
Math 7360-1 Homework Fall 2007

1* (10 pts) Let X be a random variable with P (X = −1) = P (X = 1) = 1
2 and let Y

be a standard normal random variable. Assume that X and Y are independent. Find
the distribution function F of X + Y and, if it exists, find the density function f of
X + Y . (Note: Do not use the convolution.)

2. Let X be a Poisson random variable with parameter λ and let Y be a standard normal
random variable. Assume that X and Y are independent. Find the distribution
function F of X + Y and, if it exists, find the density function f of X + Y .
(Note: Do not use the convolution. Moreover, whenever you encounter an infinite
series, you need to check its convergence.)

3. (§1.3, #10) For each x ∈ [0, 1], we have

2F
(x

3

)
= F (x), 2F

(2
3

+
x

3

)
− 1 = F (x).

4* (15 pts) (§1.3, #11) Calculate

∫ 1

0

x dF (x),
∫ 1

0

x2 dF (x),
∫ 1

0

eitx dF (x).

5. (§2.1, #4) If Ω is countable, then S is generated by the singletons, and conversely.

6* (20 pts) (§2.2, #2) Let Ω be the space of natural numbers. For each E ⊂ Ω, let Nn(E)
be the cardinality of the set E ∩ [0, n] and let C be the collection of E’s for which the
following limit exists:

P(E) = lim
n→∞

Nn(E)
n

.

The limit P(E) is called the “asymptotic density” of E. Show that P is finitely
additive on C, but C is not a field.

7. (§2.2, #11) An atom of any measure µ on B1 is a singleton {x} such that µ({x}) > 0.
The number of atoms of any σ-finite measure is countable. For each x, we have
µ({x}) = F (x)− F (x−)

8* (10 pts) (§2.2, #25) Let f be measurable with respect to F , and Z be contained in a
null set. Define

f̃ =
{

f, on Zc,
K, on Z,

where K is a constant. Then f̃ is measurable with respect to F provided that (Ω,F ,P)
is complete. Show that the conclusion may be false otherwise.

H(1) for 55 pts: The asterisked problems in #1 to #8 are due Sept 25, 2007.
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9. (§3.1, #4) Let θ be uniformly distributed on [0, 1]. For each distribution function F ,
define G(y) = sup{x : F (x) ≤ y}. Then G(θ) has the distribution function F .

10. (§3.1, #6) Is the range of a random variable necessarily Borel or Lebesgue measurable?

11* (10 pts) (§3.2, #1) If X ≥ 0 a.e. on Λ and
∫
Λ

X dP = 0, then X = 0 a.e. on Λ.

12. (§3.2, #2) If E(|X|) < ∞ and limn→∞ P (Λn) = 0, then limn→∞
∫
Λn

X dP = 0.

13* (20 pts) (§3.2, #5) For any r > 0, E(|X|r) < ∞ if and only if

∞∑
n=1

nr−1P (|X| ≥ n) < ∞.

14. (§3.2, #11) If E(X2) = 1 and E(|X|) ≥ a > 0, then P{|X| ≥ λa} ≥ (1 − λ)2a2 for
0 ≤ λ ≤ 1.

15* (15 pts) (§3.2, #16) For any distribution function F and any a ≥ 0, we have

∫ ∞

−∞
[F (x + a)− F (x)] dx = a.

16. (§3.3, #8) Let {Xj , 1 ≤ j ≤ n} be independent with distribution functions {Fj , 1 ≤
j ≤ n}. Find the distribution functions of max1≤j≤n Xj and min1≤j≤n Xj .

17* (10 pts) (§3.3, #10) If X and Y are independent and some p > 0 : E(|X +Y |p) < ∞,
then E(|X|p) < ∞ and E(|Y |p) < ∞.

H(2) for 55 pts: The asterisked problems in #9 to #17 are due Oct 9, 2007.

18* (10 pts) (§4.1, #1) Xn → +∞ a.e. if and only if ∀M > 0 : P{Xn < M i.o.} = 0.

19. (§4.1, #4) Let f be a bounded uniformly continuous function in R. Then Xn → 0 in
pr. implies E{f(Xn)} → f(0).

20* (10 pts) (§4.1, #7) If Xn → X in pr. and Xn → Y in pr., then X = Y a.e.

21. (§4.1, #9) Give an example in which E(Xn) → 0 but there does not exist any subse-
quence {nk} → ∞ such that Xnk

→ 0 in pr.

22. (§4.1, #13) If supn Xn = +∞ a.e., there need exist no subsequence {Xnk
} that

diverges to +∞ in pr.

23* (20 pts) (§4.2, #4) For any sequence of r.v.’s {Xn} there exists a sequence of constants
{An} such that Xn/An → 0 a.e.

24. (§4.2, #6) Cauchy convergence of {Xn} in pr. (or in Lp) implies the existence of an
X (finite a.e.), such that Xn converges to X in pr. (or in Lp).
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25* (15 pts) (§4.2, #12) Prove that the probability of convergence of a sequence of inde-
pendent r.v.’s is equal to zero or one.

26. (§4.2, #13) If {Xn} is a sequence of independent and identically distributed r.v.’s not
constant a.e., then P{Xn converges} = 0.

H(3) for 55 pts: The asterisked problems in #18 to #26 are due Oct 23, 2007.

27. (§5.1, #4) If {Xn} are independent r.v.’s such that the fourth moments E(X4
n) have

a common bound, then
Sn − E(Sn)

n
→ 0 a.e.

28. (§5.2, #1) For any sequence of r.v.’s {Xn}, and any p ≥ 1:

Xn → 0 a.e. ⇒ Sn

n
→ 0 a.e. ,

Xn → 0 in Lp ⇒ Sn

n
→ 0 in Lp.

29* (10 pts) (§5.2, #2) Even for a sequence of independent r.v.’s {Xn},

Xn → 0 in pr. 6⇒ Sn

n
→ 0 in pr.

30* (10 pts) (§5.2, #4) For any δ > 0, we have

lim
n→∞

∑

|k−np|>nδ

(
n

k

)
pk(1− p)n−k = 0

uniformly in p : 0 < p < 1.

31. (§5.2, #9) A median of the r.v. X is any number α such that

P{X ≤ α} ≥ 1
2
, P{X ≥ α} ≥ 1

2
.

Show that such a number always exists but need not be unique.

32. (§5.2, #10) Let {Xn, 1 ≤ n ≤ ∞} be arbitrary r.v.’s and for each n let mn be a
median of Xn. Prove that if Xn → X∞ in pr. and m∞ is unique, then mn → m∞.
Furthermore, if there exists any sequence of real numbers {cn} such that Xn− cn → 0
in pr., then Xn −mn → 0 in pr.

33* (10 pts) (§5.3, #7) For arbitrary {Xn}, if
∑

n E(|Xn|) < ∞,then
∑

n Xn converges
absolutely a.e.
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34* (10 pts) (§5.3, #9) Let {Xn} be independent and identically distributed, taking the
values 0 and 2 with probability 1

2 ; then

∞∑
n=1

Xn

3n

converges a.e. Prove that the limit has the Cantor d.f. discussed in Sec. 1.3.

35. (§5.4, #1) If E(X+
1 ) = +∞, E(X−

1 ) < ∞, then Sn/n → +∞ a.e.

H(4) for 40 pts: The asterisked problems in #27 to #35 are due Nov 8, 2007.

36* (10 pts) Suppose Xn → X in distribution and Yn converges to a constant a in distri-
bution. Then Xn + Yn → X + a in distribution.

37. (§6.1, #1) If f is a ch.f., and G a d.f. with G(0−) = 0, then the following functions
are all ch.f.’s:

∫ 1

0

f(ut) du,

∫ ∞

0

f(ut)e−u du,

∫ ∞

0

e−|t|u dG(u),

∫ ∞

0

e−t2u dG(u),
∫ ∞

0

f(ut) dG(u).

38* (10 pts) (§6.1, #11) Let X have the normal distribution Φ. Find the d.f., p.d., and
ch.f. of X2.

39. (§6.1, #12) Let {Xj , 1 ≤ j ≤ n} be independent r.v.’s each having the d.f. Φ. Find
the ch.f. of

∑n
j=1 X2

j and show that the corresponding p.d. is

2−n/2Γ(n/2)−1x(n/2)−1e−x2/2, x > 0.

This is called in statistics the ”χ2 distribution with n degrees of freedom”.

40. (§6.2, #1) Show that ∫ ∞

0

( sinx

x

)2

dx =
π

2
.

41* (10 pts) (§5.2, #4) If f(t)/t ∈ L1(−∞,∞), then for each α > 0 such that ±α are
points of continuity of F , we have

F (α)− F (−α) =
1
π

∫ ∞

−∞

sin αt

t
f(t) dt.
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42. (§6.3, #8) Interpret the remarkable trigonometric identity

sin t

t
=

∞∏
n=1

cos
t

22

in terms of ch.f.’s anbd hence by addition of independent r.v.’s.

43. (§6.4, #4) Let Xn have the binomial distribution with parameter (n, pn), and suppose
npn → λ ≥ 0. Prove that Xn converges in dist. to the Poisson d.f. with parameter λ.
(In the old days this was called the law of small numbers.)

44* (10 pts) (§6.4, #5) Let Xλ have the Poisson distribution with parameter λ. Prove that
[Xλ − λ]/λ1/2 converges to in dist. to Φ as λ →∞.

45. (§7.2, #8) For each j let Xj have the uniform distribution in [−j, j]. Show that
Lindeberg’s condition is satisfied and state the resulting central limit theorem.

46* (10 pts) List and state ten theorems in this course in the order of importance according
to your opinion.

47* (10 pts) State ten other theorems in this course and give one simple example for each
theorem.

H(5) for 60 pts: The asterisked problems in #36 to #47 are due Dec 6, 2007.

48. (§7.6, #5) Show that f(t) = (1 − b)/(1 − beit), 0 < b < 1, is an infinitely divisible
characteristic function.

49. (§7.6, #6) Show that the d.f. with density βαΓ(α)−1xα−1e−βx, α > 0, β > 0, in
(0,∞), and 0 otherwise, is infinitely divisible.

50. Check whether the distribution is infinitely divisible for (1) binomial, (2) geometric,
(3) uniform on [−1, 1].

51. Find the Lévy components of a compound Poisson distribution. (Note: The ch. f. of
such a distribution is given by Φ(t) = eλ(ϕ(t)−1), where λ > 0 and ϕ(t) = Eeitξ1 .)

52. Find the Lévy components of a symmetric stable distribution. (Note: The ch. f. of
such a distribution is given by ϕ(t) = e−c|t|p , c > 0, 0 < p ≤ 2.)

53. Suppose X and Y are independent stable random variables. Does it follow that X +Y

is also stable?

54. Suppose X and Y are independent infinitely divisible random variables. Does it follow
that X + Y is also infinitely divisible?

55. Let (X,Y ) be uniformly distributed on the unit disk {(x, y); x2 + y2 ≤ 1}. Find the
conditional expectation E[X|Y ].
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