Math 7390-2 Homework

Homework 1: Due February 4, 2011

- 1. Let B(t) be a Brownian motion. Find the joint density function of B(s) and B(t) for $0 < s \le t$.
- 2. Let X be a normal random variable with mean 0 and variance σ^2 . Prove the formula

$$E(X^n) = \begin{cases} (n-1)!! \, \sigma^n, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$$

3. Let μ be the Gaussian measure with mean 0 and variance σ^2 . Define

$$\theta(t) = \int_{-\infty}^{\infty} e^{tx} d\mu(x), \quad \widetilde{\theta}(t,s) = \int_{-\infty}^{\infty} e^{tx} e^{sx} d\mu(x).$$
(1)

Find a function $\rho(t)$ such that $\rho(0) = 0$, $\rho'(0) = 1$, and $\frac{\tilde{\theta}(\rho(t),\rho(s))}{\theta(\rho(t))\theta(\rho(s))}$ is a function of the product *ts*. The resulting function

$$\varphi(t,x) = \frac{e^{\rho(t)x}}{\theta(\rho(t))}$$

is called a *generating function* for μ . The corresponding orthogonal polynomials are the Hermite polynomials.

- 4*. Do the same thing as in Problem 3 for the Poisson measure μ with parameter $\lambda > 0$. The corresponding orthogonal polynomials are the Charlier polynomials.
- 5*. Let $H_n(x; \sigma^2)$ be the Hermite polynomial of degree *n* with parameter σ^2 . Find the norm $||H_n(x; \sigma^2)||$ with respect to the measure in Problem 3.
- 6*. Let $C_n(x; \lambda)$ be the Charlier polynomial of degree *n* with parameter λ . Find the norm $\|C_n(x; \sigma^2)\|$ with respect to the measure in Problem 4.

Homework 2: Due February 16, 2010

7*. For $0 \le t_1 < t_2 < \cdots < t_n$, let $\mu_{t_1,t_2,\ldots,t_n} = \delta_{(t_1,t_2,\ldots,t_n)}$, the Dirac delta measure at the point (t_1,t_2,\ldots,t_n) of \mathbb{R}^n . Show that the collection

$$\left\{ \mu_{t_1, t_2, \dots, t_n} \, ; \, 0 \le t_1 < t_2 < \dots < t_n, \, n = 1, 2, \dots, \right\}$$

satisfies the Kolmogorov consistency condition. Moreover, describe the corresponding probability measure on the function space $\mathbb{R}^{[0,\infty)}$.

- 8^{*}. Let X be a Poisson random variable with parameter $\lambda > 0$. Find the *n*-th moment $E(X^n)$ of X. (Hint: Use the moment generating function of X.)
- 9. Let B(t) be a Brownian motion. For fixed t and s, find the distribution function of the random variable X = B(t) + 2B(s).
- 10. Let B(t) be a Brownian motion. For fixed t, find the distribution of the random variable $\int_0^t B(s) ds$.
- 11*. Let B(t) be a Brownian motion. For fixed t, find the distribution of the random variable $\int_0^t B(s) \cos(t-s) \, ds$.
- 12. Let B(t) be a Brownian motion. Find the probability that $\left|\int_0^{\pi} \sin t \, dB(t)\right| > 1$.
- 13. Let B(t) be a Brownian motion. Find the probability that $\left|\int_{0}^{1} t^{2}B(t) dt\right| > 2$.
- 14. Let B(t) be a Brownian motion. Check whether $X_t = \int_0^t s^2 B(s) ds$ is a martingale.
- 15*. Let B(t) be a Brownian motion. Show that $X_t = B(t)^3 3 \int_0^t B(s) ds$ is a martingale.

Homework 3: Due March 18, 2011

16^{*}. For a partition $\Delta_n = \{a = t_0 < t_1 < \cdots < t_n = b\}$, define

$$M_{\Delta_n} = \sum_{i=1}^n B\Big(\frac{t_{i-1} + t_i}{2}\Big) \Big(B(t_i) - B(t_{i-1})\Big).$$

Find $\lim_{\|\Delta_n\|\to 0} M_{\Delta_n}$ in $L^2(\Omega)$.

- 17. Let $f(t) = B(\frac{1}{2}) \mathbb{1}_{[1/2,1]}(t)$. Show that $\int_0^1 f(t) \, dB(t)$ is not a Gaussian random variable. 18. Let $X = \int_a^b |B(t)| \, dB(t)$. Find the variance of the random variable X.
- 19. The signum function is defined by $\operatorname{sgn}(0) = 0$ and $\operatorname{sgn}(x) = x/|x|$ if $x \neq 0$. Let $X_t = \int_0^t \operatorname{sgn}(B(s)) dB(s)$. Show that for s < t, the random variable $X_t X_s$ has mean
 - 0 and variance t s.
- 20. Find the variance of the random variable $X = \int_a^b \sqrt{t} e^{B(t)} dB(t)$.
- 21*. Show that $X_t = e^{B(t)} 1 \frac{1}{2} \int_0^t e^{B(s)} ds$ is a martingale.
- 22. Let $X_{\lambda,\varepsilon} = \varepsilon^{-\lambda} \int_0^1 e^{-B(t)^2/2\varepsilon} dB(t)$. Show that $X_{\lambda,\varepsilon} \to 0$ in $L^2(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $\lambda < \frac{1}{4}$. Check whether $\lim_{\varepsilon \downarrow 0} X_{\frac{1}{4},\varepsilon}$ exits in $L^2(\Omega)$.
- 23*. Let $Y_{\lambda,\varepsilon} = \varepsilon^{-\lambda} \int_0^{\varepsilon} e^{-B(t)^2/2\varepsilon} dB(t)$. Show that $Y_{\lambda,\varepsilon} \to 0$ in $L^2(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $\lambda < \frac{1}{2}$. Check whether $\lim_{\varepsilon \downarrow 0} Y_{\frac{1}{2},\varepsilon}$ exits in $L^2(\Omega)$.
- 24. Let $Z_{\lambda,\varepsilon} = \varepsilon^{-\lambda} \int_0^{\varepsilon^2} e^{-B(t)^2/2\varepsilon} dB(t)$. Show that $Z_{\lambda,\varepsilon} \to 0$ in $L^2(\Omega)$ as $\varepsilon \downarrow 0$ if and only if $\lambda < 1$. Check whether $\lim_{\varepsilon \downarrow 0} Z_{1,\varepsilon}$ exits in $L^2(\Omega)$.

Homework 4: Due April 1, 2011

- 25. Let B(t) be a Brownian motion. Find all deterministic functions $\rho(t)$ such that the stochastic process $X(t) = e^{B(t)+\rho(t)}$ is a martingale. (Note: Do not use Itô's formula)
- 26*. Let B(t) be a Brownian motion and h(t) a deterministic function in $L^2(0,\infty)$. Find all deterministic functions $\rho(t)$ such that the stochastic process $X(t) = e^{\int_0^t h(s) \, dB(s) + \rho(t)}$ is a martingale. (Note: You may use Itô's formula)
- 27. Let $f(t,x) = H_n(x;t)$ be the Hermite polynomial of degree n with parameter t.
 - (a) Apply Itô's formula to the function f(t, x) to show that $M_n(t) = H_n(B(t); t)$ is a martingale.
 - (b) Apply Itô's formula again to the function $f(t,x)^2$ to show that the compensator of $M_n(t)^2$ is given by $\langle M_n \rangle_t = n^2 \int_0^t H_{n-1}(B(s);s)^2 ds$.
- 28. Let $B_1(t)$ and $B_2(t)$ be independent Brownian motions and $\Delta_n = \{t_0, t_1, \dots, t_{n-1}, t_n\}$ a partition of [a, b]. Show that

$$\sum_{i=1}^{n} (B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1})) \longrightarrow 0$$

in $L^2(\Omega)$ as $\|\Delta_n\| = \max_{1 \le i \le n} (t_i - t_{i-1})$ tends to 0.

29. Let N(t) be a Poisson process with parameter $\lambda > 0$ and $\Delta_n = \{t_0, t_1, \ldots, t_{n-1}, t_n\}$ a partition of [a, b]. Prove that

$$\sum_{i=1}^{n} (t_i - t_{i-1}) \left(N(t_i) - N(t_{i-1}) \right) \longrightarrow 0$$

in $L^2(\Omega)$ and almost surely as $\|\Delta_n\| = \max_{1 \le i \le n} (t_i - t_{i-1})$ tends to 0.

30^{*}. Check whether the assertion in Problem 28 remains true for the compensated Poisson process $\widetilde{N}(t)$.

Homework 5: Due April 15, 2011

- 31*. Check whether $X(t) = \int_0^t \operatorname{sgn}(B(s) s) dB(s)$ is a Brownian motion.
- 32. Prove that if h satisfies the Novikov condition, then h belongs to $L^2_{ad}([a, b] \times \Omega)$.
- 33. Let B(t) be a Brownian motion with respect to P. Find a probability measure Q with respect to which $W(t) = B(t) + t t^3$, $0 \le t \le 2$, is a Brownian motion.
- 34. Let B(t) be a Brownian motion with respect to P. Find a probability measure Q with respect to which $W(t) = B(t) + \int_0^t \min\{1, |B(s)|\} ds$, $0 \le t \le 3$, is a Brownian motion.

Homework 6: Due April 25, 2011

- 35. Evaluate the stochastic integral $\int_0^t \arctan B(s) \, dB(s)$.
- 36. Let $B(t), t \ge 0$, be a Brownian motion with respect to P. Show that the stochastic process $B(t) t, 0 \le t \le 2$, is not a Brownian motion with respect to the probability measure $dQ = e^{B(1) \frac{1}{2}} dP$.
- 37. Let B(t) be a Brownian motion with respect to P. Can the stochastic process

$$W(t) = B(t) - \int_0^t \frac{1}{1 + B(s)^2} \, ds, \quad 0 \le t \le 10,$$

be a Brownian motion with respect to some probability measure Q? If so, find Q. 38*. Evaluate the double Wiener–Itô integral $\int_0^1 \int_0^1 t \, dB(s) \, dB(t)$.

- 39. Find the homogeneous chaos expansion for the function $B(t)^4 + 2B(t)^3$.
- 40. Find the homogeneous chaos expansion for the function $B(t)e^{B(t)}$.
- 41. Find the Wiener–Itô decomposition of the function (B(4) B(1))(B(3) B(2)).

Homework Presentation

- 1. Monday (5/2/11): Abeynanda, Babaee, Heider, Jeon
 $4^*,\,7^*,\,16^*,\,26^*$
- 2. Wednesday (5/4/11): Bandyopadhyay, Peng, Yang, Zhang
 $5^*,\,11^*,\,21^*,\,31^*$
- Friday (5/6/11): Huang, Kang, Smyser (in my office), Wang
 6*, 15*, 23*, 38*