Math 7366-1 Homework Spring 2019

. Let H,(z;0?) be the Hermite polynomial of degree n with parameter o2. Prove the
following equality
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where the left-hand side is called a generating function of the Hermite polynomials.

. Use the above generating function of the Hermite polynomials to show that
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. Let B(t) be a Brownian motion. Use the partitions and then take the limit to obtain
the stochastic integral

/OtB(s)2dB(s) - %B(t)?’ - /OtB(s) ds.

. Let B(t) be a Brownian motion. Use the definition of conditional expectation from
the elementary probability theory to evaluate

E[B(H)|B(1)], 0<t<1.

Moreover, evaluate F[B(t)|B(1)] for ¢ > 1.

. Express fol tB(t) dt in terms of Wiener integrals.

. Compute E( fol B(t)? dt)Q].

. Find the variance of the random variable fol t2B(t) dt.
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Express the Brownian functional fol B(t)? dt in terms of Wiener integral.

(Integration by parts formula for Wiener integral) Let 0 € L*([a,b]) and define a
stochastic process X (t f (s ), a <t < b. Show that for any C'-function f
on [a, b, the following equahty holds.
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Let f € L2([0 1]) be a nonzero function and let f be the Wiener integral of f, namely,
f= fo . Show that the vectors 1, f, (f)2,...(f)" are linearly independent
for any n 2 1.

Let f € L?([a,b]). Show that the Brownian functional (f)2 — || f||2 is a homogeneous
chaos of degree 2.

Express the Brownian functional B(t) 4+ 2B(t)? — 5B(t)? as a sum of homogeneous
chaoses.

Express the Brownian functional sin B(¢) as a sum of homogeneous chaoses.

Let {&,}72; be a sequence of independent random variables with the same standard
normal distribution. Show that

B(t) = i": L21<1 — cos [(n — %)ﬁﬂ)fn, t>0

is a Brownian motion.
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Let X = f; f(t) dB(t) be a Wiener integral and Y = ff f;g(s, t)dB(s)dB(t) a double
Wiener-It6 integral. Show that E(XY) = 0.

Suppose f(t) is an adapted continuous stochastic process. Prove the equality

/OtB(l)f(s /f ) dB(s /f ds, 0<t<l.

Suppose f(t) is a deterministic function in L?(]0, 1]). Show that

/f )dB(s /f ds, 0<t<1,

is a martingale with respect to the filtration given by the Brownian motion B(t).

Evaluate the stochastic integral
t
/ sin(B(1))dB(s), t> 0.
0

Let f(t) be an adapted continuous stochastic process and §(x) a C'-function. Evaluate
the stochastic integral

/9 s)dB(s), 0<t<T1.

Evaluate the stochastic integral
t
/ (B(1) + B(2))dB(s), t>0.
0

Suppose X; is a martingale with respect to a filtration {F;;a < ¢t < b} and ¢(t) a
stochastic process being instantly independent of {F;;a < t < b} with Ep(t) = ¢, a
constant. Prove that the stochastic process Y; = X;¢(t) is a near-martingale with
respect to {F;a <t < b}.



