- 1* (10 pts) Let X be a random variable with $P(X = -1) = P(X = 1) = \frac{1}{2}$ and let Y be a standard normal random variable. Assume that X and Y are independent. Find the distribution function F of X + Y and, if it exists, find the density function f of X + Y. (Note: Do not use the convolution.)
- 2. Let X be a Poisson random variable with parameter λ and let Y be a standard normal random variable. Assume that X and Y are independent. Find the distribution function F of X + Y and, if it exists, find the density function f of X + Y. (Note: Do not use the convolution. Moreover, whenever you encounter an infinite series, you need to check its convergence.)
- 3. $(\S1.3, \#10)$ For each $x \in [0, 1]$, we have

$$2F\left(\frac{x}{3}\right) = F(x), \quad 2F\left(\frac{2}{3} + \frac{x}{3}\right) - 1 = F(x).$$

 4^* (15 pts) (§1.3, #11) Calculate

$$\int_0^1 x \, dF(x), \quad \int_0^1 x^2 \, dF(x), \quad \int_0^1 e^{itx} \, dF(x).$$

- 5. (§2.1, #4) If Ω is countable, then S is generated by the singletons, and conversely.
- 6* (20 pts) (§2.2, #2) Let Ω be the space of natural numbers. For each $E \subset \Omega$, let $N_n(E)$ be the cardinality of the set $E \cap [0, n]$ and let \mathcal{C} be the collection of E's for which the following limit exists:

$$\mathcal{P}(E) = \lim_{n \to \infty} \frac{N_n(E)}{n}$$

The limit $\mathcal{P}(E)$ is called the "asymptotic density" of E. Show that \mathcal{P} is finitely additive on \mathcal{C} , but \mathcal{C} is not a field.

- 7. (§2.2, #11) An *atom* of any measure μ on \mathcal{B}^1 is a singleton $\{x\}$ such that $\mu(\{x\}) > 0$. The number of atoms of any σ -finite measure is countable. For each x, we have $\mu(\{x\}) = F(x) - F(x-)$
- 8* (10 pts) (§2.2, #25) Let f be measurable with respect to \mathcal{F} , and Z be contained in a null set. Define

$$\widetilde{f} = \begin{cases} f, & \text{on } Z^c, \\ K, & \text{on } Z, \end{cases}$$

where K is a constant. Then \tilde{f} is measurable with respect to \mathcal{F} provided that $(\Omega, \mathcal{F}, \mathcal{P})$ is complete. Show that the conclusion may be false otherwise.

H(1) for 55 pts: The asterisked problems in #1 to #8 are due Sept 25, 2007.

- 9. (§3.1, #4) Let θ be uniformly distributed on [0, 1]. For each distribution function F, define $G(y) = \sup\{x : F(x) \le y\}$. Then $G(\theta)$ has the distribution function F.
- 10. $(\S3.1, \#6)$ Is the range of a random variable necessarily Borel or Lebesgue measurable?
- 11* (10 pts) (§3.2, #1) If $X \ge 0$ a.e. on Λ and $\int_{\Lambda} X \, dP = 0$, then X = 0 a.e. on Λ .
- 12. (§3.2, #2) If $E(|X|) < \infty$ and $\lim_{n \to \infty} P(\Lambda_n) = 0$, then $\lim_{n \to \infty} \int_{\Lambda_n} X \, dP = 0$.
- 13* (20 pts) (§3.2, #5) For any $r > 0, E(|X|^r) < \infty$ if and only if

$$\sum_{n=1}^{\infty} n^{r-1} P(|X| \ge n) < \infty.$$

- 14. (§3.2, #11) If $E(X^2) = 1$ and $E(|X|) \ge a > 0$, then $P\{|X| \ge \lambda a\} \ge (1 \lambda)^2 a^2$ for $0 \le \lambda \le 1$.
- 15* (15 pts) (§3.2, #16) For any distribution function F and any $a \ge 0$, we have

$$\int_{-\infty}^{\infty} [F(x+a) - F(x)] \, dx = a.$$

- 16. (§3.3, #8) Let $\{X_j, 1 \le j \le n\}$ be independent with distribution functions $\{F_j, 1 \le j \le n\}$. Find the distribution functions of $\max_{1 \le j \le n} X_j$ and $\min_{1 \le j \le n} X_j$.
- 17* (10 pts) (§3.3, #10) If X and Y are independent and some p > 0: $E(|X+Y|^p) < \infty$, then $E(|X|^p) < \infty$ and $E(|Y|^p) < \infty$.

H(2) for 55 pts: The asterisked problems in #9 to #17 are due Oct 9, 2007.

- 18* (10 pts) (§4.1, #1) $X_n \to +\infty$ a.e. if and only if $\forall M > 0$: $P\{X_n < M \text{ i.o.}\} = 0$.
- 19. (§4.1, #4) Let f be a bounded uniformly continuous function in \mathcal{R} . Then $X_n \to 0$ in pr. implies $E\{f(X_n)\} \to f(0)$.
- 20* (10 pts) (§4.1, #7) If $X_n \to X$ in pr. and $X_n \to Y$ in pr., then X = Y a.e.
- 21. (§4.1, #9) Give an example in which $E(X_n) \to 0$ but there does not exist any subsequence $\{n_k\} \to \infty$ such that $X_{n_k} \to 0$ in pr.
- 22. (§4.1, #13) If $\sup_n X_n = +\infty$ a.e., there need exist no subsequence $\{X_{n_k}\}$ that diverges to $+\infty$ in pr.
- 23* (20 pts) (§4.2, #4) For any sequence of r.v.'s $\{X_n\}$ there exists a sequence of constants $\{A_n\}$ such that $X_n/A_n \to 0$ a.e.
- 24. (§4.2, #6) Cauchy convergence of $\{X_n\}$ in pr. (or in L^p) implies the existence of an X (finite a.e.), such that X_n converges to X in pr. (or in L^p).

- 25^* (15 pts) (§4.2, #12) Prove that the probability of convergence of a sequence of independent r.v.'s is equal to zero or one.
- 26. (§4.2, #13) If $\{X_n\}$ is a sequence of independent and identically distributed r.v.'s not constant a.e., then $P\{X_n \text{ converges}\} = 0$.

H(3) for 55 pts: The asterisked problems in #18 to #26 are due Oct 23, 2007.

27. (§5.1, #4) If $\{X_n\}$ are independent r.v.'s such that the fourth moments $E(X_n^4)$ have a common bound, then

$$\frac{S_n - E(S_n)}{n} \to 0 \quad \text{a.e}$$

28. (§5.2, #1) For any sequence of r.v.'s $\{X_n\}$, and any $p \ge 1$:

$$X_n \to 0 \text{ a.e.} \Rightarrow \frac{S_n}{n} \to 0 \text{ a.e.} ,$$

 $X_n \to 0 \text{ in } L^p \Rightarrow \frac{S_n}{n} \to 0 \text{ in } L^p.$

29* (10 pts) (§5.2, #2) Even for a sequence of independent r.v.'s $\{X_n\}$,

$$X_n \to 0$$
 in pr. $\neq \frac{S_n}{n} \to 0$ in pr.

 30^* (10 pts) (§5.2, #4) For any $\delta > 0$, we have

$$\lim_{n \to \infty} \sum_{|k-np| > n\delta} \binom{n}{k} p^k (1-p)^{n-k} = 0$$

uniformly in p : 0 .

31. (§5.2, #9) A median of the r.v. X is any number α such that

$$P\{X \le \alpha\} \ge \frac{1}{2}, \quad P\{X \ge \alpha\} \ge \frac{1}{2}.$$

Show that such a number always exists but need not be unique.

- 32. (§5.2, #10) Let $\{X_n, 1 \leq n \leq \infty\}$ be arbitrary r.v.'s and for each n let m_n be a median of X_n . Prove that if $X_n \to X_\infty$ in pr. and m_∞ is unique, then $m_n \to m_\infty$. Furthermore, if there exists any sequence of real numbers $\{c_n\}$ such that $X_n - c_n \to 0$ in pr., then $X_n - m_n \to 0$ in pr.
- 33* (10 pts) (§5.3, #7) For arbitrary $\{X_n\}$, if $\sum_n E(|X_n|) < \infty$, then $\sum_n X_n$ converges absolutely a.e.

34* (10 pts) (§5.3, #9) Let $\{X_n\}$ be independent and identically distributed, taking the values 0 and 2 with probability $\frac{1}{2}$; then

$$\sum_{n=1}^{\infty} \frac{X_n}{3^n}$$

converges a.e. Prove that the limit has the Cantor d.f. discussed in Sec. 1.3.

35. (§5.4, #1) If $E(X_1^+) = +\infty$, $E(X_1^-) < \infty$, then $S_n/n \to +\infty$ a.e.

H(4) for 40 pts: The asterisked problems in #27 to #35 are due Nov 8, 2007.

- 36^{*} (10 pts) Suppose $X_n \to X$ in distribution and Y_n converges to a constant a in distribution. bution. Then $X_n + Y_n \to X + a$ in distribution.
- 37. (§6.1, #1) If f is a ch.f., and G a d.f. with G(0-) = 0, then the following functions are all ch.f.'s:

$$\int_{0}^{1} f(ut) \, du, \quad \int_{0}^{\infty} f(ut) e^{-u} \, du, \quad \int_{0}^{\infty} e^{-|t|u} \, dG(u),$$
$$\int_{0}^{\infty} e^{-t^{2}u} \, dG(u), \quad \int_{0}^{\infty} f(ut) \, dG(u).$$

- 38* (10 pts) (§6.1, #11) Let X have the normal distribution Φ . Find the d.f., p.d., and ch.f. of X^2 .
- 39. (§6.1, #12) Let $\{X_j, 1 \le j \le n\}$ be independent r.v.'s each having the d.f. Φ . Find the ch.f. of $\sum_{j=1}^n X_j^2$ and show that the corresponding p.d. is

$$2^{-n/2}\Gamma(n/2)^{-1}x^{(n/2)-1}e^{-x^2/2}, \quad x > 0.$$

This is called in statistics the " χ^2 distribution with *n* degrees of freedom".

40. $(\S6.2, \#1)$ Show that

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}.$$

41* (10 pts) (§5.2, #4) If $f(t)/t \in L^1(-\infty, \infty)$, then for each $\alpha > 0$ such that $\pm \alpha$ are points of continuity of F, we have

$$F(\alpha) - F(-\alpha) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \alpha t}{t} f(t) dt$$

42. $(\S6.3, \#8)$ Interpret the remarkable trigonometric identity

$$\frac{\sin t}{t} = \prod_{n=1}^{\infty} \cos \frac{t}{2^2}$$

in terms of ch.f.'s anbd hence by addition of independent r.v.'s.

- 43. (§6.4, #4) Let X_n have the binomial distribution with parameter (n, p_n) , and suppose $np_n \to \lambda \ge 0$. Prove that X_n converges in dist. to the Poisson d.f. with parameter λ . (In the old days this was called *the law of small numbers.*)
- 44* (10 pts) (§6.4, #5) Let X_{λ} have the Poisson distribution with parameter λ . Prove that $[X_{\lambda} \lambda]/\lambda^{1/2}$ converges to in dist. to Φ as $\lambda \to \infty$.
- 45. (§7.2, #8) For each j let X_j have the uniform distribution in [-j, j]. Show that Lindeberg's condition is satisfied and state the resulting central limit theorem.
- 46^{*} (10 pts) List and state ten theorems in this course in the order of importance according to your opinion.
- 47^{*} (10 pts) State ten other theorems in this course and give one simple example for each theorem.

H(5) for 60 pts: The asterisked problems in #36 to #47 are due Dec 6, 2007.

- 48. (§7.6, #5) Show that $f(t) = (1 b)/(1 be^{it}), 0 < b < 1$, is an infinitely divisible characteristic function.
- 49. (§7.6, #6) Show that the d.f. with density $\beta^{\alpha}\Gamma(\alpha)^{-1}x^{\alpha-1}e^{-\beta x}$, $\alpha > 0$, $\beta > 0$, in $(0,\infty)$, and 0 otherwise, is infinitely divisible.
- 50. Check whether the distribution is infinitely divisible for (1) binomial, (2) geometric, (3) uniform on [-1, 1].
- 51. Find the Lévy components of a compound Poisson distribution. (Note: The ch. f. of such a distribution is given by $\Phi(t) = e^{\lambda(\varphi(t)-1)}$, where $\lambda > 0$ and $\varphi(t) = Ee^{it\xi_1}$.)
- 52. Find the Lévy components of a symmetric stable distribution. (Note: The ch. f. of such a distribution is given by $\varphi(t) = e^{-c|t|^p}$, c > 0, 0 .)
- 53. Suppose X and Y are independent stable random variables. Does it follow that X + Y is also stable?
- 54. Suppose X and Y are independent infinitely divisible random variables. Does it follow that X + Y is also infinitely divisible?
- 55. Let (X, Y) be uniformly distributed on the unit disk $\{(x, y); x^2 + y^2 \le 1\}$. Find the conditional expectation E[X|Y].