
Math 7360-1 Homework

Homework 1: Due September 3, 2010

1. State the probability mass functions of the distributions: (a) binomial, (b) Poisson,
and (c) geometric.

2. Derive the means and variances of the distributions in Problem 1.

3. State the density functions of the distributions: (a) normal, (b) exponential, and (c)
gamma.

4. Derive the means and variances of the distributions in Problem 3.

5. State the density function of a Cauchy random variable X and show that X has no
expectation.

6. Let X be a standard normal random variable. Define a random variable Y by

Y (ω) =

{
a, if X(ω) ≥ 0,

b, if X(ω) < 0,

where a, b are two constants. Let Z = X + Y .
(a) Find the density function of Z.
(b) Use part (a) to find E(Z).

Homework 2: Due September 17, 2010

7. Let F (x) be the distribution function of a random variable X. Express

P (a < X ≤ b), P (a < X < b), P (a ≤ X < b), P (a ≤ X ≤ b)

in terms of the distribution function F (x).

8. Let X be a random variable with distribution function given by the Cantor function.
Find the mean and variance of X.

9. Let Xi, i = 1, 2, be a random variable with distribution, mean, and variance given by
µi, mi, and σ2

i , respectively. Let X be a random variable with distribution

µ = aµ1 + bµ2,

where a, b ≥ 0 and a+ b = 1. Find the mean m and variance σ2 of X.

10. Let f(t) be a continuous function on [a, b]. Prove that the function

F (x) =

∫ x

a

f(t) dt, a ≤ x ≤ b,

is absolutely continuous.
(Note: The conclusion is true for an integrable function f(t). But the proof is harder.)
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Homework 3: Due October 1, 2010

11. Let X be a standard Gaussian random variable with postive part X+ and negative
part X−. Find (a) the distribution functions of X+ and X−, (b) means and variances
of X+ and X−, (c) the covariance of X+ and X−.

12. Prove that Lp([0, 1]) ⊂ Lq([0, 1]) for any 1 ≤ q ≤ p ≤ ∞. Check whether the following
equality holds:

L∞([0, 1]) =
⋂

1≤p<∞

Lp([0, 1]).

13. Prove that `p ⊂ `q for any 1 ≤ p ≤ q ≤ ∞. Check whether the following equality
holds:

`∞ =
⋃

1≤p<∞

`p.

14. Let 0 < p < 1. Show that |f | =
( ∫

[0,1]
|f(t)|p dt

)1/p
does not define a norm on the

space Lp([0, 1]).

15. Let 0 < p < 1. Show that d(f, g) =
∫
[0,1]

|f(t) − g(t)|p dt is a metric on the space

Lp([0, 1]).

16. Suppose the joint density function of X and Y is given by

f(x, y) =
1

2πσ1σ2

√
1−ρ2

exp

[
− 1

2(1−ρ2)

(
(x−µ1)

2

σ2
1

− 2ρ
x−µ1

σ1

y−µ2

σ2
+

(y−µ2)
2

σ2
2

)]
,

where µ1, µ2 are real numbers and σ1, σ2 are positive numbers. Show that X and Y
have the normal distributions N(µ1, σ

2
1) and N(µ2, σ

2
2), respectively, and that ρ is the

correlation coefficient of X and Y .

Homework 4: Due October 15, 2010

17. Let M be the space of random variables on a probability space. Show that

d1(X,Y ) = E
|X − Y |

1 + |X − Y |
and d2(X,Y ) = E(|X − Y | ∧ 1)

define two metrics on M.

18. Let d1 and d2 be the metrics in Problem 17. Check whether there exist constants
α, β > 0 such that αd2(X,Y ) ≤ d1(X,Y ) ≤ βd2(X,Y ) for all X,Y ∈ M.

19. Prove the equivalence: (1) Xn → X in prob., (2) d1(XnX) → 0, (3) d2(XnX) → 0.

20. Let Sn be a binomial random variable with parameters n and p. Prove that

E
[(Sn

n
− p

)4]
=

1

n3
p(1− p)(1− 6p+ 6p2) +

3

n2
p2(1− p)2.

21. Suppose Xn, n ≥ 1, is a sequence of random variables on a probability space. Prove
or disprove the statement: “Xn → 0 in distribution implies Xn → 0 in probability.”

22. Suppose X and Y are uncorrelated random variables, each taking two values. Does it
follow that they are independent?
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Homework 5: Due November 1, 2010

23. Let {En} be a sequence of events and let pn = P (En). Find the necessary and
sufficient condition on the sequence {pn} such that 1En → 0 in probability.

24. Let {En} be a sequence of independent events and let pn = P (En). Find the necessary
and sufficient condition on the sequence {pn} such that 1En → 0 almost surely.

25. Let X be a standard normal random variable and let Xc be the truncation of X at
level c > 0. Find the mean and the variance of Xc.

26. Let {Xn} be a sequence of independent random variables with the same uniform
distribution on the interval [0, 1]. Suppose f(x) is a continuous function on [0, 1].
Investigate the limit

lim
n→∞

1

n

{
f(X1) + f(X2) + · · ·+ f(Xn)

}
in L1-convergence, almost sure convergence, and convergence in probability.

27. Let α > 1 and let k(n) = [[αn]]. Prove that limn→∞
k(n+1)
k(n) = α.

28. Let{Xn} be a sequence of independent and identically distributed random variables
taking values 0 and 2 with probability 1

2 . Show that the random series

∞∑
n=1

1

3n
Xn

converges almost surely. Moreover, prove that the distribution function of the limit is
the Cantor function.

29. Let {Xn} be a sequence of independent and identically distributed random variables.
Assume that Xn are nonconstant. Prove that P{ω; Xn(ω) converges} = 0.

30. Prove the following equality ∫ ∞

0

( sinx
x

)2

dx =
π

2
.

31. Let f(x) = sin x
x , x > 0. Prove that f 6∈ L1(0,∞). However, prove that the following

improper integral exists and has the value∫ ∞

0

sinx

x
dx =

π

2
.

Homework 6: Due November 12, 2010

32. Let {Xn} be a sequence of independent random variables with the distributions
P (Xn = n) = P (Xn = −n) = an, P (Xn = 0) = 1 − 2an, 0 < an < 1

2 , n ≥ 1.
Find conditions on {an} so that

∑
n Xn converges almost surely.
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33. Suppose {ξn} is a sequence of independent random variables with the same distribution
P (ξn = 1) = P (ξn = −1) = 1/2. Find the condition on the constant α so that∑

n
1
nα ξn converges almost surely.

34. Let {ζn} be a sequence of independent random variables having the same exponential
distribution with parameter λ > 0. Find conditions on constants an so that

∑
n anζn

converges almost surely.

35. Prove or disprove the statement: If
∑

n E|Xn| < ∞, then
∑

n Xn converges absolutely
almost surely.

36. Let X be uniformly distributed on the interval [−1, 1]. Show that the characteristic

function of X is given by ϕ(t) =
sin t

t
.

37. Let Φε be the normal distribution function with mean 0 and variance ε2. For a
distribution function F , define Fε = F ∗Φε. Prove that if a is a continuity point of F ,
then limε→0 Fε(a) = F (a). Find the assertion when a is not a continuity point.

Homework 7

38. Let µn be the Gaussian measure with mean an and variance σ2
n. Find conditions on

an and σn such that the family {µn} is tight.

39. Let {Xn} be independent Poisson random variables, each with parameter 1. By
applying the central limit theorem to this sequence, prove that

lim
n→∞

1

en

n∑
k=0

nk

k!
=

1

2
.

40. Let {Xn}∞n=1 be a sequence of independent random variables with the distributions
X1 ∼ N(0, 1) and Xn ∼ N(0, 2n−2), n ≥ 2. Let

Xnk =
Xk√∑n

i=1 Var(Xi)
, 1 ≤ k ≤ n.

Show that the triangular array {Xnk} does not satisfy the Lindeberg condition.

41. Check whether the binomial distribution b(1, p) is stable.

42. Let Xn be binomial with parameter (n, pn) and suppose npn → λ > 0. Prove that
Xn converges in distribution to the Poisson distribution with parameter λ.

43. For each j, let Xj have the uniform distribution in [−j, j]. Show that Lindeberg’s
condition is satisfied and state the resulting central limit theorem.

44. Find the Lévy components of a compound Poisson distribution. (The characteristic
function of such a distribution is given by Φ(t) = eλ(ϕ(t)−1), λ > 0, ϕ(t) = Eeitξ1 .)

45. Find the Lévy components of a symmetric stable distribution. (The characteristic
function of such a distribution is given by ϕ(t) = e−c|t|p , c > 0, 0 < p ≤ 2.)

46. Let (X,Y ) be uniformly distributed on the unit disk {(x, y); x2 + y2 ≤ 1}. Find the
conditional expectation E[X|Y ].

47. State fifteen important theorems in this course. For each theorem, give examples and
counterexamples.
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