- 1. Let $B_1(t)$ and $B_2(t)$ be independent Brownian motions. Check whether the market $X_t = (1, 2 + B_1(t), -t + B_1(t) + B_2(t))$ has an arbitrage.
- 2. Let $B_1(t)$ and $B_2(t)$ be independent Brownian motions. Check whether the market $X_t = (1, 2 + B_1(t) + B_2(t), -t B_1(t) B_2(t))$ has an arbitrage.
- 3. Let $B_1(t)$ and $B_2(t)$ be independent Brownian motions. Check whether the market $X_t = (e^t, B_1(t), B_2(t))$ has an arbitrage.
- 4. Show that the inclusion map $\ell_p \hookrightarrow \ell_q$ is continuous for any $1 \le p < q \le \infty$. (Hint: Prove the inequality $||a||_q \le ||a||_p$ for all $a \in \ell_p$ and $1 \le p < q \le \infty$.)
- 5. Show that $\ell_p \neq \ell_q$ if $p \neq q$.
- 6. Check whether the equalities hold: $\ell_1 = \bigcap_{1$
- 7. Let $\mu(X) < \infty$. Show that the inclusion map $L^p(X, \mu) \hookrightarrow L^q(X, \mu)$ is continuous for any $1 \le q . (Hint: Use the Hölder inequality.)$
- 8. Let μ be the Lebesgue measure on the interval [0,1]. Show that $L^p([0,1],\mu) \neq L^q([0,1],\mu)$ if $p \neq q$.
- 9. Let μ be the Lebesgue measure on the interval [0,1]. Check whether the equalities hold: $L^{\infty}([0,1],\mu) = \bigcap_{1 \le p < \infty} L^p([0,1],\mu), \ L^1([0,1],\mu) = \bigcup_{1 < q \le \infty} L^q([0,1],\mu).$
- 10. Let F consist of sequences with finitely many nonzero entries. Show that F is dense in ℓ_p for any $1 \le p < \infty$.
- 11. Let F be as given in Problem 10 and let c_0 consist of sequences converging to 0 with the supremum norm. Show that F is dense in c_0 .
- 12. Let F be as given in Problem 10 and let c consist of convergent sequences with the supremum norm. Show that F is not dense in c.
- 13. Let c_0 be as given in Problem 11. Check whether the equalities $c_0 = \bigcup_{1 \le q < \infty} \ell_q$ holds.
- 14. Let d be a metric on a set X. Show that $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is also a metric on X. Moreover, show that d and \tilde{d} generate the same topology.
- 15. Let $T: \ell_2 \to \ell_2$ be the linear map

$$T(a_1, a_2, \dots, a_n, \dots) = (\lambda_1 a_1, \lambda_2 a_2, \dots, \lambda_n a_n, \dots).$$

Prove that T is a compact operator if and only if $\lim_{n\to\infty} \lambda_n = 0$.