- 1. Let B(t) be a Brownian motion. Show that $E|B(s)-B(t)|^4=3|s-t|^2$.
- 2. Show that the marginal distribution of a Brownian motion B(t) for $0 < t_1 < t_2 < \cdots t_n$ is given by

$$P\{B(t_1) \le a_1, B(t_2) \le a_2, \dots, B(t_n) \le a_n\}$$

$$= \frac{1}{\sqrt{(2\pi)^n t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} \int_{-\infty}^{a_n} \cdots \int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_1} \exp\left[-\frac{1}{2}\left(\frac{x_1^2}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + \cdots + \frac{(x_n - x_{n-1})^2}{t_n - t_{n-1}}\right)\right] dx_1 dx_2 \cdots dx_n.$$

- 3. Let B(t) be a Brownian motion. For fixed t and s, find the distribution function of the random variable X = B(t) + B(s).
- 4. Let B(t) be a Brownian motion. Show that $\lim_{t\to 0^+} tB(1/t) = 0$ almost surely. Define W(0) = 0 and W(t) = tB(1/t) for t > 0. Prove that W(t) is a Brownian motion.
- 5. Let B(t) be a Brownian motion. Find constants a and b so that $X(t) = \int_0^t (a + b\frac{u}{t}) dB(u)$ is also a Brownian motion.
- 6. Let B(t) be a Brownian motion. Show that $X(t) = \int_0^t (2t u) dB(u)$ and $Y(t) = \int_0^t (3t 4u) dB(u)$ are Gaussian processes with mean function 0 and covariance function $3s^2t \frac{2}{3}s^3$ for $s \le t$.

(Remark: The process X(t) is canonical, while Y(t) is not canonical.)

- 7. For each $n \geq 1$ let X_n be a Gaussian random variable with mean μ_n and variance σ_n^2 . Suppose the sequence X_n converges to X in $L^2(\Omega)$. Show that the limits $\mu = \lim_{n \to \infty} \mu_n$ and $\sigma^2 = \lim_{n \to \infty} \sigma_n^2$ exist and that X is a Gaussian random variable with mean μ and variance σ^2 .
- 8. Let B(t) be a Brownian motion. Find the distribution of the Wiener integral $X_t = \int_0^t e^{t-s} dB(s)$. Check whether X_t is a martingale.
- 9. Let B(t) be a Brownian motion. Find the distribution of $\int_0^t B(s) ds$. Check whether $Y_t = \int_0^t B(s) ds$ is a martingale.
- 10. Find the distribution of the integral $\int_0^1 sB(s) ds$. More generally, find the distribution of the integral $\int_0^1 s^n B(s) ds$.
- 11. Let B(t) be a Brownian motion. Check that $X_t = \frac{1}{3}B(t)^3 \int_0^t B(s) \, ds$ is a martingale.

- 12. Let B(t) be a Brownian motion and let $0 < s \le t \le u \le v$. Show that the random variables $\frac{1}{t}B(t) \frac{1}{s}B(s)$ and aB(u) + bB(v) are independent for any $a, b \in \mathbb{R}$.
- 13. Let B(t) be a Brownian motion and let $0 < s \le t \le u \le v$. Show that the random variables aB(s) + bB(t) and $\frac{1}{v}B(v) \frac{1}{u}B(u)$ are independent for any $a, b \in \mathbb{R}$ satisfying the condition as + bt = 0.
- 14. Let B(t) be a Brownian motion. Find the means and variances of the stochastic integrals $\int_a^b |B(t)| dB(t)$ and $\int_a^b (\operatorname{sgn} B(t)) dB(t)$.
- 15. Let B(t) be a Brownian motion. Show that $f(t) = e^{B(t)^2}$ does not belong to $L^2([0,1] \times \Omega)$.
- 16. For a partition $\Delta = \{a = t_0 < t_1 < \dots < t_n = b\}$, define

$$M_{\Delta} = \sum_{j=0}^{n-1} B\left(\frac{t_j + t_{j+1}}{2}\right) \left(B(t_{j+1}) - B(t_j)\right).$$

Find $\lim_{\|\Delta\|\to 0} M_{\Delta}$ in $L^2(\Omega)$.

- 17. Let $X = \int_0^1 B(t) dB(t)$. Find the distribution function of the random variable X.
- 18. Let $X = \int_a^b \left[\sin(B(t)) + \cos(B(t)) \right] dB(t)$. Find the variance of the random variable X.
- 19. Let $f \in L^2([a,b])$ and $X_t = X_a + \int_a^t f(s) dB(s)$. Show that

$$\int_{a}^{b} f(t)X_{t} dB(t) = \frac{1}{2} \left(X_{b}^{2} - X_{a}^{2} - \int_{a}^{b} f(t)^{2} dt \right).$$

- 20. Let $X_t = B(1)B(t), 0 \le t \le 1$.
 - (a) Show that X_t is not a martingale with respect to the filtration $\mathcal{F}_t = \sigma\{B(s); s \leq t\}$.
 - (b) For $0 \le s \le t \le 1$, find $E[X_t | \mathcal{F}_s]$.
- 21. Show that $X_t = e^{B(t)} 1 \frac{1}{2} \int_0^t e^{B(s)} ds$ is a martingale.
- 22. Show that $X_t = e^{B(t) \frac{1}{2}t}$ is a martingale.
- 23. Let f(t) be nonanticipating and $\int_a^b E|f(t)|^2 dt < \infty$. Show that

$$\left(\int_a^t f(s) dB(s)\right)^2 - \int_a^t f(s)^2 ds$$

is a martingale and find its Doob-Meyer qv-process.

24. Let $\lambda \in \mathbb{R}$. Show that $M(t) = e^{\lambda B(t) - \lambda^2 t/2}$ is a martingale and its Doob-Meyer qv-process is given by

$$\langle M \rangle_t = \lambda^2 \int_0^t e^{2\lambda B(u) - \lambda^2 u} du.$$

- 25. Find the quadratic variation of a Poisson process N(t) with parameter $\lambda > 0$.
- 26. Let $f \in L^2([a,b])$. Find the quadratic variation and the Doob-Meyer qv-process of the martingale $\int_a^t f(s) dB(s)$.
- 27. Let $s \leq t$. Show that

$$E\{B(t)^3 \mid \mathcal{F}_s\} = 3(t-s)B(s) + B(s)^3. \tag{*}$$

- 28. Use Equation (*) to derive a martingale.
- 29. Use the Itô formula to show that $X_t = B(t)^3 3tB(t)$ is a martingale and to derive the Doob-Meyer qv-process of X_t .
- 30. Let a market be given by

$$dX_0(t) = 0, \quad X_0(0) = 1,$$

$$dX_1(t) = 2 dt + dB_1(t) + dB_2(t),$$

$$dX_2(t) = -dt - dB_1(t) - dB_2(t),$$

where $B_1(t)$ and $B_2(t)$ are two independent Brownian motions. Check whether the market $X(t) = (X_0(t), X_1(t), X_2(t)), 0 \le t \le T$, has an arbitrage.

- 31. Let $B_1(t)$ and $B_2(t)$ be two independent Brownian motions. Check whether the market $X(t) = (e^t, B_1(t), B_2(t)), 0 \le t \le T$, has an arbitrage.
- 32. Let a market be given by

$$dX_0(t) = 0, \quad X_0(0) = 1,$$

 $dX_1(t) = 2 dt + dB_1(t) + dB_2(t),$

where $B_1(t)$ and $B_2(t)$ are two independent Brownian motions. Check whether the market $X(t) = (X_0(t), X_1(t)), 0 \le t \le T$, is complete.