- Fall 2005
- 1. Show that the marginal distribution of a Brownian motion B(t) for $0 < t_1 < t_2 < \cdots t_n$ is given by

$$P\{B(t_1) \le a_1, B(t_2) \le a_2, \dots, B(t_n) \le a_n\}$$

= $\frac{1}{\sqrt{(2\pi)^n t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} \int_{-\infty}^{a_n} \cdots \int_{-\infty}^{a_1} \exp\left[-\frac{1}{2}\left(\frac{x_1^2}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + \cdots + \frac{(x_n - x_{n-1})^2}{t_n - t_{n-1}}\right)\right] dx_1 dx_2 \cdots dx_n.$

- 2. Let B(t) be a Brownian motion. Show that $\lim_{t\to 0^+} tB(1/t) = 0$ almost surely. Define W(0) = 0 and W(t) = tB(1/t) for t > 0. Prove that W(t) is a Brownian motion.
- 3. Let B(t) be a Brownian motion. Find all constants a and b so that $X(t) = \int_0^t (a + b\frac{u}{t}) dB(u)$ is also a Brownian motion.
- 4. Let B(t) be a Brownian motion. Show that both $X(t) = \int_0^t (2t-u) dB(u)$ and $Y(t) = \int_0^t (3t-4u) dB(u)$ are Gaussian processes with mean function 0 and the same covariance function $3s^2t \frac{2}{3}s^3$ for $s \le t$.
- 5. Let $B(t) = (B_1(t), \dots, B_n(t))$ be an \mathbb{R}^n -valued Brownian motion. Find the density functions of R(t) = |B(t)| and $S(t) = |B(t)|^2$.
- 6. Let f(x, y) be the joint density function of random variables X and Y. The marginal density function of Y is given by $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$. The conditional density function of X given Y = y is defined by $f_{X|Y}(x|y) = f(x, y)/f_Y(y)$. The conditional expectation of X given Y = y is defined by $E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$. Let $\sigma(Y)$ be the σ -field generated by Y. Prove that

$$E[X|\sigma(Y)] = \theta(Y),$$

where θ is the function $\theta(y) = E[X|Y = y]$.

- 7. Let B(t) be a Brownian motion. Find the distribution of the Wiener integral $X_t = \int_0^t e^{t-s} dB(s)$. Check whether X_t is a martingale.
- 8. Let B(t) be a Brownian motion. Check that $X_t = \frac{1}{3}B(t)^3 \int_0^t B(s) ds$ is a martingale.
- 9. For a partition $\Delta = \{a = t_0 < t_1 < \cdots < t_n = b\}$, define

$$M_{\Delta} = \sum_{j=0}^{n-1} B\left(\frac{t_j + t_{j+1}}{2}\right) \left(B(t_{j+1}) - B(t_j)\right).$$

Find $\lim_{\|\Delta\|\to 0} M_{\Delta}$ in $L^2(\Omega)$.

- 10. Find the variance of the random variable $X = \int_a^b \sqrt{t} \sin(B(t)) dB(t)$.
- 11. Let $X_t = B(1)B(t), 0 \le t \le 1$.
 - (a) Check whether the random variable B(1) is measurable with respect to the σ -field $\mathcal{F}_t = \sigma\{B(s); s \leq t\}$ for any $0 \leq t < 1$.
 - (b) Show that for each $0 \le t < 1$, the random variable X_t is not measurable with respect to \mathcal{F}_t given in (a).
 - (c) For $0 \le s \le t \le 1$, find $E[X_t | \mathcal{F}_s]$.
- 12. Show that $X_t = e^{B(t)} 1 \frac{1}{2} \int_0^t e^{B(s)} ds$ is a martingale.
- 13. Show that $X_t = e^{B(t) \frac{1}{2}t}$ is a martingale.
- 14. Let $X_{\varepsilon} = \int_0^1 \varepsilon^{-\lambda} e^{-B(t)^2/2\varepsilon} dB(t)$. Show that $X_{\varepsilon} \to 0$ in $L^2(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $0 < \lambda < 1/4$.
- 15. Let $Y_{\varepsilon} = \int_{0}^{\varepsilon} \varepsilon^{-\lambda} e^{-B(t)^{2}/2\varepsilon} dB(t)$. Show that $Y_{\varepsilon} \to 0$ in $L^{2}(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $0 < \lambda < 1/2$.
- 16. Let $Z_{\varepsilon} = \int_{0}^{\varepsilon/2} \varepsilon^{-\lambda} e^{-B(t)^{2}/2\varepsilon} dB(t)$. Show that $Z_{\varepsilon} \to 0$ in $L^{2}(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $0 < \lambda < 1/2$.
- 17. Find the quadratic variation of a Poisson process N(t) with parameter $\lambda > 0$.
- 18. Suppose $\lambda \in \mathbb{R}$. Prove that $M(t) = e^{\lambda B(t) \lambda^2 t/2}$ is a martingale and the compensator of $M(t)^2$ is given by

$$\langle M \rangle_t = \lambda^2 \int_0^t e^{2\lambda B(u) - \lambda^2 u} \, du.$$

- 19. Let $f \in L^2[a, b]$ and $M(t) = \int_a^t f(s) dB(s)$. Find the quadratic variation process $[M]_t$ of M(t) and the compensator $\langle M \rangle_t$ of $M(t)^2$.
- 20. Let $s \leq t$. Show that

$$E\{B(t)^{3} | \mathcal{F}_{s}\} = 3(t-s)B(s) + B(s)^{3}.$$
(1)

- 21. Use Equation (1) to derive a martingale $X_t = B(t)^3 3tB(t)$. Find the quadratic variation process $[X]_t$ and the compensator $\langle X \rangle_t$.
- 22. Let B(t) be a Brownian motion. Find all deterministic functions $\rho(t)$ such that $e^{B(t)+\rho(t)}$ is a martingale.
- 23. Let $B_1(t)$ and $B_2(t)$ be two independent Brownian motions and let $\Delta_n = \{t_0, t_1, \ldots, t_{n-1}, t_n\}$ be a partition of [a, b]. Show that

$$\sum_{i=1}^{n} \left(B_1(t_i) - B_1(t_{i-1}) \right) \left(B_2(t_i) - B_2(t_{i-1}) \right) \longrightarrow 0$$

in $L^2(\Omega)$ as $\|\Delta_n\| = \max_{1 \le i \le n} (t_i - t_{i-1})$ tends to 0.

24. Suppose X_1, \ldots, X_n are random variables such that for all $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$,

$$Ee^{i(\lambda_1X_1+\dots+\lambda_nX_n)} = e^{i(\lambda_1\mu_1+\dots+\lambda_n\mu_n) - \frac{1}{2}(\lambda_1^2\sigma_1^2+\dots+\lambda_n^2\sigma_n^2)},$$

where $\mu_j \in \mathbb{R}$ and $\sigma_j > 0$ for j = 1, ..., n. Prove that the random variables $X_1, ..., X_n$ are independent and normally distributed.

- 25. Check whether $X(t) = \int_0^t \operatorname{sgn}(B(s) s) \, dB(s)$ is a Brownian motion.
- 26. Let B(t) be a Brownian motion with respect to a probability measure P. Find the density function of $B(\frac{2}{3})$ with respect to the probability measure $dQ = e^{B(1) \frac{1}{2}} dP$.
- 27. Let B(t) be a Brownian motion with respect to a probability measure P. Find a probability measure with respect to which the stochastic process $W(t) = B(t) + t t^3$, $0 \le t \le 2$, is a Brownian motion.