Math 7366-1 Homework

1. Let f(t) be a continuously differentiable function on [a, b]. Prove that the following equality holds almost surely for $\omega \in \Omega$:

$$\left(\int_{a}^{b} f(t) \, dB(t)\right)(\omega) = f(t)B(t,\omega) \Big]_{a}^{b} - \int_{a}^{b} B(t,\omega)f'(t) \, dt$$

where the integral in the left-hand side is a Wiener integral, while the one in the right-hand side is a Riemann integral.

- 2. Let X be a normal random variable with mean 0 and variance σ^2 . Evaluate the moments $E(X^n)$ of X for $n \ge 1$. You can use any method.
- 3. Let B(t) be a Brownian motion and $\mathcal{F}_s = \sigma\{B(u); u \leq s\}$.
 - (a) Compute $E[B(t)^3 | \mathcal{F}_s]$ for $0 \le s \le t$.
 - (b) Deduce from (a) a martingale out of $B(t)^3$.
- 4. Let B(t) be a Brownian motion. Use the definition of the Itô integral to compute $\int_a^b B(t)^2 dB(t)$.
- 5. Let B(t) be a Brownian motion. Find the variances of the random variables: (a) $\int_a^b B(t)^3 dB(t)$, (b) $\int_a^b e^{B(t)} dB(t)$, (c) $\int_a^b \operatorname{sgn}(B(t)) dB(t)$

- 6. Let B(t) be a Brownian motion. Find the probability that $\left|\int_0^{\pi} \sin t \, dB(t)\right| > 1$.
- 7. Let B(t) be a Brownian motion. Find the probability that $\left|\int_{0}^{1} t^{2}B(t) dt\right| > 2$.
- 8. Let $X = \int_a^b |B(t)| \, dB(t)$. Find the mean and variance of the random variable X.
- 9. Find the mean and variance of the random variable $X = \int_a^b \sqrt{t} e^{B(t)} dB(t)$.
- 10. Let B(t) be a Brownian motion. Find all deterministic functions $\rho(t)$ such that the stochastic process $X(t) = e^{B(t) + \rho(t)}$ is a martingale. (Do not use Itô's formula)
- 11. Let B(t) be a Brownian motion and $\Delta_n = \{t_0, t_1, \dots, t_{n-1}, t_n\}$ a partition of [a, b]. Prove that

$$\sum_{i=1}^{n} (t_i - t_{i-1}) \big(B(t_i) - B(t_{i-1}) \big) \longrightarrow 0$$

in $L^2(\Omega)$ as $\|\Delta_n\| = \max_{1 \le i \le n} (t_i - t_{i-1})$ tends to 0.

For the problems 12–22 below, use the *Hermite polynomials* $H_n(x; \rho)$ defined as follows. For each x, expand the function $e^{tx-\frac{1}{2}\rho t^2}$ as a power series in t, namely

$$e^{tx-\frac{1}{2}\rho t^2} = \sum_{n=0}^{\infty} \frac{H_n(x;\rho)}{n!} t^n,$$

where $H_n(x;\rho)/n!$ is the coefficient of t^n .

- 12. Multiply the power series of e^{tx} and $e^{-\frac{1}{2}\rho t^2}$ in t together and compare the coefficients of t^n to find $H_n(x;\rho)$ for n = 0, 1, 2, 3, 4.
- 13. Find the general formula for $H_n(x; \rho)$.
- 14. Prove the equality

$$H_n(x;\rho) = (-\rho)^n e^{x^2/2\rho} D_x^n e^{-x^2/2\rho}.$$

15. Let μ_{ρ} be the Gaussian measure with mean 0 and variance ρ . Prove the orthogonality of the Hermite polynomials with respect to μ_{ρ} :

$$\int_{-\infty}^{\infty} H_n(x;\rho) H_m(x;\rho) \, d\mu_\rho(x) = \delta_{nm} n! \rho^n,$$

where δ_{nm} is the Kronecker delta.

16. Prove the equality

$$H_{n+1}(x;\rho) = xH_n(x;\rho) - \rho nH_{n-1}(x;\rho).$$

17. Prove the equality

$$D_x H_n(x;\rho) = n H_{n-1}(x;\rho).$$

18. Prove the equality

$$(-\rho D_x^2 + x D_x)H_n(x;\rho) = nH_n(x;\rho).$$

19. Prove the equality

$$\frac{\partial}{\partial \rho} H_n(x;\rho) = -\frac{1}{2} \frac{\partial^2}{\partial x^2} H_n(x;\rho).$$

20. Prove the equality

$$\int_{a}^{b} H_{n}(B(t);t) \, dB(t) = \frac{1}{n+1} \Big(H_{n+1}(B(b);b) - H_{n+1}(B(a);a) \Big).$$

- 21. Show that $M_n(t) = H_n(B(t); t), t \ge 0$, is a martingale.
- 22. Let $M_n(t) = H_n(B(t); t), t \ge 0$. Show that $\langle M_n \rangle_t = n^2 \int_0^t H_{n-1}(B(s); s)^2 ds$.