- 1. The gamma function is defined by $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$, $\operatorname{Re}(z) > 0$. Prove the following equalities:
 - (1) $\Gamma(z+1) = z \Gamma(z), \operatorname{Re}(z) > 0.$
 - (2) $\Gamma(1) = 1$.
 - (3) $\Gamma(n) = (n-1)!$ for any integer $n \ge 1$.
 - (4) $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$
- 2. Find the dimension n so that the sphere measure $\sigma(S^{n-1})$ has the maximum value.
- 3. Find the dimension n so that the volume $V(B^n)$ of the unit ball has the maximum value.
 - In problems #4 to #7 below, we use the notation for $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$:

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}, \quad 0
$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$$$$

- Note that $\|\cdot\|_p$ is a norm when $1 \le p \le \infty$. For 0 , see Problem #7.
- 4. Let $1 \le p < 2$. Prove that there exist positive constants a_n and b_n depending on the dimension n such that

$$a_n \|x\|_p \le \|x\|_2 \le b_n \|x\|_p, \quad \forall x \in \mathbb{R}^n.$$

5. Let $2 . Prove that there exist positive constants <math>c_n$ and d_n depending on the dimension n such that

$$c_n \|x\|_p \le \|x\|_2 \le d_n \|x\|_p, \quad \forall x \in \mathbb{R}^n.$$

6. Prove that there exist positive constants α_n and β_n depending on the dimension n such that

$$\alpha_n \|x\|_{\infty} \le \|x\|_2 \le \beta_n \|x\|_{\infty}, \quad \forall x \in \mathbb{R}^n.$$

- 7. Let $0 . Show that <math>\|\cdot\|_p$ is not a norm.
- 8. Let $0 . For <math>x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n , define

$$d(x,y) = |y_1 - x_1|^p + |y_2 - x_2|^p + \dots + |y_n - x_n|^p.$$

Prove that d(x, y) is a metric on \mathbb{R}^n .

- 9. Let H be an infinite dimensional Hilbert space. Does there exist a measure μ on H satisfying the following properties?
 - (1) $\mu(b(x,r)) > 0$ for any $x \in H$ and r > 0.
 - (2) $\mu(A) < \infty$ for any bounded Borel subset A of H.
 - (3) μ is rotation invariant.
- 10. Let K be the subspace of ℓ^2 given by

$$K = \left\{ (0, x_2, x_3, \dots, x_n, \dots) ; x_j \neq 0 \text{ for only finitely many} j's \right\}$$

and let ξ be the vector $(1, 1/2, \ldots, 1/n, \ldots)$ in ℓ .

- (1) Find the distance $dist(\xi, K)$.
- (2) Does there exist a unique vector ξ_0 in K such that $|\xi \xi_0| = \text{dist}(\xi, K)$?
- 11. Let $H = \ell^2$ with norm $|\cdot|$. Define a norm $||\cdot||$ on H by

$$||(a_1, a_2, \dots, a_n, \dots)|| = \left(\sum_{n=1}^{\infty} \frac{1}{n^2} a_n^2\right)^{1/2}$$

Show that $\|\cdot\|$ is a measurable norm on H.

12. Define a norm $\|\cdot\|$ on ℓ^2 by

$$||(a_1, a_2, \dots, a_n, \dots)|| = \left(\sum_{n=1}^{\infty} \frac{1}{n} a_n^2\right)^{1/2}.$$

Check whether $\|\cdot\|$ is measurable.

- 13. Let *H* be a separable Hilbert space with norm $|\cdot|$. Suppose *T* is a Hilbert–Schmidt operator on *H*. Prove that $||x|| = |Tx|, x \in H$, is a measurable semi-norm.
- 14. Let *H* be the Hilbert space ℓ^2 with norm $\|\cdot\|_2$. Check whether the norm $\|\cdot\|_p$ on *H* for 2 is measurable on*H*.
- 15. Let *H* be the Hilbert space $L^2[0,1]$ with norm $\|\cdot\|_2$. Check whether the norm $\|\cdot\|_p$ on *H* for $1 \le p < 2$ is measurable.
- 16. Suppose $\|\cdot\|$ is a measurable semi-norm on a separable Hilbert space and A is a bounded linear operator on H with respect to $\|\cdot\|$. Check whether the semi-norm

$$\|x\|_A = \|Ax\|, \quad x \in H,$$

is measurable.