepsilon > 0$. Does the continuity of f at 0 imply that f is absolutely continuous on [0, 1]? What if f is also of bounded variation on [0, 1]?