
Math 7365-1 Homework

Homework (1)

1. Let f(t) be a continuous function on [a, b]. Prove that∫ b

a

f(t) dB(t) = lim
∥∆n∥→0

n∑
i=1

f(t∗i )(B(ti)−B(ti−1)), in L2(Ω),

where the left-hand side is the Wiener integral of f(t), t∗i ∈ [ti−1, ti], and ∆n’s are

partitions of [a, b].

2. Let f(t) be a C1-function on [a, b], i.e., a continuously differentiable function on [a, b].

Prove the following equality:∫ b

a

f(t) dB(t) = f(t)B(t)
∣∣∣b
a
−
∫ b

a

B(t)f ′(t) dt.

3. Let Xt be an exponential Brownian motion given by

Xt = eσB(t)+(α− 1
2σ

2)t,

where σ and α are real numbers. Find all moments E(Xn
t ) for n ≥ 1.

4. Find the power series of the function f(x) = ee
x−1. In particular, evaluate the first

six terms.

5. Let f(t) be a C2-function on the real line and define the convolution

(pt ∗ f)(x) =
1√
2πt

∫ ∞

−∞
f(y) e−

(x−y)2

2t dy.

Prove that

lim
t→0

(pt ∗ f)(x)− f(x)

t
=

1

2
f ′′(x).
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Homework (2)

6. Let B(t) be a Brownian motion. Define a stochastic process Xt by

Xt =

{
B(t), if 0 ≤ t ≤ 1,

B(1), if t > 1.

Show that Xt is a Markov proves and find its transition probabilities {Ps,x(t, ·)}.

7. Suppose a collection {Ps,x(t, ·); 0 ≤ s < t, x ∈ IR} of probability measures satisfies

the Chapman-Kolmogorv equation. For any 0 < t1 < t2 < · · · < tn, define

µt1,t2,...,tn((−∞, c1]× (−∞, c2]× · · · × (−∞, cn])

=

∫ c1

−∞

∫ c2

−∞
· · ·

∫ cn

−∞
Ptn−1,xn−1(tn, dxn)

× Ptn−2,xn−2(tn−1, dxn−1) · · · · · ·Pt1,x1(t2, dx2)ν(dx1),

where ν is a probability measure on IR. Show that

(a) the collection {µt1,t2,...,tn ; 0 < t1 < t2 < · · · < tn, n ≥ 1} satisfies the Kolmogorov

consistency condition.

(b) The stochastic process Xt with marginal distributions given by the collection

{µt1,t2,...,tn ; 0 < t1 < t2 < · · · < tn, n ≥ 1} is a Markov process.

8. Let Pt(x, ·) be the Gaussian measure with mean e−tx and variance 1
2 (1 − e−2t) and

define

(Ttf)(x) =

∫ ∞

−∞
f(y)Pt(x, dy).

Show that

lim
t→0

(Ttf)(x)− f(e−tx)

t
=

1

2
f ′′(x).

9. Let A be the matrix A =

(
3 2
2 0

)
. Evaluate the matrix etA.

10. Consider the stochastic differential equation dXt = Xt dB(t) + αXt dt, X0 = 1, with

α being a real number. The solution is given by the exponential Brownian motion

Xt = eB(t)− 1
2 t+αt. Compute the mean E(Xt) and the variance var(Xt). Moreover,

discuss the limits of E(Xt) and var(Xt) as t → ∞ to see how the solution Xt depends

on the parameter α.
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Homework (3)

11. Suppose X is a nonnegative random variable. Prove that P{X > 0} > 0 if and only

if E(X) > 0.

12. Solve the linear stochastic differential equation

dXt =
{
α(t)Xt + β(t)

}
dB(t) +

{
ρ(t)Xt + µ(t)

}
dt.

13. Show that the portfolio θ(t) =
( ∫ t

0
B(s)2 ds − tB(t)2, B(t)2

)
is an arbitrage for the

market X(t) = (1, t).

14. Let X(t) =
(
1, B(t)

)
be a market. Find θ0(t) so that the portfolio θ(t) =

(
θ0(t), B(t)

)
is self-financing. Is the resulting θ(t) admissible for the market X(t)? Is it an arbitrage

for X(t)?

15. Evaluate the expectation E exp
[
1
2

∫ 1

0
B(t)2 dt

]
= (cos 1)−1/2.

Hint: Modify the proof of Kac’s formula on pages 48-50 of my 1975 book and use the

following identity
∞∏

n=1

(
1− x2

(2n− 1)2

)
= cos

πx

2
. (1)

On page 50 the following identity is used:

∞∏
n=1

(
1 +

x2

(2n− 1)2

)
= cosh

πx

2
. (2)

It looks like Equation (2) can be obtained by replacing x with ix in Equation (1)

and vice versa. Thus the expectation in this homework problem can be informally

obtained by replacing α = −1/2 in Kac’s formula.
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Homework (4)

16. Let {en}∞n=1 be an orthonormal basis for H and let T be an operator on H given

by Ten = anen, n ≥ 1, with
∑∞

n=1 a
2
n < ∞. (Such an operator with eigenvalues

being square summable is called a Hilbert–Schmidt operator on H.) Show that the

semi-norm ∥x∥ = |Tx|, x ∈ H, is measurable.

17. Let i : C ′ ↪→ C be the classical Wiener space and let C̃ ↪→ C ′ ↪→ C be the associ-

ated triple. Show that the space C̃ consists of those functions f in C satisfying the

conditions that f ′(1) = 0, f ′ is absolutely continuous, and f ′′ is bounded.

18. Check whether ℓ2 ↪→ ℓp, 2 < p < ∞, is an abstract Wiener space.

19. Check whether L2[0, 1] ↪→ Lp[0, 1], 1 ≤ p < 2, is an abstract Wiener space.

20. For x = (x1, x2, . . . , xn, . . .) ∈ ℓ2, define

∥x∥ =
( ∞∑

n=1

1

n
x2
n

)1/2

.

Check whether ∥ · ∥ is a measurable norm.
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