Coverage of Math 7360-1 (Fall 2007)

Chapter 0 Review of elementary probability theory
 1. Sample space, events
 2. Random variables (discrete and continuous)
 3. Expectation and variance
 4. Conditional expectation
 5. Limit theorems (SLLN, WLLN, and CLT)

Chapter 1 Distribution function
 1. Monotone function
 2. Distribution function
 3. Absolutely continuous function
 4. Singularity continuous function
 5. Decomposition of a distribution function

Chapter 2 Measure theory
 1. Field and σ-field
 2. Monotone class
 3. Monotone class theorem
 4. Probability measure
 5. Continuity condition
 6. Construction of probability measures
 7. Distribution function
 8. Complete probability space

Chapter 3 Random variable, expectation, and independence
 1. Random variable, measurable function
 2. Distribution or law of a random variable
 3. Lebesgue integral
 4. Expectation
 5. Change of variables formula
 6. Fatou’s lemma
 7. Monotone convergence theorem
 8. Lebesgue dominated convergence theorem
 9. Hölder inequality
 10. Minkowski inequality
 11. Jensen inequality
 12. Independence of events
 13. Independence of random variables
 14. Product measure
 15. Kolmogorov’s consistency condition
 16. Kolmogorov’s extension theorem
Chapter 4 Convergence concepts

1. Almost everywhere (almost sure) convergence
2. Convergence in measure (in probability)
3. Mean (L^p) convergence
4. Convergence in distribution
5. Relationships among different types of convergence
6. Chebyshev’s inequality
7. Metrics for convergence in probability
8. A criterion for a.s. convergence
9. Borel-Cantelli lemma
10. Vague convergence

Chapter 5 Law of large numbers. Random series

1. Weak law of large numbers (special case)
2. Rajchman’s strong law of large numbers (special case)
3. Weierstrass theorem via WLLN
4. Bernstein polynomials
5. Normal numbers via SLLN
6. Method of truncation
7. Weak law of large numbers (general case)
8. Strong law of large numbers (general case)
9. Empirical distribution
10. Glivenko-Cantelli theorem
11. Kolmogorov’s 0-1 law
12. Random series
13. Kolmogorov’s inequality
14. Convergence of a random series
15. Kolmogorov’s three series theorem

Chapter 6 Characteristic functions

1. Moment generating function
2. Characteristic function
3. Moments by derivatives of a characteristic function
4. Characteristic functions of classical distributions
5. Convolution of two functions
6. Convolution of two distribution functions
7. Convolution of two probability measures
8. Smoothing property of convolution
9. Inversion formula for characteristic functions
10. Uniqueness of a characteristic function
11. Lévy continuity (convergence) theorem
12. Sub-distribution function, sub-probability measures
13. Helly’s selection theorem
14. Tightness of a collection of probability measure
15. Lévy equivalence theorem
16. Bochner theorem

Chapter 7 Central limit theorem
1. CLT for iid random variables
2. Triangular array
3. Lindeberg condition
4. Lindeberg–Feller theorem
5. Stable law
6. Stable law by its characteristic function
7. Stable laws as limiting distributions
8. Representation of symmetric stable distributions
9. Representation of stable distributions
10. Infinitely divisible law
11. Infinitely divisible law by its characteristic function
12. Infinitely divisible laws as limiting distributions
13. Lévy-Khinchin representation theorem
14. Lévy three components of an infinitely divisible law
15. Compound Poisson distribution
16. Law of small numbers
17. Law of iterated logarithm

Chapter 9 Conditional expectation and martingales
1. Conditional expectation
2. Radon–Nikodym derivative
3. Properties of conditional expectation
4. Filtration
5. Martingales, supermartingales, submartingales
6. Doob’s submartingale inequality
7. Doob’s decomposition theorem
8. Uniform integrability
9. Submartingale convergence theorem
10. Martingale convergence theorem