Coverage of Math 7390-2 (Spring 2003)

Chapter 1 Wiener-Itô decomposition theorem

- 1. Brownian motion
- 2. Wiener integrals
- 3. Homogeneous chaos
- 4. Multiple Wiener integrals
- 5. Wiener-Itô decomposition theorem
- 6. Orthogonal basis for $L^2(\Omega)$

Chapter 2 Measures on infinite dimensional spaces

- 1. Non-existence of Lebesgue measure on ∞ -dim spaces
- 2. Gauss measure on Hilbert space
- 3. Measurable norms
- 4. Abstract Wiener spaces
- 5. Wiener-Itô decomposition
- 6. Infinite dimensional Bochner theorem
- 7. Nuclear spaces

Chapter 3 Stochastic integrals

- 1. Quadratic variation of Brownian motion
- 2. Stochastic integrals
- 3. Relationship with Multiple Wiener integrals
- 4. Martingale representation theorem
- 5. Itô lemma
- 6. Stochastic differential equations
- 7. Properties of solutions
- 8. Feynman-Kac formula

Chapter 4 Applications to mathematical finance

- 1. The binomial asset pricing model
- 2. Market, portfolio, and arbitrage
- 3. Cameron-Martin-Maruyama theorem
- 4. Girsanov theorem
- 5. Non-existence of arbitrage
- 6. Attainability and completeness
- 7. Option pricing

Chapter 5 Theory of generalized functions

- 1. A simple example
- 2. Test functions and generalized functions
- 3. Schwartz space and tempered distributions
- 4. Continuous operators on the Schwartz space
- 5. Nuclearity of the Schwartz space
- 6. White noise space
- 7. White noise as a generalized function