Math 7360-1 Homework

Homework (1): Due 9/18/2015 (Friday)

- 1. Derive the equality $\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} dx = \sqrt{2\pi}$.
- 2. Find the volume of $\{x \in \mathbb{R}^n; |x| \le 1\}$.
- 3. Find the surface measure of $\{x \in \mathbb{R}^n; |x| = 1\}$.
- 4. Let Z be a standard normal random variable. For a given number a > 0, define

$$X(\omega) = \begin{cases} Z(\omega), & \text{if } |Z(\omega)| \le a, \\ a, & \text{if } |Z(\omega)| > a. \end{cases}$$

Find the distribution function of X and use it to evaluate EX.

- 5. Let (X, Y) be uniformly distributed on the triangle with vertices at (0, 0), (1, 0), and (0, 1). Find E[X|Y = y] and E[X|Y].
- 6. Show that the strong law of large numbers implies the weak law of large numbers.
- 7. Let \mathcal{F} be a σ -field and $A_n \in \mathcal{F}$, $n = 1, 2, \dots$ Show that the set

 $\left\{\omega \in \Omega \,\middle|\, \omega \in A_k \text{ for infinitely many } k's\right\}$

belongs to \mathcal{F} .

8. Let $\Omega = [0, 1]$. Consider the following collection \mathcal{A} of subsets of Ω :

$$\{x\}, \quad x \in [0,1] \cap \mathbb{Q}.$$

Describe the σ -field $\sigma[\mathcal{A}]$ generated by \mathcal{A} .

Homework (2): Due 10/9/2015 (Friday)

9. Let \mathbb{N} be the set of natural numbers and \mathcal{F} the collection of subsets A of \mathbb{N} such that either A or A^c is a finite set. Define a function P on \mathcal{F} by

$$P(A) = \begin{cases} 0, & \text{if } A \text{ is finite,} \\ 1, & \text{if } A^c \text{ is finite.} \end{cases}$$

Show that \mathcal{F} is a field and P does not satisfy the continuity condition.

10. Let $\{a_n\}$ be a sequence of postive numbers with sum a. For a sequence $\{x_n\}$ of real numbers, define a function

$$G(x) = \sum_{n=1}^{\infty} a_n \mathbb{1}_{[x_n,\infty)}(x), \quad -\infty < x < \infty.$$

Prove that $\lim_{x \to -\infty} G(x) = 0$ and $\lim_{x \to \infty} G(x) = a$.

- 11. Find a singularly continuous distribution function F on $(-\infty, \infty)$ such that F(x) > 0 for all $x \in (-\infty, \infty)$.
- 12. Let F be the Cantor function on [0,1]. Evaluate the Riemann-Stieltjes integrals $\int_0^1 x \, dF(x)$ and $\int_0^1 x^2 \, dF(x)$.
- 13. Let μ be the probability measure on [0,1] given by the Cantor function. Find a sequence $\{s_n\}_{n=1}^{\infty}$ of simple functions such that $s_n(x) \to x$ as $n \to \infty$ for all $x \in [0,1]$. Then use this sequence to evaluate the Lebesgue integral $\int_{[0,1]} x \, d\mu(x)$.
- 14. Prove the following equality for any 0 < s < u < t,

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2\pi)^3 s(u-s)(t-u)}} \exp\left[-\frac{1}{2}\left(\frac{x^2}{s} + \frac{(y-x)^2}{u-s} + \frac{(z-y)^2}{t-u}\right)\right] dy$$
$$= \frac{1}{\sqrt{(2\pi)^2 s(t-s)}} \exp\left[-\frac{1}{2}\left(\frac{x^2}{s} + \frac{(z-x)^2}{t-s}\right)\right].$$

- 15. Prove that $X_n \to 0$ in probability as $n \to \infty$ if and only if $E\left(\frac{|X_n|}{1+|X_n|}\right) \to 0$ as $n \to \infty$.
- 16. Let S_n be the number of heads in the first n independent trials of a coin with P(H) = p. Prove that $E[(S_n - np)^4] = np(1-p)(1-6p+6p^2) + 3n^2p^2(1-p)^2$.

Homework (3): Due 11/2/2015 (Monday)

- 17. (1) Show that $L^p(\Omega) \subset L^q(\Omega)$ for all $p \ge q$.
 - (2) Check whether the equality $\bigcap_{1 \le p < \infty} L^p(\Omega) = L^{\infty}(\Omega)$ is true.
 - (3) Check whether the equality $\bigcup_{1 \le p \le \infty}^{-1} L^p(\Omega) = L^1(\Omega)$ is true.
- 18. Let F(x) be the distribution function of X. Show that the distribution functions of X^+ and X^- are given respectively by

$$F_{+}(x) = \begin{cases} 0, & \text{if } x < 0, \\ F(x), & \text{if } x \ge 0; \end{cases}$$
$$F_{-}(x) = \begin{cases} 0, & \text{if } x < 0, \\ 1 - F((-x)^{-}), & \text{if } x \ge 0, \end{cases}$$

where $F(t^{-})$ denotes the left-hand limit at t.

19. Let $\alpha > 1$ and $k(n) = [\alpha^n]$, the integral part of α^n . Show that

$$\lim_{n \to \infty} \frac{k(n+1)}{k(n)} = \alpha.$$

- 20. Give an example of a sequence $\{X_n\}$ of identically distributed random variables which are pairwise independent, but not jointly independent.
- 21. Let $\{X_n\}$ be a sequence of independent and identically distributed random variables. Assume that X_n are nonconstant. Prove that $P\{\omega; X_n(\omega) \text{ converges}\} = 0$.
- 22. Let $\{E_n\}$ be a sequence of independent events and let $p_n = P(E_n)$. Find a necessary and sufficient condition on the sequence $\{p_n\}$ such that $1_{E_n} \to 0$ almost surely.
- 23. Let $X_n, n \ge 1$, be independent random variables with the distributions

$$P(X_n = n) = P(X_n = -n) = \frac{1}{2}a_n, \quad P(X_n = 0) = 1 - a_n, \quad n \ge 1,$$

where $0 < a_n < 1$ for all $n \ge 1$. Find conditions on $\{a_n\}$ so that $\sum_{n=1}^{\infty} X_n$ converges almost surely and yet $\sum_{n=1}^{\infty} \operatorname{var}(X_n) = \infty$.

24. Let ε_n , $n \ge 1$, be the Radamacher functions. Find a necessary and sufficient condition on $\{a_n\}$ so that $\sum_{n=1}^{\infty} a_n \varepsilon_n$ converges almost surely.

Homework (4): Due 11/23/2015 (Monday)

- 25. Prove that $\int_{-\infty}^{\infty} \left| \frac{\sin t}{t} \right| dt = \infty$ and derive the equality $\int_{-\infty}^{\infty} \frac{\sin t}{t} dt = \pi$.
- 26. Derive the equality $\int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^2 dt = \pi$.
- 27. Let a be a real number. Justify the informal change of variables u = y ia for the equality $\int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-ia)^2} dy = \int_{-\infty}^{\infty} e^{-\frac{1}{2}u^2} du$.
- 28. Derive the equality $\int_{-\infty}^{\infty} \frac{e^{itx}}{1+x^2} dx = \pi e^{-|t|}, -\infty < t < \infty.$
- 29. Let μ_n be the Gaussian measure with mean a_n and variance σ_n^2 . Find conditions on a_n and σ_n such that the family $\{\mu_n\}$ is tight.
- 30. Let $\{X_n\}$ be independent Poisson random variables, each with parameter 1. By applying the central limit theorem to this sequence, prove that

$$\lim_{n \to \infty} \frac{1}{e^n} \sum_{k=0}^n \frac{n^k}{k!} = \frac{1}{2}$$

Homework (5): Due 12/2/2015 (Wednesday)

31. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of independent random variables with the distributions $X_1 \sim N(0,1)$ and $X_n \sim N(0,2^{n-2}), n \geq 2$. Let

$$X_{nk} = \frac{X_k}{\sqrt{\sum_{i=1}^n \operatorname{Var}(X_i)}}, \quad 1 \le k \le n.$$

Show that the triangular array $\{X_{nk}\}$ does not satisfy the Lindeberg condition.

- 32. Check whether the uniform distribution on the interval [-1, 1] is infinitely divisible.
- 33. Prove the equality $\int_{-\infty}^{\infty} \frac{1}{1+(x-y)^2} \frac{1}{1+y^2} dy = \frac{2}{4+x^2} \pi$.
- 34. Show that the Poisson distribution with parameter $\lambda > 0$ is not stable.
- 35. Prove that stable distributions are infinitely divisible.
- 36. Show that gamma distributions are not stable, but are infinitely divisible.