1. Prove that the following statements are equivalent.
(a) $X(t)$ is a stochastic process satisfying conditions (2) and (3) in the definition of a Brownian motion.
(b) $X(t)$ is a stochastic process with marginal distributions given by

$$
\begin{aligned}
& \mu_{t_{1}, t_{2}, \ldots, t_{n}}(A)=\frac{1}{\sqrt{(2 \pi)^{n} t_{1}\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-t_{n-1}\right)}} \\
& \quad \times \int_{A} \exp \left[-\frac{1}{2}\left(\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}+\cdots+\frac{\left(x_{n}-x_{n-1}\right)^{2}}{t_{n}-t_{n-1}}\right)\right] d x_{1} d x_{2} \cdots d x_{n}
\end{aligned}
$$

for any $0<t_{1}<t_{2}<\cdots<t_{n}$ and $n \geq 1$.
(c) $X(t)$ is a stochastic process such that for any $0<t_{1}<t_{2}<\cdots<t_{n}$ and any real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$,

$$
\begin{aligned}
& E \exp \left[i\left(\lambda_{1} X\left(t_{1}\right)+\lambda_{2}\left(X\left(t_{2}\right)-X\left(t_{1}\right)\right)+\cdots+\lambda_{n}\left(X\left(t_{n}\right)-X\left(t_{n-1}\right)\right)\right)\right] \\
& =\exp \left[-\frac{1}{2}\left(\lambda_{1}^{2} t_{1}+\lambda_{2}^{2}\left(t_{2}-t_{1}\right)+\cdots+\lambda_{n}^{2}\left(t_{n}-t_{n-1}\right)\right)\right]
\end{aligned}
$$

2. Suppose f is a continuously differentiable function on a finite closed interval $[a, b]$. Prove that $V_{f}<\infty$ and $Q_{f}=0$ on $[a, b]$.
3. Suppose X is a Gaussian random variable with mean 0 and variance σ^{2}. Evaluate $E\left|X^{n}\right|$.
4. Let $B(t)$ be a Brownian motion. Show that

$$
\sum_{i=1}^{n}\left|B\left(t_{i}\right)-B\left(t_{i-1}\right)\right|^{3} \longrightarrow 0
$$

in $L^{2}(\Omega)$ as $\left\|\Delta_{n}\right\| \rightarrow 0$.
5. Let X and Y be independent random variables. Show that for any Borel measurable functions f and g, the random variables $f(X)$ and $g(Y)$ are also independent.
6. Suppose X and Y be independent random variables. Prove that the σ-fields $\sigma(X)$ and $\sigma(Y)$ are independent.
7. Let $B(t)$ be a Brownian motion. Use the definition of Itô integral given in class to obtain the stochastic integral

$$
\int_{0}^{t} B(s)^{2} d B(s)=\frac{1}{3} B(t)^{3}-\int_{0}^{t} B(s) d s
$$

8. Express $\int_{0}^{1}\left(t^{2}+t\right) B(t) d t$ in terms of Wiener integrals.
9. Find the mean and variance of $\int_{0}^{1} B(t)^{2} d t$.
10. Suppose $f(t)$ and $g(t)$ are stochastic processes in $L_{\mathrm{ad}}^{2}([a, b] \times \Omega)$ and assume that

$$
\int_{a}^{b} f(t) d B(t)=\int_{a}^{b} g(t) d B(t), \quad \text { almost surely }
$$

What is the relationship between $f(t)$ and $g(t)$?
11. Prove that

$$
\sum_{i=1}^{n}\left|B\left(t_{i}\right)-B\left(t_{i-1}\right)\right|\left(t_{i}-t_{i-1}\right)
$$

converges to 0 in $L^{2}(\Omega)$ as $\|\Delta\| \rightarrow 0$.
12. Let μ be the probability measure on the real line with $\mu(\{1\})=\mu(\{2\})=1 / 2$. Apply the Gram-Schmidt orthogonalization procedure to the sequence $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ of monomials (as far as you can since the whole sequence is not linearly independent) to get an orthogonal basis for $L^{2}(\mu)$.
13. Do the same thing as that stated in Problem 12 for the probability measure ν given by $\nu(\{1\})=\nu(\{2\})=\nu(\{3\})=1 / 3$.
14. Let $f(t)$ be a deterministic C^{1}-function on $[a, b]$ and $X(t)$ an Itô process. Prove the following integration by parts formula:

$$
\left.\int_{a}^{b} f(t) d X(t)=f(t) X(t)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(t) X(t) d t
$$

15. Evaluate the stochastic integral

$$
\int_{0}^{t}(B(1)+B(2)) d B(s), \quad t \geq 0 .
$$

16. Evaluate the stochastic integral

$$
\int_{0}^{t} \sin (B(1)) d B(s), \quad t \geq 0
$$

17. Suppose $f(t)$ is an adapted continuous stochastic process. Prove the equality

$$
\int_{0}^{t} B(1) f(s) d B(s)=B(1) \int_{0}^{t} f(s) d B(s)-\int_{0}^{t} f(s) d s, \quad 0 \leq t \leq 1
$$

18. Suppose $f(t)$ is a deterministic function in $L^{2}([0,1])$. Show that

$$
X_{t}=B(t) \int_{0}^{t} f(s) d B(s)-\int_{0}^{t} f(s) d s, \quad 0 \leq t \leq 1
$$

is a martingale with respect to the filtration given by the Brownian motion $B(t)$.
19. Let $f(t)$ be an adapted continuous stochastic process and $\theta(x)$ a C^{1}-function. Evaluate the stochastic integral

$$
\int_{0}^{t} \theta(B(1)) f(s) d B(s), \quad 0 \leq t \leq 1
$$

20. Let $f \in L^{2}([a, b])$. Show that the Brownian functional $(\tilde{f})^{2}-\|f\|_{2}^{2}$ is a homogeneous chaos of degree 2 .
21. Express the Brownian functional $B(t)+2 B(t)^{2}-5 B(t)^{3}$ as a sum of homogeneous chaoses.
